mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-16 11:09:16 +01:00
290 lines
9.1 KiB
C++
290 lines
9.1 KiB
C++
// Copyright 2009 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
|
|
#include "VideoCommon/BPFunctions.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/RenderState.h"
|
|
#include "VideoCommon/VertexManagerBase.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
namespace BPFunctions
|
|
{
|
|
// ----------------------------------------------
|
|
// State translation lookup tables
|
|
// Reference: Yet Another GameCube Documentation
|
|
// ----------------------------------------------
|
|
|
|
void FlushPipeline()
|
|
{
|
|
g_vertex_manager->Flush();
|
|
}
|
|
|
|
void SetGenerationMode()
|
|
{
|
|
g_vertex_manager->SetRasterizationStateChanged();
|
|
}
|
|
|
|
void SetScissor()
|
|
{
|
|
/* NOTE: the minimum value here for the scissor rect and offset is -342.
|
|
* GX internally adds on an offset of 342 to both the offset and scissor
|
|
* coords to ensure that the register was always unsigned.
|
|
*
|
|
* The code that was here before tried to "undo" this offset, but
|
|
* since we always take the difference, the +342 added to both
|
|
* sides cancels out. */
|
|
|
|
/* The scissor offset is always even, so to save space, the scissor offset
|
|
* register is scaled down by 2. So, if somebody calls
|
|
* GX_SetScissorBoxOffset(20, 20); the registers will be set to 10, 10. */
|
|
const int xoff = bpmem.scissorOffset.x * 2;
|
|
const int yoff = bpmem.scissorOffset.y * 2;
|
|
|
|
EFBRectangle native_rc(bpmem.scissorTL.x - xoff, bpmem.scissorTL.y - yoff,
|
|
bpmem.scissorBR.x - xoff + 1, bpmem.scissorBR.y - yoff + 1);
|
|
native_rc.ClampUL(0, 0, EFB_WIDTH, EFB_HEIGHT);
|
|
|
|
TargetRectangle target_rc = g_renderer->ConvertEFBRectangle(native_rc);
|
|
g_renderer->SetScissorRect(target_rc);
|
|
}
|
|
|
|
void SetViewport()
|
|
{
|
|
int scissor_x_off = bpmem.scissorOffset.x * 2;
|
|
int scissor_y_off = bpmem.scissorOffset.y * 2;
|
|
float x = g_renderer->EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_off);
|
|
float y = g_renderer->EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_off);
|
|
|
|
float width = g_renderer->EFBToScaledXf(2.0f * xfmem.viewport.wd);
|
|
float height = g_renderer->EFBToScaledYf(-2.0f * xfmem.viewport.ht);
|
|
float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f;
|
|
float max_depth = xfmem.viewport.farZ / 16777216.0f;
|
|
if (width < 0.f)
|
|
{
|
|
x += width;
|
|
width *= -1;
|
|
}
|
|
if (height < 0.f)
|
|
{
|
|
y += height;
|
|
height *= -1;
|
|
}
|
|
|
|
// The maximum depth that is written to the depth buffer should never exceed this value.
|
|
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
|
|
// floating-point round-trip errors. However the console GPU doesn't ever write a value
|
|
// to the depth buffer that exceeds 2^24 - 1.
|
|
constexpr float GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
|
|
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
|
|
{
|
|
// There's no way to support oversized depth ranges in this situation. Let's just clamp the
|
|
// range to the maximum value supported by the console GPU and hope for the best.
|
|
min_depth = MathUtil::Clamp(min_depth, 0.0f, GX_MAX_DEPTH);
|
|
max_depth = MathUtil::Clamp(max_depth, 0.0f, GX_MAX_DEPTH);
|
|
}
|
|
|
|
if (g_renderer->UseVertexDepthRange())
|
|
{
|
|
// We need to ensure depth values are clamped the maximum value supported by the console GPU.
|
|
// Taking into account whether the depth range is inverted or not.
|
|
if (xfmem.viewport.zRange < 0.0f && g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
{
|
|
min_depth = GX_MAX_DEPTH;
|
|
max_depth = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
min_depth = 0.0f;
|
|
max_depth = GX_MAX_DEPTH;
|
|
}
|
|
}
|
|
|
|
float near_depth, far_depth;
|
|
if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
{
|
|
// Set the reversed depth range.
|
|
near_depth = max_depth;
|
|
far_depth = min_depth;
|
|
}
|
|
else
|
|
{
|
|
// We use an inverted depth range here to apply the Reverse Z trick.
|
|
// This trick makes sure we match the precision provided by the 1:0
|
|
// clipping depth range on the hardware.
|
|
near_depth = 1.0f - max_depth;
|
|
far_depth = 1.0f - min_depth;
|
|
}
|
|
|
|
g_renderer->SetViewport(x, y, width, height, near_depth, far_depth);
|
|
}
|
|
|
|
void SetDepthMode()
|
|
{
|
|
g_vertex_manager->SetDepthStateChanged();
|
|
}
|
|
|
|
void SetBlendMode()
|
|
{
|
|
g_vertex_manager->SetBlendingStateChanged();
|
|
}
|
|
|
|
/* Explanation of the magic behind ClearScreen:
|
|
There's numerous possible formats for the pixel data in the EFB.
|
|
However, in the HW accelerated backends we're always using RGBA8
|
|
for the EFB format, which causes some problems:
|
|
- We're using an alpha channel although the game doesn't
|
|
- If the actual EFB format is RGBA6_Z24 or R5G6B5_Z16, we are using more bits per channel than the
|
|
native HW
|
|
|
|
To properly emulate the above points, we're doing the following:
|
|
(1)
|
|
- disable alpha channel writing of any kind of rendering if the actual EFB format doesn't use an
|
|
alpha channel
|
|
- NOTE: Always make sure that the EFB has been cleared to an alpha value of 0xFF in this case!
|
|
- Same for color channels, these need to be cleared to 0x00 though.
|
|
(2)
|
|
- convert the RGBA8 color to RGBA6/RGB8/RGB565 and convert it to RGBA8 again
|
|
- convert the Z24 depth value to Z16 and back to Z24
|
|
*/
|
|
void ClearScreen(const EFBRectangle& rc)
|
|
{
|
|
bool colorEnable = (bpmem.blendmode.colorupdate != 0);
|
|
bool alphaEnable = (bpmem.blendmode.alphaupdate != 0);
|
|
bool zEnable = (bpmem.zmode.updateenable != 0);
|
|
auto pixel_format = bpmem.zcontrol.pixel_format;
|
|
|
|
// (1): Disable unused color channels
|
|
if (pixel_format == PEControl::RGB8_Z24 || pixel_format == PEControl::RGB565_Z16 ||
|
|
pixel_format == PEControl::Z24)
|
|
{
|
|
alphaEnable = false;
|
|
}
|
|
|
|
if (colorEnable || alphaEnable || zEnable)
|
|
{
|
|
u32 color = (bpmem.clearcolorAR << 16) | bpmem.clearcolorGB;
|
|
u32 z = bpmem.clearZValue;
|
|
|
|
// (2) drop additional accuracy
|
|
if (pixel_format == PEControl::RGBA6_Z24)
|
|
{
|
|
color = RGBA8ToRGBA6ToRGBA8(color);
|
|
}
|
|
else if (pixel_format == PEControl::RGB565_Z16)
|
|
{
|
|
color = RGBA8ToRGB565ToRGBA8(color);
|
|
z = Z24ToZ16ToZ24(z);
|
|
}
|
|
g_renderer->ClearScreen(rc, colorEnable, alphaEnable, zEnable, color, z);
|
|
}
|
|
}
|
|
|
|
void OnPixelFormatChange()
|
|
{
|
|
int convtype = -1;
|
|
|
|
// TODO : Check for Z compression format change
|
|
// When using 16bit Z, the game may enable a special compression format which we need to handle
|
|
// If we don't, Z values will be completely screwed up, currently only Star Wars:RS2 uses that.
|
|
|
|
/*
|
|
* When changing the EFB format, the pixel data won't get converted to the new format but stays
|
|
* the same.
|
|
* Since we are always using an RGBA8 buffer though, this causes issues in some games.
|
|
* Thus, we reinterpret the old EFB data with the new format here.
|
|
*/
|
|
if (!g_ActiveConfig.bEFBEmulateFormatChanges)
|
|
return;
|
|
|
|
auto old_format = g_renderer->GetPrevPixelFormat();
|
|
auto new_format = bpmem.zcontrol.pixel_format;
|
|
|
|
// no need to reinterpret pixel data in these cases
|
|
if (new_format == old_format || old_format == PEControl::INVALID_FMT)
|
|
goto skip;
|
|
|
|
// Check for pixel format changes
|
|
switch (old_format)
|
|
{
|
|
case PEControl::RGB8_Z24:
|
|
case PEControl::Z24:
|
|
// Z24 and RGB8_Z24 are treated equal, so just return in this case
|
|
if (new_format == PEControl::RGB8_Z24 || new_format == PEControl::Z24)
|
|
goto skip;
|
|
|
|
if (new_format == PEControl::RGBA6_Z24)
|
|
convtype = 0;
|
|
else if (new_format == PEControl::RGB565_Z16)
|
|
convtype = 1;
|
|
break;
|
|
|
|
case PEControl::RGBA6_Z24:
|
|
if (new_format == PEControl::RGB8_Z24 || new_format == PEControl::Z24)
|
|
convtype = 2;
|
|
else if (new_format == PEControl::RGB565_Z16)
|
|
convtype = 3;
|
|
break;
|
|
|
|
case PEControl::RGB565_Z16:
|
|
if (new_format == PEControl::RGB8_Z24 || new_format == PEControl::Z24)
|
|
convtype = 4;
|
|
else if (new_format == PEControl::RGBA6_Z24)
|
|
convtype = 5;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (convtype == -1)
|
|
{
|
|
ERROR_LOG(VIDEO, "Unhandled EFB format change: %d to %d", static_cast<int>(old_format),
|
|
static_cast<int>(new_format));
|
|
goto skip;
|
|
}
|
|
|
|
g_renderer->ReinterpretPixelData(convtype);
|
|
|
|
skip:
|
|
DEBUG_LOG(VIDEO, "pixelfmt: pixel=%d, zc=%d", static_cast<int>(new_format),
|
|
static_cast<int>(bpmem.zcontrol.zformat));
|
|
|
|
g_renderer->StorePixelFormat(new_format);
|
|
}
|
|
|
|
void SetInterlacingMode(const BPCmd& bp)
|
|
{
|
|
// TODO
|
|
switch (bp.address)
|
|
{
|
|
case BPMEM_FIELDMODE:
|
|
{
|
|
// SDK always sets bpmem.lineptwidth.lineaspect via BPMEM_LINEPTWIDTH
|
|
// just before this cmd
|
|
const char* action[] = {"don't adjust", "adjust"};
|
|
DEBUG_LOG(VIDEO, "BPMEM_FIELDMODE texLOD:%s lineaspect:%s", action[bpmem.fieldmode.texLOD],
|
|
action[bpmem.lineptwidth.lineaspect]);
|
|
}
|
|
break;
|
|
case BPMEM_FIELDMASK:
|
|
{
|
|
// Determines if fields will be written to EFB (always computed)
|
|
const char* action[] = {"skip", "write"};
|
|
DEBUG_LOG(VIDEO, "BPMEM_FIELDMASK even:%s odd:%s", action[bpmem.fieldmask.even],
|
|
action[bpmem.fieldmask.odd]);
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG(VIDEO, "SetInterlacingMode default");
|
|
break;
|
|
}
|
|
}
|
|
};
|