dosbox-wii/src/cpu/core_dynrec/risc_armv4le-o3.h

1083 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (C) 2002-2011 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* ARMv4 (little endian) backend by M-HT (size-tweaked arm version) */
// temporary registers
#define temp1 HOST_ip
#define temp2 HOST_v3
#define temp3 HOST_v4
// register that holds function return values
#define FC_RETOP HOST_a1
// register used for address calculations,
#define FC_ADDR HOST_v1 // has to be saved across calls, see DRC_PROTECT_ADDR_REG
// register that holds the first parameter
#define FC_OP1 HOST_a1
// register that holds the second parameter
#define FC_OP2 HOST_a2
// special register that holds the third parameter for _R3 calls (byte accessible)
#define FC_OP3 HOST_v2
// register that holds byte-accessible temporary values
#define FC_TMP_BA1 HOST_a1
// register that holds byte-accessible temporary values
#define FC_TMP_BA2 HOST_a2
// temporary register for LEA
#define TEMP_REG_DRC HOST_v2
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// helper macro
#define ROTATE_SCALE(x) ( (x)?(32 - x):(0) )
// instruction encodings
// move
// mov dst, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define MOV_IMM(dst, imm, rimm) (0xe3a00000 + ((dst) << 12) + (imm) + ((rimm) << 7) )
// mov dst, src, lsl #imm
#define MOV_REG_LSL_IMM(dst, src, imm) (0xe1a00000 + ((dst) << 12) + (src) + ((imm) << 7) )
// movs dst, src, lsl #imm
#define MOVS_REG_LSL_IMM(dst, src, imm) (0xe1b00000 + ((dst) << 12) + (src) + ((imm) << 7) )
// mov dst, src, lsr #imm
#define MOV_REG_LSR_IMM(dst, src, imm) (0xe1a00020 + ((dst) << 12) + (src) + ((imm) << 7) )
// mov dst, src, asr #imm
#define MOV_REG_ASR_IMM(dst, src, imm) (0xe1a00040 + ((dst) << 12) + (src) + ((imm) << 7) )
// mov dst, src, lsl rreg
#define MOV_REG_LSL_REG(dst, src, rreg) (0xe1a00010 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mov dst, src, lsr rreg
#define MOV_REG_LSR_REG(dst, src, rreg) (0xe1a00030 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mov dst, src, asr rreg
#define MOV_REG_ASR_REG(dst, src, rreg) (0xe1a00050 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mov dst, src, ror rreg
#define MOV_REG_ROR_REG(dst, src, rreg) (0xe1a00070 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mvn dst, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define MVN_IMM(dst, imm, rimm) (0xe3e00000 + ((dst) << 12) + (imm) + ((rimm) << 7) )
// arithmetic
// add dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ADD_IMM(dst, src, imm, rimm) (0xe2800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// add dst, src1, src2, lsl #imm
#define ADD_REG_LSL_IMM(dst, src1, src2, imm) (0xe0800000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// sub dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define SUB_IMM(dst, src, imm, rimm) (0xe2400000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// sub dst, src1, src2, lsl #imm
#define SUB_REG_LSL_IMM(dst, src1, src2, imm) (0xe0400000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// rsb dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define RSB_IMM(dst, src, imm, rimm) (0xe2600000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// cmp src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define CMP_IMM(src, imm, rimm) (0xe3500000 + ((src) << 16) + (imm) + ((rimm) << 7) )
// nop
#define NOP MOV_REG_LSL_IMM(HOST_r0, HOST_r0, 0)
// logical
// tst src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define TST_IMM(src, imm, rimm) (0xe3100000 + ((src) << 16) + (imm) + ((rimm) << 7) )
// and dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define AND_IMM(dst, src, imm, rimm) (0xe2000000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// and dst, src1, src2, lsl #imm
#define AND_REG_LSL_IMM(dst, src1, src2, imm) (0xe0000000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// orr dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ORR_IMM(dst, src, imm, rimm) (0xe3800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// orr dst, src1, src2, lsl #imm
#define ORR_REG_LSL_IMM(dst, src1, src2, imm) (0xe1800000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// orr dst, src1, src2, lsr #imm
#define ORR_REG_LSR_IMM(dst, src1, src2, imm) (0xe1800020 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// eor dst, src1, src2, lsl #imm
#define EOR_REG_LSL_IMM(dst, src1, src2, imm) (0xe0200000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// bic dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define BIC_IMM(dst, src, imm, rimm) (0xe3c00000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 4096
#define LDR_IMM(reg, addr, imm) (0xe5900000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// ldrh reg, [addr, #imm] @ 0 <= imm < 256
#define LDRH_IMM(reg, addr, imm) (0xe1d000b0 + ((reg) << 12) + ((addr) << 16) + (((imm) & 0xf0) << 4) + ((imm) & 0x0f) )
// ldrb reg, [addr, #imm] @ 0 <= imm < 4096
#define LDRB_IMM(reg, addr, imm) (0xe5d00000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 4096
#define STR_IMM(reg, addr, imm) (0xe5800000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// strh reg, [addr, #imm] @ 0 <= imm < 256
#define STRH_IMM(reg, addr, imm) (0xe1c000b0 + ((reg) << 12) + ((addr) << 16) + (((imm) & 0xf0) << 4) + ((imm) & 0x0f) )
// strb reg, [addr, #imm] @ 0 <= imm < 4096
#define STRB_IMM(reg, addr, imm) (0xe5c00000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// branch
// beq pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define BEQ_FWD(imm) (0x0a000000 + ((imm) >> 2) )
// bne pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define BNE_FWD(imm) (0x1a000000 + ((imm) >> 2) )
// bgt pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define BGT_FWD(imm) (0xca000000 + ((imm) >> 2) )
// b pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define B_FWD(imm) (0xea000000 + ((imm) >> 2) )
// bx reg
#define BX(reg) (0xe12fff10 + (reg) )
// move a full register from reg_src to reg_dst
static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
if(reg_src == reg_dst) return;
cache_addd( MOV_REG_LSL_IMM(reg_dst, reg_src, 0) ); // mov reg_dst, reg_src
}
// helper function
static Bits get_imm_gen_len(Bit32u imm) {
Bits ret;
if (imm == 0) {
return 1;
} else {
ret = 0;
while (imm) {
while ((imm & 3) == 0) {
imm>>=2;
}
ret++;
imm>>=8;
}
return ret;
}
}
// helper function
static Bits get_method_imm_gen_len(Bit32u imm, Bits preffer00, Bits *num) {
Bits num00, num15, numadd, numsub, numret, ret;
num00 = get_imm_gen_len(imm);
num15 = get_imm_gen_len(~imm);
numadd = get_imm_gen_len(imm - ((Bit32u)cache.pos+8));
numsub = get_imm_gen_len(((Bit32u)cache.pos+8) - imm);
if (numsub < numadd && numsub < num00 && numsub < num15) {
ret = 0;
numret = numsub;
} else if (numadd < num00 && numadd < num15) {
ret = 1;
numret = numadd;
} else if (num00 < num15 || (num00 == num15 && preffer00)) {
ret = 2;
numret = num00;
} else {
ret = 3;
numret = num15;
}
if (num != NULL) *num = numret;
return ret;
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
Bits first, method, scale;
Bit32u imm2, dist;
if (imm == 0) {
cache_addd( MOV_IMM(dest_reg, 0, 0) ); // mov dest_reg, #0
} else if (imm == 0xffffffff) {
cache_addd( MVN_IMM(dest_reg, 0, 0) ); // mvn dest_reg, #0
} else {
method = get_method_imm_gen_len(imm, 1, NULL);
scale = 0;
first = 1;
if (method == 0) {
dist = ((Bit32u)cache.pos+8) - imm;
while (dist) {
while ((dist & 3) == 0) {
dist>>=2;
scale+=2;
}
if (first) {
cache_addd( SUB_IMM(dest_reg, HOST_pc, dist & 0xff, ROTATE_SCALE(scale)) ); // sub dest_reg, pc, #((dist & 0xff) << scale)
first = 0;
} else {
cache_addd( SUB_IMM(dest_reg, dest_reg, dist & 0xff, ROTATE_SCALE(scale)) ); // sub dest_reg, dest_reg, #((dist & 0xff) << scale)
}
dist>>=8;
scale+=8;
}
} else if (method == 1) {
dist = imm - ((Bit32u)cache.pos+8);
if (dist == 0) {
cache_addd( MOV_REG_LSL_IMM(dest_reg, HOST_pc, 0) ); // mov dest_reg, pc
} else {
while (dist) {
while ((dist & 3) == 0) {
dist>>=2;
scale+=2;
}
if (first) {
cache_addd( ADD_IMM(dest_reg, HOST_pc, dist & 0xff, ROTATE_SCALE(scale)) ); // add dest_reg, pc, #((dist & 0xff) << scale)
first = 0;
} else {
cache_addd( ADD_IMM(dest_reg, dest_reg, dist & 0xff, ROTATE_SCALE(scale)) ); // add dest_reg, dest_reg, #((dist & 0xff) << scale)
}
dist>>=8;
scale+=8;
}
}
} else if (method == 2) {
while (imm) {
while ((imm & 3) == 0) {
imm>>=2;
scale+=2;
}
if (first) {
cache_addd( MOV_IMM(dest_reg, imm & 0xff, ROTATE_SCALE(scale)) ); // mov dest_reg, #((imm & 0xff) << scale)
first = 0;
} else {
cache_addd( ORR_IMM(dest_reg, dest_reg, imm & 0xff, ROTATE_SCALE(scale)) ); // orr dest_reg, dest_reg, #((imm & 0xff) << scale)
}
imm>>=8;
scale+=8;
}
} else {
imm2 = ~imm;
while (imm2) {
while ((imm2 & 3) == 0) {
imm2>>=2;
scale+=2;
}
if (first) {
cache_addd( MVN_IMM(dest_reg, imm2 & 0xff, ROTATE_SCALE(scale)) ); // mvn dest_reg, #((imm2 & 0xff) << scale)
first = 0;
} else {
cache_addd( BIC_IMM(dest_reg, dest_reg, imm2 & 0xff, ROTATE_SCALE(scale)) ); // bic dest_reg, dest_reg, #((imm2 & 0xff) << scale)
}
imm2>>=8;
scale+=8;
}
}
}
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_addd( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
cache_addd( LDRH_IMM(temp2, data_reg, 2) ); // ldrh temp2, [data_reg, #2]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 16) ); // orr dest_reg, dest_reg, temp2, lsl #16
} else {
cache_addd( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addd( LDRH_IMM(temp2, data_reg, 1) ); // ldrh temp2, [data_reg, #1]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 8) ); // orr dest_reg, dest_reg, temp2, lsl #8
cache_addd( LDRB_IMM(temp2, data_reg, 3) ); // ldrb temp2, [data_reg, #3]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 24) ); // orr dest_reg, dest_reg, temp2, lsl #24
}
} else {
cache_addd( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
if ((Bit32u)data & 1) {
cache_addd( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addd( LDRB_IMM(temp2, data_reg, 1) ); // ldrb temp2, [data_reg, #1]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 8) ); // orr dest_reg, dest_reg, temp2, lsl #8
} else {
cache_addd( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
}
}
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, temp1);
}
// move a 16bit constant value into dest_reg
// the upper 16bit of the destination register may be destroyed
static void gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
Bits first, scale;
Bit32u imm2;
if (imm == 0) {
cache_addd( MOV_IMM(dest_reg, 0, 0) ); // mov dest_reg, #0
} else {
scale = 0;
first = 1;
imm2 = (Bit32u)imm;
while (imm2) {
while ((imm2 & 3) == 0) {
imm2>>=2;
scale+=2;
}
if (first) {
cache_addd( MOV_IMM(dest_reg, imm2 & 0xff, ROTATE_SCALE(scale)) ); // mov dest_reg, #((imm2 & 0xff) << scale)
first = 0;
} else {
cache_addd( ORR_IMM(dest_reg, dest_reg, imm2 & 0xff, ROTATE_SCALE(scale)) ); // orr dest_reg, dest_reg, #((imm2 & 0xff) << scale)
}
imm2>>=8;
scale+=8;
}
}
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_addd( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
cache_addd( MOV_REG_LSR_IMM(temp2, src_reg, 16) ); // mov temp2, src_reg, lsr #16
cache_addd( STRH_IMM(temp2, data_reg, 2) ); // strh temp2, [data_reg, #2]
} else {
cache_addd( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addd( MOV_REG_LSR_IMM(temp2, src_reg, 8) ); // mov temp2, src_reg, lsr #8
cache_addd( STRH_IMM(temp2, data_reg, 1) ); // strh temp2, [data_reg, #1]
cache_addd( MOV_REG_LSR_IMM(temp2, temp2, 16) ); // mov temp2, temp2, lsr #16
cache_addd( STRB_IMM(temp2, data_reg, 3) ); // strb temp2, [data_reg, #3]
}
} else {
cache_addd( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
if ((Bit32u)dest & 1) {
cache_addd( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addd( MOV_REG_LSR_IMM(temp2, src_reg, 8) ); // mov temp2, src_reg, lsr #8
cache_addd( STRB_IMM(temp2, data_reg, 1) ); // strb temp2, [data_reg, #1]
} else {
cache_addd( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
}
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, temp1);
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)data);
cache_addd( LDRB_IMM(dest_reg, temp1, 0) ); // ldrb dest_reg, [temp1]
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_canuseword(HostReg dest_reg,void* data) {
gen_mov_byte_to_reg_low(dest_reg, data);
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low_imm(HostReg dest_reg,Bit8u imm) {
cache_addd( MOV_IMM(dest_reg, imm, 0) ); // mov dest_reg, #(imm)
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u imm) {
gen_mov_byte_to_reg_low_imm(dest_reg, imm);
}
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
cache_addd( STRB_IMM(src_reg, temp1, 0) ); // strb src_reg, [temp1]
}
// convert an 8bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_byte(bool sign,HostReg reg) {
if (sign) {
cache_addd( MOV_REG_LSL_IMM(reg, reg, 24) ); // mov reg, reg, lsl #24
cache_addd( MOV_REG_ASR_IMM(reg, reg, 24) ); // mov reg, reg, asr #24
} else {
cache_addd( AND_IMM(reg, reg, 0xff, 0) ); // and reg, reg, #0xff
}
}
// convert a 16bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_word(bool sign,HostReg reg) {
if (sign) {
cache_addd( MOV_REG_LSL_IMM(reg, reg, 16) ); // mov reg, reg, lsl #16
cache_addd( MOV_REG_ASR_IMM(reg, reg, 16) ); // mov reg, reg, asr #16
} else {
cache_addd( MOV_REG_LSL_IMM(reg, reg, 16) ); // mov reg, reg, lsl #16
cache_addd( MOV_REG_LSR_IMM(reg, reg, 16) ); // mov reg, reg, lsr #16
}
}
// add a 32bit value from memory to a full register
static void gen_add(HostReg reg,void* op) {
gen_mov_word_to_reg(temp3, op, 1);
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp3, 0) ); // add reg, reg, temp3
}
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
Bits method1, method2, num1, num2, scale, sub;
if(!imm) return;
if (imm == 1) {
cache_addd( ADD_IMM(reg, reg, 1, 0) ); // add reg, reg, #1
} else if (imm == 0xffffffff) {
cache_addd( SUB_IMM(reg, reg, 1, 0) ); // sub reg, reg, #1
} else {
method1 = get_method_imm_gen_len(imm, 1, &num1);
method2 = get_method_imm_gen_len(-((Bit32s)imm), 1, &num2);
if (num2 < num1) {
method1 = method2;
imm = (Bit32u)(-((Bit32s)imm));
sub = 1;
} else sub = 0;
if (method1 != 2) {
gen_mov_dword_to_reg_imm(temp3, imm);
if (sub) {
cache_addd( SUB_REG_LSL_IMM(reg, reg, temp3, 0) ); // sub reg, reg, temp3
} else {
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp3, 0) ); // add reg, reg, temp3
}
} else {
scale = 0;
while (imm) {
while ((imm & 3) == 0) {
imm>>=2;
scale+=2;
}
if (sub) {
cache_addd( SUB_IMM(reg, reg, imm & 0xff, ROTATE_SCALE(scale)) ); // sub reg, reg, #((imm & 0xff) << scale)
} else {
cache_addd( ADD_IMM(reg, reg, imm & 0xff, ROTATE_SCALE(scale)) ); // add reg, reg, #((imm & 0xff) << scale)
}
imm>>=8;
scale+=8;
}
}
}
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
Bits method, scale;
Bit32u imm2;
imm2 = ~imm;
if(!imm2) return;
if (!imm) {
cache_addd( MOV_IMM(reg, 0, 0) ); // mov reg, #0
} else {
method = get_method_imm_gen_len(imm, 0, NULL);
if (method != 3) {
gen_mov_dword_to_reg_imm(temp3, imm);
cache_addd( AND_REG_LSL_IMM(reg, reg, temp3, 0) ); // and reg, reg, temp3
} else {
scale = 0;
while (imm2) {
while ((imm2 & 3) == 0) {
imm2>>=2;
scale+=2;
}
cache_addd( BIC_IMM(reg, reg, imm2 & 0xff, ROTATE_SCALE(scale)) ); // bic reg, reg, #((imm2 & 0xff) << scale)
imm2>>=8;
scale+=8;
}
}
}
}
// move a 32bit constant value into memory
static void gen_mov_direct_dword(void* dest,Bit32u imm) {
gen_mov_dword_to_reg_imm(temp3, imm);
gen_mov_word_from_reg(temp3, dest, 1);
}
// move an address into memory
static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, 1, temp1);
if (imm >= 0) {
cache_addd( ADD_IMM(temp3, temp3, (Bit32s)imm, 0) ); // add temp3, temp3, #(imm)
} else {
cache_addd( SUB_IMM(temp3, temp3, -((Bit32s)imm), 0) ); // sub temp3, temp3, #(-imm)
}
gen_mov_word_from_reg_helper(temp3, dest, 1, temp1);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, dword, temp1);
// maybe use function gen_add_imm
if (dword) {
gen_mov_dword_to_reg_imm(temp2, imm);
} else {
gen_mov_word_to_reg_imm(temp2, (Bit16u)imm);
}
cache_addd( ADD_REG_LSL_IMM(temp3, temp3, temp2, 0) ); // add temp3, temp3, temp2
gen_mov_word_from_reg_helper(temp3, dest, dword, temp1);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, 1, temp1);
if (imm >= 0) {
cache_addd( SUB_IMM(temp3, temp3, (Bit32s)imm, 0) ); // sub temp3, temp3, #(imm)
} else {
cache_addd( ADD_IMM(temp3, temp3, -((Bit32s)imm), 0) ); // add temp3, temp3, #(-imm)
}
gen_mov_word_from_reg_helper(temp3, dest, 1, temp1);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, dword, temp1);
// maybe use function gen_add_imm/gen_sub_imm
if (dword) {
gen_mov_dword_to_reg_imm(temp2, imm);
} else {
gen_mov_word_to_reg_imm(temp2, (Bit16u)imm);
}
cache_addd( SUB_REG_LSL_IMM(temp3, temp3, temp2, 0) ); // sub temp3, temp3, temp2
gen_mov_word_from_reg_helper(temp3, dest, dword, temp1);
}
// effective address calculation, destination is dest_reg
// scale_reg is scaled by scale (scale_reg*(2^scale)) and
// added to dest_reg, then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,HostReg scale_reg,Bitu scale,Bits imm) {
cache_addd( ADD_REG_LSL_IMM(dest_reg, dest_reg, scale_reg, scale) ); // add dest_reg, dest_reg, scale_reg, lsl #(scale)
gen_add_imm(dest_reg, imm);
}
// effective address calculation, destination is dest_reg
// dest_reg is scaled by scale (dest_reg*(2^scale)),
// then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,Bitu scale,Bits imm) {
if (scale) {
cache_addd( MOV_REG_LSL_IMM(dest_reg, dest_reg, scale) ); // mov dest_reg, dest_reg, lsl #(scale)
}
gen_add_imm(dest_reg, imm);
}
// generate a call to a parameterless function
static void INLINE gen_call_function_raw(void * func) {
cache_addd( LDR_IMM(temp1, HOST_pc, 4) ); // ldr temp1, [pc, #4]
cache_addd( ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd( BX(temp1) ); // bx temp1
cache_addd((Bit32u)func); // .int func
}
// generate a call to a function with paramcount parameters
// note: the parameters are loaded in the architecture specific way
// using the gen_load_param_ functions below
static Bit32u INLINE gen_call_function_setup(void * func,Bitu paramcount,bool fastcall=false) {
Bit32u proc_addr = (Bit32u)cache.pos;
gen_call_function_raw(func);
return proc_addr;
}
#if (1)
// max of 4 parameters in a1-a4
// load an immediate value as param'th function parameter
static void INLINE gen_load_param_imm(Bitu imm,Bitu param) {
gen_mov_dword_to_reg_imm(param, imm);
}
// load an address as param'th function parameter
static void INLINE gen_load_param_addr(Bitu addr,Bitu param) {
gen_mov_dword_to_reg_imm(param, addr);
}
// load a host-register as param'th function parameter
static void INLINE gen_load_param_reg(Bitu reg,Bitu param) {
gen_mov_regs(param, reg);
}
// load a value from memory as param'th function parameter
static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
gen_mov_word_to_reg(param, (void *)mem, 1);
}
#else
other arm abis
#endif
// jump to an address pointed at by ptr, offset is in imm
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
Bits num1, num2, scale, sub;
Bitu imm2;
gen_mov_word_to_reg(temp3, ptr, 1);
if (imm) {
num1 = get_imm_gen_len(imm);
num2 = get_imm_gen_len(-imm);
if (num2 < num1) {
imm = -imm;
sub = 1;
} else sub = 0;
scale = 0;
imm2 = (Bitu)imm;
while (imm2) {
while ((imm2 & 3) == 0) {
imm2>>=2;
scale+=2;
}
if (sub) {
cache_addd( SUB_IMM(temp3, temp3, imm2 & 0xff, ROTATE_SCALE(scale)) ); // sub temp3, temp3, #((imm2 & 0xff) << scale)
} else {
cache_addd( ADD_IMM(temp3, temp3, imm2 & 0xff, ROTATE_SCALE(scale)) ); // add temp3, temp3, #((imm2 & 0xff) << scale)
}
imm2>>=8;
scale+=8;
}
}
#if (1)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_addd( LDR_IMM(temp1, temp3, 0) ); // ldr temp1, [temp3]
} else
#endif
{
cache_addd( LDRB_IMM(temp1, temp3, 0) ); // ldrb temp1, [temp3]
cache_addd( LDRB_IMM(temp2, temp3, 1) ); // ldrb temp2, [temp3, #1]
cache_addd( ORR_REG_LSL_IMM(temp1, temp1, temp2, 8) ); // orr temp1, temp1, temp2, lsl #8
cache_addd( LDRB_IMM(temp2, temp3, 2) ); // ldrb temp2, [temp3, #2]
cache_addd( ORR_REG_LSL_IMM(temp1, temp1, temp2, 16) ); // orr temp1, temp1, temp2, lsl #16
cache_addd( LDRB_IMM(temp2, temp3, 3) ); // ldrb temp2, [temp3, #3]
cache_addd( ORR_REG_LSL_IMM(temp1, temp1, temp2, 24) ); // orr temp1, temp1, temp2, lsl #24
}
cache_addd( BX(temp1) ); // bx temp1
}
// short conditional jump (+-127 bytes) if register is zero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_zero(HostReg reg,bool dword) {
if (dword) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
} else {
cache_addd( MOVS_REG_LSL_IMM(temp1, reg, 16) ); // movs temp1, reg, lsl #16
}
cache_addd( BEQ_FWD(0) ); // beq j
return ((Bit32u)cache.pos-4);
}
// short conditional jump (+-127 bytes) if register is nonzero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_nonzero(HostReg reg,bool dword) {
if (dword) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
} else {
cache_addd( MOVS_REG_LSL_IMM(temp1, reg, 16) ); // movs temp1, reg, lsl #16
}
cache_addd( BNE_FWD(0) ); // bne j
return ((Bit32u)cache.pos-4);
}
// calculate relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch(DRC_PTR_SIZE_IM data) {
#if C_DEBUG
Bits len=(Bit32u)cache.pos-(data+8);
if (len<0) len=-len;
if (len>0x02000000) LOG_MSG("Big jump %d",len);
#endif
*(Bit32u*)data=( (*(Bit32u*)data) & 0xff000000 ) | ( ( ((Bit32u)cache.pos - (data+8)) >> 2 ) & 0x00ffffff );
}
// conditional jump if register is nonzero
// for isdword==true the 32bit of the register are tested
// for isdword==false the lowest 8bit of the register are tested
static Bit32u gen_create_branch_long_nonzero(HostReg reg,bool isdword) {
if (isdword) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
} else {
cache_addd( TST_IMM(reg, 0xff, 0) ); // tst reg, #0xff
}
cache_addd( BEQ_FWD(8) ); // beq nobranch (pc +8)
cache_addd( LDR_IMM(temp1, HOST_pc, 0) ); // ldr temp1, [pc, #0]
cache_addd( BX(temp1) ); // bx temp1
cache_addd(0); // fill j
// nobranch:
return ((Bit32u)cache.pos-4);
}
// compare 32bit-register against zero and jump if value less/equal than zero
static Bit32u gen_create_branch_long_leqzero(HostReg reg) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
cache_addd( BGT_FWD(8) ); // bgt nobranch (pc+8)
cache_addd( LDR_IMM(temp1, HOST_pc, 0) ); // ldr temp1, [pc, #0]
cache_addd( BX(temp1) ); // bx temp1
cache_addd(0); // fill j
// nobranch:
return ((Bit32u)cache.pos-4);
}
// calculate long relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch_long(Bit32u data) {
// this is an absolute branch
*(Bit32u*)data=(Bit32u)cache.pos;
}
static void gen_run_code(void) {
cache_addd(0xe92d4000); // stmfd sp!, {lr}
cache_addd(0xe92d0cf0); // stmfd sp!, {v1-v4,v7,v8}
// adr: 8
cache_addd( LDR_IMM(FC_SEGS_ADDR, HOST_pc, 64 - (8 + 8)) ); // ldr FC_SEGS_ADDR, [pc, #(&Segs)]
// adr: 12
cache_addd( LDR_IMM(FC_REGS_ADDR, HOST_pc, 68 - (12 + 8)) ); // ldr FC_REGS_ADDR, [pc, #(&cpu_regs)]
cache_addd( ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd(0xe92d4000); // stmfd sp!, {lr}
cache_addd( BX(HOST_r0) ); // bx r0
cache_addd(0xe8bd0cf0); // ldmfd sp!, {v1-v4,v7,v8}
cache_addd(0xe8bd4000); // ldmfd sp!, {lr}
cache_addd( BX(HOST_lr) ); // bx lr
// fill up to 64 bytes
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
// adr: 64
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
}
// return from a function
static void gen_return_function(void) {
cache_addd(0xe8bd4000); // ldmfd sp!, {lr}
cache_addd( BX(HOST_lr) ); // bx lr
}
#ifdef DRC_FLAGS_INVALIDATION
// called when a call to a function can be replaced by a
// call to a simpler function
static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) {
#ifdef DRC_FLAGS_INVALIDATION_DCODE
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit32u*)pos=ADD_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // add FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit32u*)pos=ORR_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // orr FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit32u*)pos=AND_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // and FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit32u*)pos=SUB_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // sub FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit32u*)pos=EOR_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // eor FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit32u*)pos=B_FWD(8); // b (pc+2*4)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit32u*)pos=ADD_IMM(FC_RETOP, HOST_a1, 1, 0); // add FC_RETOP, a1, #1
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit32u*)pos=SUB_IMM(FC_RETOP, HOST_a1, 1, 0); // sub FC_RETOP, a1, #1
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit32u*)pos=MOV_REG_LSL_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, lsl a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHRb:
*(Bit32u*)pos=AND_IMM(FC_RETOP, HOST_a1, 0xff, 0); // and FC_RETOP, a1, #0xff
*(Bit32u*)(pos+4)=MOV_REG_LSR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, lsr a2
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHRw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=MOV_REG_LSR_IMM(FC_RETOP, FC_RETOP, 16); // mov FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+8)=MOV_REG_LSR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, lsr a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHRd:
*(Bit32u*)pos=MOV_REG_LSR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, lsr a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SARb:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 24); // mov FC_RETOP, a1, lsl #24
*(Bit32u*)(pos+4)=MOV_REG_ASR_IMM(FC_RETOP, FC_RETOP, 24); // mov FC_RETOP, FC_RETOP, asr #24
*(Bit32u*)(pos+8)=MOV_REG_ASR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, asr a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SARw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=MOV_REG_ASR_IMM(FC_RETOP, FC_RETOP, 16); // mov FC_RETOP, FC_RETOP, asr #16
*(Bit32u*)(pos+8)=MOV_REG_ASR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, asr a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SARd:
*(Bit32u*)pos=MOV_REG_ASR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, asr a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_RORb:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 24); // mov FC_RETOP, a1, lsl #24
*(Bit32u*)(pos+4)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 8); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #8
*(Bit32u*)(pos+8)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 16); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+12)=MOV_REG_ROR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, ror a2
break;
case t_RORw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 16); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+8)=MOV_REG_ROR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, ror a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_RORd:
*(Bit32u*)pos=MOV_REG_ROR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, ror a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_ROLw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=RSB_IMM(HOST_a2, HOST_a2, 32, 0); // rsb a2, a2, #32
*(Bit32u*)(pos+8)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 16); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+12)=MOV_REG_ROR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, ror a2
break;
case t_ROLd:
*(Bit32u*)pos=RSB_IMM(HOST_a2, HOST_a2, 32, 0); // rsb a2, a2, #32
*(Bit32u*)(pos+4)=MOV_REG_ROR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, ror a2
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit32u*)pos=RSB_IMM(FC_RETOP, HOST_a1, 0, 0); // rsb FC_RETOP, a1, #0
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
default:
*(Bit32u*)(pos+12)=(Bit32u)fct_ptr; // simple_func
break;
}
#else
*(Bit32u*)(pos+12)=(Bit32u)fct_ptr; // simple_func
#endif
}
#endif
static void cache_block_before_close(void) { }
#ifdef DRC_USE_SEGS_ADDR
// mov 16bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_seg16_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDRH_IMM(dest_reg, FC_SEGS_ADDR, index) ); // ldrh dest_reg, [FC_SEGS_ADDR, #index]
}
// mov 32bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_mov_seg32_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDR_IMM(dest_reg, FC_SEGS_ADDR, index) ); // ldr dest_reg, [FC_SEGS_ADDR, #index]
}
// add a 32bit value from Segs[index] to a full register using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_add_seg32_to_reg(HostReg reg,Bitu index) {
cache_addd( LDR_IMM(temp1, FC_SEGS_ADDR, index) ); // ldr temp1, [FC_SEGS_ADDR, #index]
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp1, 0) ); // add reg, reg, temp1
}
#endif
#ifdef DRC_USE_REGS_ADDR
// mov 16bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regval16_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDRH_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrh dest_reg, [FC_REGS_ADDR, #index]
}
// mov 32bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDR_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldr dest_reg, [FC_REGS_ADDR, #index]
}
// move a 32bit (dword==true) or 16bit (dword==false) value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regword_to_reg(HostReg dest_reg,Bitu index,bool dword) {
if (dword) {
cache_addd( LDR_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldr dest_reg, [FC_REGS_ADDR, #index]
} else {
cache_addd( LDRH_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrh dest_reg, [FC_REGS_ADDR, #index]
}
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_regbyte_to_reg_low(HostReg dest_reg,Bitu index) {
cache_addd( LDRB_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrb dest_reg, [FC_REGS_ADDR, #index]
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_regbyte_to_reg_low_canuseword(HostReg dest_reg,Bitu index) {
cache_addd( LDRB_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrb dest_reg, [FC_REGS_ADDR, #index]
}
// add a 32bit value from cpu_regs[index] to a full register using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_add_regval32_to_reg(HostReg reg,Bitu index) {
cache_addd( LDR_IMM(temp2, FC_REGS_ADDR, index) ); // ldr temp2, [FC_REGS_ADDR, #index]
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp2, 0) ); // add reg, reg, temp2
}
// move 16bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 2 must be zero)
static void gen_mov_regval16_from_reg(HostReg src_reg,Bitu index) {
cache_addd( STRH_IMM(src_reg, FC_REGS_ADDR, index) ); // strh src_reg, [FC_REGS_ADDR, #index]
}
// move 32bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_from_reg(HostReg src_reg,Bitu index) {
cache_addd( STR_IMM(src_reg, FC_REGS_ADDR, index) ); // str src_reg, [FC_REGS_ADDR, #index]
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into cpu_regs[index] using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
static void gen_mov_regword_from_reg(HostReg src_reg,Bitu index,bool dword) {
if (dword) {
cache_addd( STR_IMM(src_reg, FC_REGS_ADDR, index) ); // str src_reg, [FC_REGS_ADDR, #index]
} else {
cache_addd( STRH_IMM(src_reg, FC_REGS_ADDR, index) ); // strh src_reg, [FC_REGS_ADDR, #index]
}
}
// move the lowest 8bit of a register into cpu_regs[index] using FC_REGS_ADDR
static void gen_mov_regbyte_from_reg_low(HostReg src_reg,Bitu index) {
cache_addd( STRB_IMM(src_reg, FC_REGS_ADDR, index) ); // strb src_reg, [FC_REGS_ADDR, #index]
}
#endif