dosbox-wii/src/cpu/core_dynrec/risc_armv4le-thumb.h

1134 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (C) 2002-2011 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* ARMv4 (little endian) backend by M-HT (thumb version) */
// temporary "lo" registers
#define templo1 HOST_v3
#define templo2 HOST_v4
#define templo3 HOST_v2
// register that holds function return values
#define FC_RETOP HOST_a1
// register used for address calculations,
#define FC_ADDR HOST_v1 // has to be saved across calls, see DRC_PROTECT_ADDR_REG
// register that holds the first parameter
#define FC_OP1 HOST_a1
// register that holds the second parameter
#define FC_OP2 HOST_a2
// special register that holds the third parameter for _R3 calls (byte accessible)
#define FC_OP3 HOST_a4
// register that holds byte-accessible temporary values
#define FC_TMP_BA1 HOST_a1
// register that holds byte-accessible temporary values
#define FC_TMP_BA2 HOST_a2
// temporary register for LEA
#define TEMP_REG_DRC HOST_a4
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// instruction encodings
// move
// mov dst, #imm @ 0 <= imm <= 255
#define MOV_IMM(dst, imm) (0x2000 + ((dst) << 8) + (imm) )
// mov dst, src
#define MOV_REG(dst, src) ADD_IMM3(dst, src, 0)
// mov dst, src
#define MOV_LO_HI(dst, src) (0x4640 + (dst) + (((src) - HOST_r8) << 3) )
// mov dst, src
#define MOV_HI_LO(dst, src) (0x4680 + ((dst) - HOST_r8) + ((src) << 3) )
// arithmetic
// add dst, src, #imm @ 0 <= imm <= 7
#define ADD_IMM3(dst, src, imm) (0x1c00 + (dst) + ((src) << 3) + ((imm) << 6) )
// add dst, #imm @ 0 <= imm <= 255
#define ADD_IMM8(dst, imm) (0x3000 + ((dst) << 8) + (imm) )
// add dst, src1, src2
#define ADD_REG(dst, src1, src2) (0x1800 + (dst) + ((src1) << 3) + ((src2) << 6) )
// add dst, pc, #imm @ 0 <= imm < 1024 & imm mod 4 = 0
#define ADD_LO_PC_IMM(dst, imm) (0xa000 + ((dst) << 8) + ((imm) >> 2) )
// sub dst, src1, src2
#define SUB_REG(dst, src1, src2) (0x1a00 + (dst) + ((src1) << 3) + ((src2) << 6) )
// sub dst, src, #imm @ 0 <= imm <= 7
#define SUB_IMM3(dst, src, imm) (0x1e00 + (dst) + ((src) << 3) + ((imm) << 6) )
// sub dst, #imm @ 0 <= imm <= 255
#define SUB_IMM8(dst, imm) (0x3800 + ((dst) << 8) + (imm) )
// neg dst, src
#define NEG(dst, src) (0x4240 + (dst) + ((src) << 3) )
// cmp dst, #imm @ 0 <= imm <= 255
#define CMP_IMM(dst, imm) (0x2800 + ((dst) << 8) + (imm) )
// nop
#define NOP (0x46c0)
// logical
// and dst, src
#define AND(dst, src) (0x4000 + (dst) + ((src) << 3) )
// eor dst, src
#define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) )
// orr dst, src
#define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) )
// shift/rotate
// lsl dst, src, #imm
#define LSL_IMM(dst, src, imm) (0x0000 + (dst) + ((src) << 3) + ((imm) << 6) )
// lsl dst, reg
#define LSL_REG(dst, reg) (0x4080 + (dst) + ((reg) << 3) )
// lsr dst, src, #imm
#define LSR_IMM(dst, src, imm) (0x0800 + (dst) + ((src) << 3) + ((imm) << 6) )
// lsr dst, reg
#define LSR_REG(dst, reg) (0x40c0 + (dst) + ((reg) << 3) )
// asr dst, src, #imm
#define ASR_IMM(dst, src, imm) (0x1000 + (dst) + ((src) << 3) + ((imm) << 6) )
// asr dst, reg
#define ASR_REG(dst, reg) (0x4100 + (dst) + ((reg) << 3) )
// ror dst, reg
#define ROR_REG(dst, reg) (0x41c0 + (dst) + ((reg) << 3) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
#define LDR_IMM(reg, addr, imm) (0x6800 + (reg) + ((addr) << 3) + ((imm) << 4) )
// ldrh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0
#define LDRH_IMM(reg, addr, imm) (0x8800 + (reg) + ((addr) << 3) + ((imm) << 5) )
// ldrb reg, [addr, #imm] @ 0 <= imm < 32
#define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) )
// ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0
#define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
#define STR_IMM(reg, addr, imm) (0x6000 + (reg) + ((addr) << 3) + ((imm) << 4) )
// strh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0
#define STRH_IMM(reg, addr, imm) (0x8000 + (reg) + ((addr) << 3) + ((imm) << 5) )
// strb reg, [addr, #imm] @ 0 <= imm < 32
#define STRB_IMM(reg, addr, imm) (0x7000 + (reg) + ((addr) << 3) + ((imm) << 6) )
// branch
// beq pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BEQ_FWD(imm) (0xd000 + ((imm) >> 1) )
// bne pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BNE_FWD(imm) (0xd100 + ((imm) >> 1) )
// bgt pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BGT_FWD(imm) (0xdc00 + ((imm) >> 1) )
// b pc+imm @ 0 <= imm < 2048 & imm mod 2 = 0
#define B_FWD(imm) (0xe000 + ((imm) >> 1) )
// bx reg
#define BX(reg) (0x4700 + ((reg) << 3) )
// move a full register from reg_src to reg_dst
static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
if(reg_src == reg_dst) return;
cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
if ((imm & 0xffffff00) == 0) {
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
} else if ((imm & 0xffff00ff) == 0) {
cache_addw( MOV_IMM(dest_reg, imm >> 8) ); // mov dest_reg, #(imm >> 8)
cache_addw( LSL_IMM(dest_reg, dest_reg, 8) ); // lsl dest_reg, dest_reg, #8
} else if ((imm & 0xff00ffff) == 0) {
cache_addw( MOV_IMM(dest_reg, imm >> 16) ); // mov dest_reg, #(imm >> 16)
cache_addw( LSL_IMM(dest_reg, dest_reg, 16) ); // lsl dest_reg, dest_reg, #16
} else if ((imm & 0x00ffffff) == 0) {
cache_addw( MOV_IMM(dest_reg, imm >> 24) ); // mov dest_reg, #(imm >> 24)
cache_addw( LSL_IMM(dest_reg, dest_reg, 24) ); // lsl dest_reg, dest_reg, #24
} else {
Bit32u diff;
diff = imm - ((Bit32u)cache.pos+4);
if ((diff < 1024) && ((imm & 0x03) == 0)) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( ADD_LO_PC_IMM(dest_reg, diff) ); // add dest_reg, pc, #(diff >> 2)
} else {
cache_addw( NOP ); // nop
cache_addw( ADD_LO_PC_IMM(dest_reg, diff - 2) ); // add dest_reg, pc, #((diff - 2) >> 2)
}
} else {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(dest_reg, 0) ); // ldr dest_reg, [pc, #0]
cache_addw( B_FWD(2) ); // b next_code (pc+2)
cache_addd(imm); // .int imm
// next_code:
} else {
cache_addw( LDR_PC_IMM(dest_reg, 4) ); // ldr dest_reg, [pc, #4]
cache_addw( B_FWD(4) ); // b next_code (pc+4)
cache_addw( NOP ); // nop
cache_addd(imm); // .int imm
// next_code:
}
}
}
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
cache_addw( LDRH_IMM(templo1, data_reg, 2) ); // ldrh templo1, [data_reg, #2]
cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( ADD_IMM3(templo1, data_reg, 1) ); // add templo1, data_reg, #1
cache_addw( LDRH_IMM(templo1, templo1, 0) ); // ldrh templo1, [templo1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
cache_addw( LDRB_IMM(templo1, data_reg, 3) ); // ldrb templo1, [data_reg, #3]
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
}
} else {
cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
if ((Bit32u)data & 1) {
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
}
}
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
}
// move a 16bit constant value into dest_reg
// the upper 16bit of the destination register may be destroyed
static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16
cache_addw( STRH_IMM(templo1, data_reg, 2) ); // strh templo1, [data_reg, #2]
} else {
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16
cache_addw( STRB_IMM(templo1, data_reg, 2) ); // strb templo1, [data_reg, #2]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24
cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3]
}
} else {
cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
if ((Bit32u)dest & 1) {
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
} else {
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
}
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_canuseword(HostReg dest_reg,void* data) {
gen_mov_byte_to_reg_low(dest_reg, data);
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low_imm(HostReg dest_reg,Bit8u imm) {
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u imm) {
gen_mov_byte_to_reg_low_imm(dest_reg, imm);
}
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
}
// convert an 8bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_byte(bool sign,HostReg reg) {
cache_addw( LSL_IMM(reg, reg, 24) ); // lsl reg, reg, #24
if (sign) {
cache_addw( ASR_IMM(reg, reg, 24) ); // asr reg, reg, #24
} else {
cache_addw( LSR_IMM(reg, reg, 24) ); // lsr reg, reg, #24
}
}
// convert a 16bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_word(bool sign,HostReg reg) {
cache_addw( LSL_IMM(reg, reg, 16) ); // lsl reg, reg, #16
if (sign) {
cache_addw( ASR_IMM(reg, reg, 16) ); // asr reg, reg, #16
} else {
cache_addw( LSR_IMM(reg, reg, 16) ); // lsr reg, reg, #16
}
}
// add a 32bit value from memory to a full register
static void gen_add(HostReg reg,void* op) {
gen_mov_word_to_reg(templo3, op, 1);
cache_addw( ADD_REG(reg, reg, templo3) ); // add reg, reg, templo3
}
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
if(imm == 0xffffffff) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( AND(reg, templo1) ); // and reg, templo1
}
// move a 32bit constant value into memory
static void gen_mov_direct_dword(void* dest,Bit32u imm) {
gen_mov_dword_to_reg_imm(templo3, imm);
gen_mov_word_from_reg(templo3, dest, 1);
}
// move an address into memory
static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
if (imm >= 0) {
cache_addw( ADD_IMM8(templo3, (Bit32s)imm) ); // add templo3, #(imm)
} else {
cache_addw( SUB_IMM8(templo3, -((Bit32s)imm)) ); // sub templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
}
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
if (imm >= 0) {
cache_addw( SUB_IMM8(templo3, (Bit32s)imm) ); // sub templo3, #(imm)
} else {
cache_addw( ADD_IMM8(templo3, -((Bit32s)imm)) ); // add templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
}
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// effective address calculation, destination is dest_reg
// scale_reg is scaled by scale (scale_reg*(2^scale)) and
// added to dest_reg, then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,HostReg scale_reg,Bitu scale,Bits imm) {
if (scale) {
cache_addw( LSL_IMM(templo1, scale_reg, scale) ); // lsl templo1, scale_reg, #(scale)
cache_addw( ADD_REG(dest_reg, dest_reg, templo1) ); // add dest_reg, dest_reg, templo1
} else {
cache_addw( ADD_REG(dest_reg, dest_reg, scale_reg) ); // add dest_reg, dest_reg, scale_reg
}
gen_add_imm(dest_reg, imm);
}
// effective address calculation, destination is dest_reg
// dest_reg is scaled by scale (dest_reg*(2^scale)),
// then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,Bitu scale,Bits imm) {
if (scale) {
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #(scale)
}
gen_add_imm(dest_reg, imm);
}
// generate a call to a parameterless function
static void INLINE gen_call_function_raw(void * func) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, 4) ); // ldr templo1, [pc, #4]
cache_addw( ADD_LO_PC_IMM(templo2, 8) ); // adr templo2, after_call (add templo2, pc, #8)
cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2
cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state
} else {
cache_addw( LDR_PC_IMM(templo1, 8) ); // ldr templo1, [pc, #8]
cache_addw( ADD_LO_PC_IMM(templo2, 8) ); // adr templo2, after_call (add templo2, pc, #8)
cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2
cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state
cache_addw( NOP ); // nop
}
cache_addd((Bit32u)func); // .int func
// after_call:
// switch from arm to thumb state
cache_addd(0xe2800000 + (templo1 << 12) + (HOST_pc << 16) + (1)); // add templo1, pc, #1
cache_addd(0xe12fff10 + (templo1)); // bx templo1
// thumb state from now on
}
// generate a call to a function with paramcount parameters
// note: the parameters are loaded in the architecture specific way
// using the gen_load_param_ functions below
static Bit32u INLINE gen_call_function_setup(void * func,Bitu paramcount,bool fastcall=false) {
Bit32u proc_addr = (Bit32u)cache.pos;
gen_call_function_raw(func);
return proc_addr;
// if proc_addr is on word boundary ((proc_addr & 0x03) == 0)
// then length of generated code is 20 bytes
// otherwise length of generated code is 22 bytes
}
#if (1)
// max of 4 parameters in a1-a4
// load an immediate value as param'th function parameter
static void INLINE gen_load_param_imm(Bitu imm,Bitu param) {
gen_mov_dword_to_reg_imm(param, imm);
}
// load an address as param'th function parameter
static void INLINE gen_load_param_addr(Bitu addr,Bitu param) {
gen_mov_dword_to_reg_imm(param, addr);
}
// load a host-register as param'th function parameter
static void INLINE gen_load_param_reg(Bitu reg,Bitu param) {
gen_mov_regs(param, reg);
}
// load a value from memory as param'th function parameter
static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
gen_mov_word_to_reg(param, (void *)mem, 1);
}
#else
other arm abis
#endif
// jump to an address pointed at by ptr, offset is in imm
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
gen_mov_word_to_reg(templo3, ptr, 1);
if (imm) {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_addw( ADD_REG(templo3, templo3, templo2) ); // add templo3, templo3, templo2
}
#if (1)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_addw( LDR_IMM(templo2, templo3, 0) ); // ldr templo2, [templo3]
} else
#endif
{
cache_addw( LDRB_IMM(templo2, templo3, 0) ); // ldrb templo2, [templo3]
cache_addw( LDRB_IMM(templo1, templo3, 1) ); // ldrb templo1, [templo3, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
cache_addw( LDRB_IMM(templo1, templo3, 2) ); // ldrb templo1, [templo3, #2]
cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
cache_addw( LDRB_IMM(templo1, templo3, 3) ); // ldrb templo1, [templo3, #3]
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
}
// increase jmp address to keep thumb state
cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1
cache_addw( BX(templo2) ); // bx templo2
}
// short conditional jump (+-127 bytes) if register is zero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_zero(HostReg reg,bool dword) {
if (dword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16
}
cache_addw( BEQ_FWD(0) ); // beq j
return ((Bit32u)cache.pos-2);
}
// short conditional jump (+-127 bytes) if register is nonzero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_nonzero(HostReg reg,bool dword) {
if (dword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16
}
cache_addw( BNE_FWD(0) ); // bne j
return ((Bit32u)cache.pos-2);
}
// calculate relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch(DRC_PTR_SIZE_IM data) {
#if C_DEBUG
Bits len=(Bit32u)cache.pos-(data+4);
if (len<0) len=-len;
if (len>252) LOG_MSG("Big jump %d",len);
#endif
*(Bit8u*)data=(Bit8u)( ((Bit32u)cache.pos-(data+4)) >> 1 );
}
// conditional jump if register is nonzero
// for isdword==true the 32bit of the register are tested
// for isdword==false the lowest 8bit of the register are tested
static Bit32u gen_create_branch_long_nonzero(HostReg reg,bool isdword) {
if (isdword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo2, reg, 24) ); // lsl templo2, reg, #24
}
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( BEQ_FWD(8) ); // beq nobranch (pc+8)
cache_addw( LDR_PC_IMM(templo1, 4) ); // ldr templo1, [pc, #4]
cache_addw( BX(templo1) ); // bx templo1
cache_addw( NOP ); // nop
} else {
cache_addw( BEQ_FWD(6) ); // beq nobranch (pc+6)
cache_addw( LDR_PC_IMM(templo1, 0) ); // ldr templo1, [pc, #0]
cache_addw( BX(templo1) ); // bx templo1
}
cache_addd(0); // fill j
// nobranch:
return ((Bit32u)cache.pos-4);
}
// compare 32bit-register against zero and jump if value less/equal than zero
static Bit32u gen_create_branch_long_leqzero(HostReg reg) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( BGT_FWD(8) ); // bgt nobranch (pc+8)
cache_addw( LDR_PC_IMM(templo1, 4) ); // ldr templo1, [pc, #4]
cache_addw( BX(templo1) ); // bx templo1
cache_addw( NOP ); // nop
} else {
cache_addw( BGT_FWD(6) ); // bgt nobranch (pc+6)
cache_addw( LDR_PC_IMM(templo1, 0) ); // ldr templo1, [pc, #0]
cache_addw( BX(templo1) ); // bx templo1
}
cache_addd(0); // fill j
// nobranch:
return ((Bit32u)cache.pos-4);
}
// calculate long relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch_long(Bit32u data) {
// this is an absolute branch
*(Bit32u*)data=((Bit32u)cache.pos) + 1; // add 1 to keep processor in thumb state
}
static void gen_run_code(void) {
// switch from arm to thumb state
cache_addd(0xe2800000 + (HOST_r3 << 12) + (HOST_pc << 16) + (1)); // add r3, pc, #1
cache_addd(0xe12fff10 + (HOST_r3)); // bx r3
// thumb state from now on
cache_addw(0xb500); // push {lr}
cache_addw( MOV_LO_HI(HOST_r3, FC_SEGS_ADDR) ); // mov r3, FC_SEGS_ADDR
cache_addw( MOV_LO_HI(HOST_r2, FC_REGS_ADDR) ); // mov r2, FC_REGS_ADDR
cache_addw(0xb4fc); // push {r2,r3,v1-v4}
// adr: 16
cache_addw( LDR_PC_IMM(HOST_r3, 64 - (16 + 4)) ); // ldr r3, [pc, #(&Segs)]
// adr: 18
cache_addw( LDR_PC_IMM(HOST_r2, 68 - (18 + 2)) ); // ldr r2, [pc, #(&cpu_regs)]
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
// align 4
cache_addw( ADD_LO_PC_IMM(HOST_r3, 8) ); // add r3, pc, #8
cache_addw( ADD_IMM8(HOST_r0, 1) ); // add r0, #1
cache_addw( ADD_IMM8(HOST_r3, 1) ); // add r3, #1
cache_addw(0xb408); // push {r3}
cache_addw( BX(HOST_r0) ); // bx r0
cache_addw( NOP ); // nop
// align 4
cache_addw(0xbcfc); // pop {r2,r3,v1-v4}
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
// fill up to 64 bytes
cache_addw( NOP ); // nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
// adr: 64
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
}
// return from a function
static void gen_return_function(void) {
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
}
#ifdef DRC_FLAGS_INVALIDATION
// called when a call to a function can be replaced by a
// call to a simpler function
static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) {
#ifdef DRC_FLAGS_INVALIDATION_DCODE
if (((Bit32u)pos & 0x03) == 0)
{
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit16u*)pos=ADD_REG(HOST_a1, HOST_a1, HOST_a2); // add a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit16u*)pos=ORR(HOST_a1, HOST_a2); // orr a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit16u*)pos=AND(HOST_a1, HOST_a2); // and a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit16u*)pos=SUB_REG(HOST_a1, HOST_a1, HOST_a2); // sub a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit16u*)pos=EOR(HOST_a1, HOST_a2); // eor a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit16u*)pos=B_FWD(16); // b after_call (pc+16)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit16u*)pos=ADD_IMM3(HOST_a1, HOST_a1, 1); // add a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit16u*)pos=SUB_IMM3(HOST_a1, HOST_a1, 1); // sub a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit16u*)pos=LSL_REG(HOST_a1, HOST_a2); // lsl a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_SHRb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 24); // lsr a1, a1, #24
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(10); // b after_call (pc+10)
break;
case t_SHRw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 16); // lsr a1, a1, #16
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(10); // b after_call (pc+10)
break;
case t_SHRd:
*(Bit16u*)pos=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_SARb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 24); // asr a1, a1, #24
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(10); // b after_call (pc+10)
break;
case t_SARw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 16); // asr a1, a1, #16
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(10); // b after_call (pc+10)
break;
case t_SARd:
*(Bit16u*)pos=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_RORb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+12)=B_FWD(4); // b after_call (pc+4)
break;
case t_RORw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+8)=B_FWD(8); // b after_call (pc+8)
break;
case t_RORd:
*(Bit16u*)pos=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
case t_ROLb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+18)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_ROLw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+12)=B_FWD(4); // b after_call (pc+4)
break;
case t_ROLd:
*(Bit16u*)pos=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+2)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+4)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+6)=B_FWD(10); // b after_call (pc+10)
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit16u*)pos=NEG(HOST_a1, HOST_a1); // neg a1, a1
*(Bit16u*)(pos+2)=B_FWD(14); // b after_call (pc+14)
break;
default:
*(Bit32u*)(pos+8)=(Bit32u)fct_ptr; // simple_func
break;
}
}
else
{
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit16u*)pos=ADD_REG(HOST_a1, HOST_a1, HOST_a2); // add a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit16u*)pos=ORR(HOST_a1, HOST_a2); // orr a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit16u*)pos=AND(HOST_a1, HOST_a2); // and a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit16u*)pos=SUB_REG(HOST_a1, HOST_a1, HOST_a2); // sub a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit16u*)pos=EOR(HOST_a1, HOST_a2); // eor a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit16u*)pos=B_FWD(18); // b after_call (pc+18)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit16u*)pos=ADD_IMM3(HOST_a1, HOST_a1, 1); // add a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit16u*)pos=SUB_IMM3(HOST_a1, HOST_a1, 1); // sub a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit16u*)pos=LSL_REG(HOST_a1, HOST_a2); // lsl a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_SHRb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 24); // lsr a1, a1, #24
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12)
break;
case t_SHRw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 16); // lsr a1, a1, #16
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12)
break;
case t_SHRd:
*(Bit16u*)pos=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_SARb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 24); // asr a1, a1, #24
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12)
break;
case t_SARw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 16); // asr a1, a1, #16
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12)
break;
case t_SARd:
*(Bit16u*)pos=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_RORb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+12)=B_FWD(6); // b after_call (pc+6)
break;
case t_RORw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+8)=B_FWD(10); // b after_call (pc+10)
break;
case t_RORd:
*(Bit16u*)pos=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
case t_ROLb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+18)=NOP; // nop
*(Bit16u*)(pos+20)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_ROLw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+12)=B_FWD(6); // b after_call (pc+6)
break;
case t_ROLd:
*(Bit16u*)pos=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+2)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+4)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12)
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit16u*)pos=NEG(HOST_a1, HOST_a1); // neg a1, a1
*(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16)
break;
default:
*(Bit32u*)(pos+10)=(Bit32u)fct_ptr; // simple_func
break;
}
}
#else
if (((Bit32u)pos & 0x03) == 0)
{
*(Bit32u*)(pos+8)=(Bit32u)fct_ptr; // simple_func
}
else
{
*(Bit32u*)(pos+10)=(Bit32u)fct_ptr; // simple_func
}
#endif
}
#endif
static void cache_block_before_close(void) { }
#ifdef DRC_USE_SEGS_ADDR
// mov 16bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_seg16_to_reg(HostReg dest_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDRH_IMM(dest_reg, templo1, index) ); // ldrh dest_reg, [templo1, #index]
}
// mov 32bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_mov_seg32_to_reg(HostReg dest_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDR_IMM(dest_reg, templo1, index) ); // ldr dest_reg, [templo1, #index]
}
// add a 32bit value from Segs[index] to a full register using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_add_seg32_to_reg(HostReg reg,Bitu index) {
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDR_IMM(templo2, templo1, index) ); // ldr templo2, [templo1, #index]
cache_addw( ADD_REG(reg, reg, templo2) ); // add reg, reg, templo2
}
#endif
#ifdef DRC_USE_REGS_ADDR
// mov 16bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regval16_to_reg(HostReg dest_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index]
}
// mov 32bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_to_reg(HostReg dest_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index]
}
// move a 32bit (dword==true) or 16bit (dword==false) value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regword_to_reg(HostReg dest_reg,Bitu index,bool dword) {
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
if (dword) {
cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index]
} else {
cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index]
}
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_regbyte_to_reg_low(HostReg dest_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index]
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_regbyte_to_reg_low_canuseword(HostReg dest_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index]
}
// add a 32bit value from cpu_regs[index] to a full register using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_add_regval32_to_reg(HostReg reg,Bitu index) {
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDR_IMM(templo1, templo2, index) ); // ldr templo1, [templo2, #index]
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
// move 16bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 2 must be zero)
static void gen_mov_regval16_from_reg(HostReg src_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index]
}
// move 32bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_from_reg(HostReg src_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index]
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into cpu_regs[index] using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
static void gen_mov_regword_from_reg(HostReg src_reg,Bitu index,bool dword) {
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
if (dword) {
cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index]
} else {
cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index]
}
}
// move the lowest 8bit of a register into cpu_regs[index] using FC_REGS_ADDR
static void gen_mov_regbyte_from_reg_low(HostReg src_reg,Bitu index) {
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STRB_IMM(src_reg, templo1, index) ); // strb src_reg, [templo1, #index]
}
#endif