dosbox-wii/src/ints/ems.cpp

1472 lines
49 KiB
C++
Raw Normal View History

2010-11-05 05:55:33 +01:00
/*
2011-06-22 06:18:55 +02:00
* Copyright (C) 2002-2011 The DOSBox Team
2010-11-05 05:55:33 +01:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <string.h>
#include <stdlib.h>
#include "dosbox.h"
#include "callback.h"
#include "mem.h"
#include "paging.h"
#include "bios.h"
#include "keyboard.h"
#include "regs.h"
#include "inout.h"
#include "dos_inc.h"
#include "setup.h"
#include "support.h"
#include "cpu.h"
#include "dma.h"
#define EMM_PAGEFRAME 0xE000
#define EMM_PAGEFRAME4K ((EMM_PAGEFRAME*16)/4096)
#define EMM_MAX_HANDLES 200 /* 255 Max */
#define EMM_PAGE_SIZE (16*1024U)
#define EMM_MAX_PAGES (32 * 1024 / 16 )
#define EMM_MAX_PHYS 4 /* 4 16kb pages in pageframe */
#define EMM_VERSION 0x40
#define EMM_MINOR_VERSION 0x00
//#define EMM_MINOR_VERSION 0x30 // emm386 4.48
#define GEMMIS_VERSION 0x0001 // Version 1.0
#define EMM_SYSTEM_HANDLE 0x0000
#define NULL_HANDLE 0xffff
#define NULL_PAGE 0xffff
#define ENABLE_VCPI 1
#define ENABLE_V86_STARTUP 0
/* EMM errors */
#define EMM_NO_ERROR 0x00
#define EMM_SOFT_MAL 0x80
#define EMM_HARD_MAL 0x81
#define EMM_INVALID_HANDLE 0x83
#define EMM_FUNC_NOSUP 0x84
#define EMM_OUT_OF_HANDLES 0x85
#define EMM_SAVEMAP_ERROR 0x86
#define EMM_OUT_OF_PHYS 0x87
#define EMM_OUT_OF_LOG 0x88
#define EMM_ZERO_PAGES 0x89
#define EMM_LOG_OUT_RANGE 0x8a
#define EMM_ILL_PHYS 0x8b
#define EMM_PAGE_MAP_SAVED 0x8d
#define EMM_NO_SAVED_PAGE_MAP 0x8e
#define EMM_INVALID_SUB 0x8f
#define EMM_FEAT_NOSUP 0x91
#define EMM_MOVE_OVLAP 0x92
#define EMM_MOVE_OVLAPI 0x97
#define EMM_NOT_FOUND 0xa0
struct EMM_Mapping {
Bit16u handle;
Bit16u page;
};
struct EMM_Handle {
Bit16u pages;
MemHandle mem;
char name[8];
bool saved_page_map;
EMM_Mapping page_map[EMM_MAX_PHYS];
};
static Bitu ems_type;
static EMM_Handle emm_handles[EMM_MAX_HANDLES];
static EMM_Mapping emm_mappings[EMM_MAX_PHYS];
static EMM_Mapping emm_segmentmappings[0x40];
static Bit16u GEMMIS_seg;
class device_EMM : public DOS_Device {
public:
device_EMM(bool is_emm386_avail) {
is_emm386=is_emm386_avail;
SetName("EMMXXXX0");
GEMMIS_seg=0;
}
bool Read(Bit8u * /*data*/,Bit16u * /*size*/) { return false;}
bool Write(Bit8u * /*data*/,Bit16u * /*size*/){
LOG(LOG_IOCTL,LOG_NORMAL)("EMS:Write to device");
return false;
}
bool Seek(Bit32u * /*pos*/,Bit32u /*type*/){return false;}
bool Close(){return false;}
Bit16u GetInformation(void){return 0xc0c0;}
bool ReadFromControlChannel(PhysPt bufptr,Bit16u size,Bit16u * retcode);
bool WriteToControlChannel(PhysPt /*bufptr*/,Bit16u /*size*/,Bit16u * /*retcode*/){return true;}
private:
Bit8u cache;
bool is_emm386;
};
bool device_EMM::ReadFromControlChannel(PhysPt bufptr,Bit16u size,Bit16u * retcode) {
Bitu subfct=mem_readb(bufptr);
switch (subfct) {
case 0x00:
if (size!=6) return false;
mem_writew(bufptr+0x00,0x0023); // ID
mem_writed(bufptr+0x02,0); // private API entry point
*retcode=6;
return true;
case 0x01: {
if (!is_emm386) return false;
if (size!=6) return false;
if (GEMMIS_seg==0) GEMMIS_seg=DOS_GetMemory(0x20);
PhysPt GEMMIS_addr=PhysMake(GEMMIS_seg,0);
mem_writew(GEMMIS_addr+0x00,0x0004); // flags
mem_writew(GEMMIS_addr+0x02,0x019d); // size of this structure
mem_writew(GEMMIS_addr+0x04,GEMMIS_VERSION); // version 1.0 (provide ems information only)
mem_writed(GEMMIS_addr+0x06,0); // reserved
/* build non-EMS frames (0-0xe000) */
for (Bitu frct=0; frct<EMM_PAGEFRAME4K/4; frct++) {
mem_writeb(GEMMIS_addr+0x0a+frct*6,0x00); // frame type: NONE
mem_writeb(GEMMIS_addr+0x0b+frct*6,0xff); // owner: NONE
mem_writew(GEMMIS_addr+0x0c+frct*6,0xffff); // non-EMS frame
mem_writeb(GEMMIS_addr+0x0e + frct*6,0xff); // EMS page number (NONE)
mem_writeb(GEMMIS_addr+0x0f+frct*6,0xaa); // flags: direct mapping
}
/* build EMS page frame (0xe000-0xf000) */
for (Bitu frct=0; frct<0x10/4; frct++) {
Bitu frnr=(frct+EMM_PAGEFRAME4K/4)*6;
mem_writeb(GEMMIS_addr+0x0a+frnr,0x03); // frame type: EMS frame in 64k page
mem_writeb(GEMMIS_addr+0x0b+frnr,0xff); // owner: NONE
mem_writew(GEMMIS_addr+0x0c+frnr,0x7fff); // no logical page number
mem_writeb(GEMMIS_addr+0x0e + frnr,(Bit8u)(frct&0xff)); // physical EMS page number
mem_writeb(GEMMIS_addr+0x0f+frnr,0x00); // EMS frame
}
/* build non-EMS ROM frames (0xf000-0x10000) */
for (Bitu frct=(EMM_PAGEFRAME4K+0x10)/4; frct<0xf0/4; frct++) {
mem_writeb(GEMMIS_addr+0x0a+frct*6,0x00); // frame type: NONE
mem_writeb(GEMMIS_addr+0x0b+frct*6,0xff); // owner: NONE
mem_writew(GEMMIS_addr+0x0c+frct*6,0xffff); // non-EMS frame
mem_writeb(GEMMIS_addr+0x0e + frct*6,0xff); // EMS page number (NONE)
mem_writeb(GEMMIS_addr+0x0f+frct*6,0xaa); // flags: direct mapping
}
mem_writeb(GEMMIS_addr+0x18a,0x74); // ???
mem_writeb(GEMMIS_addr+0x18b,0x00); // no UMB descriptors following
mem_writeb(GEMMIS_addr+0x18c,0x01); // 1 EMS handle info recort
mem_writew(GEMMIS_addr+0x18d,0x0000); // system handle
mem_writed(GEMMIS_addr+0x18f,0); // handle name
mem_writed(GEMMIS_addr+0x193,0); // handle name
if (emm_handles[EMM_SYSTEM_HANDLE].pages != NULL_HANDLE) {
mem_writew(GEMMIS_addr+0x197,(emm_handles[EMM_SYSTEM_HANDLE].pages+3)/4);
mem_writed(GEMMIS_addr+0x199,emm_handles[EMM_SYSTEM_HANDLE].mem<<12); // physical address
} else {
mem_writew(GEMMIS_addr+0x197,0x0001); // system handle
mem_writed(GEMMIS_addr+0x199,0x00110000); // physical address
}
/* fill buffer with import structure */
mem_writed(bufptr+0x00,GEMMIS_seg<<4);
mem_writew(bufptr+0x04,GEMMIS_VERSION);
*retcode=6;
return true;
}
case 0x02:
if (!is_emm386) return false;
if (size!=2) return false;
mem_writeb(bufptr+0x00,EMM_VERSION>>4); // version 4
mem_writeb(bufptr+0x01,EMM_MINOR_VERSION);
*retcode=2;
return true;
case 0x03:
if (!is_emm386) return false;
if (EMM_MINOR_VERSION < 0x2d) return false;
if (size!=4) return false;
mem_writew(bufptr+0x00,(Bit16u)(MEM_TotalPages()*4)); // max size (kb)
mem_writew(bufptr+0x02,0x80); // min size (kb)
*retcode=2;
return true;
}
return false;
}
static struct {
bool enabled;
Bit16u ems_handle;
Bitu pm_interface;
MemHandle private_area;
Bit8u pic1_remapping,pic2_remapping;
} vcpi ;
struct MoveRegion {
Bit32u bytes;
Bit8u src_type;
Bit16u src_handle;
Bit16u src_offset;
Bit16u src_page_seg;
Bit8u dest_type;
Bit16u dest_handle;
Bit16u dest_offset;
Bit16u dest_page_seg;
};
static Bit16u EMM_GetFreePages(void) {
Bitu count=MEM_FreeTotal()/4;
if (count>0x7fff) count=0x7fff;
return (Bit16u)count;
}
static bool INLINE ValidHandle(Bit16u handle) {
if (handle>=EMM_MAX_HANDLES) return false;
if (emm_handles[handle].pages==NULL_HANDLE) return false;
return true;
}
static Bit8u EMM_AllocateMemory(Bit16u pages,Bit16u & dhandle,bool can_allocate_zpages) {
/* Check for 0 page allocation */
if (!pages) {
if (!can_allocate_zpages) return EMM_ZERO_PAGES;
}
/* Check for enough free pages */
if ((MEM_FreeTotal()/ 4) < pages) { return EMM_OUT_OF_LOG;}
Bit16u handle = 1;
/* Check for a free handle */
while (emm_handles[handle].pages != NULL_HANDLE) {
if (++handle >= EMM_MAX_HANDLES) {return EMM_OUT_OF_HANDLES;}
}
MemHandle mem = 0;
if (pages) {
mem = MEM_AllocatePages(pages*4,false);
if (!mem) E_Exit("EMS:Memory allocation failure");
}
emm_handles[handle].pages = pages;
emm_handles[handle].mem = mem;
/* Change handle only if there is no error. */
dhandle = handle;
return EMM_NO_ERROR;
}
static Bit8u EMM_AllocateSystemHandle(Bit16u pages) {
/* Check for enough free pages */
if ((MEM_FreeTotal()/ 4) < pages) { return EMM_OUT_OF_LOG;}
Bit16u handle = EMM_SYSTEM_HANDLE; // emm system handle (reserved for OS usage)
/* Release memory if already allocated */
if (emm_handles[handle].pages != NULL_HANDLE) {
MEM_ReleasePages(emm_handles[handle].mem);
}
MemHandle mem = MEM_AllocatePages(pages*4,false);
if (!mem) E_Exit("EMS:System handle memory allocation failure");
emm_handles[handle].pages = pages;
emm_handles[handle].mem = mem;
return EMM_NO_ERROR;
}
static Bit8u EMM_ReallocatePages(Bit16u handle,Bit16u & pages) {
/* Check for valid handle */
if (!ValidHandle(handle)) return EMM_INVALID_HANDLE;
if (emm_handles[handle].pages != 0) {
/* Check for enough pages */
if (!MEM_ReAllocatePages(emm_handles[handle].mem,pages*4,false)) return EMM_OUT_OF_LOG;
} else {
MemHandle mem = MEM_AllocatePages(pages*4,false);
if (!mem) E_Exit("EMS:Memory allocation failure during reallocation");
emm_handles[handle].mem = mem;
}
/* Update size */
emm_handles[handle].pages=pages;
return EMM_NO_ERROR;
}
static Bit8u EMM_MapPage(Bitu phys_page,Bit16u handle,Bit16u log_page) {
// LOG_MSG("EMS MapPage handle %d phys %d log %d",handle,phys_page,log_page);
/* Check for too high physical page */
if (phys_page>=EMM_MAX_PHYS) return EMM_ILL_PHYS;
/* unmapping doesn't need valid handle (as handle isn't used) */
if (log_page==NULL_PAGE) {
/* Unmapping */
emm_mappings[phys_page].handle=NULL_HANDLE;
emm_mappings[phys_page].page=NULL_PAGE;
for (Bitu i=0;i<4;i++)
PAGING_MapPage(EMM_PAGEFRAME4K+phys_page*4+i,EMM_PAGEFRAME4K+phys_page*4+i);
PAGING_ClearTLB();
return EMM_NO_ERROR;
}
/* Check for valid handle */
if (!ValidHandle(handle)) return EMM_INVALID_HANDLE;
if (log_page<emm_handles[handle].pages) {
/* Mapping it is */
emm_mappings[phys_page].handle=handle;
emm_mappings[phys_page].page=log_page;
MemHandle memh=MEM_NextHandleAt(emm_handles[handle].mem,log_page*4);;
for (Bitu i=0;i<4;i++) {
PAGING_MapPage(EMM_PAGEFRAME4K+phys_page*4+i,memh);
memh=MEM_NextHandle(memh);
}
PAGING_ClearTLB();
return EMM_NO_ERROR;
} else {
/* Illegal logical page it is */
return EMM_LOG_OUT_RANGE;
}
}
static Bit8u EMM_MapSegment(Bitu segment,Bit16u handle,Bit16u log_page) {
// LOG_MSG("EMS MapSegment handle %d segment %d log %d",handle,segment,log_page);
bool valid_segment=false;
if ((ems_type==1) || (ems_type==3)) {
if (segment<0xf000+0x1000) valid_segment=true;
} else {
if ((segment>=0xa000) && (segment<0xb000)) {
valid_segment=true; // allow mapping of graphics memory
}
if ((segment>=EMM_PAGEFRAME) && (segment<EMM_PAGEFRAME+0x1000)) {
valid_segment=true; // allow mapping of EMS page frame
}
/* if ((segment>=EMM_PAGEFRAME-0x1000) && (segment<EMM_PAGEFRAME)) {
valid_segment=true;
} */
}
if (valid_segment) {
Bit32s tphysPage = ((Bit32s)segment-EMM_PAGEFRAME)/(0x1000/EMM_MAX_PHYS);
/* unmapping doesn't need valid handle (as handle isn't used) */
if (log_page==NULL_PAGE) {
/* Unmapping */
if ((tphysPage>=0) && (tphysPage<EMM_MAX_PHYS)) {
emm_mappings[tphysPage].handle=NULL_HANDLE;
emm_mappings[tphysPage].page=NULL_PAGE;
} else {
emm_segmentmappings[segment>>10].handle=NULL_HANDLE;
emm_segmentmappings[segment>>10].page=NULL_PAGE;
}
for (Bitu i=0;i<4;i++)
PAGING_MapPage(segment*16/4096+i,segment*16/4096+i);
PAGING_ClearTLB();
return EMM_NO_ERROR;
}
/* Check for valid handle */
if (!ValidHandle(handle)) return EMM_INVALID_HANDLE;
if (log_page<emm_handles[handle].pages) {
/* Mapping it is */
if ((tphysPage>=0) && (tphysPage<EMM_MAX_PHYS)) {
emm_mappings[tphysPage].handle=handle;
emm_mappings[tphysPage].page=log_page;
} else {
emm_segmentmappings[segment>>10].handle=handle;
emm_segmentmappings[segment>>10].page=log_page;
}
MemHandle memh=MEM_NextHandleAt(emm_handles[handle].mem,log_page*4);;
for (Bitu i=0;i<4;i++) {
PAGING_MapPage(segment*16/4096+i,memh);
memh=MEM_NextHandle(memh);
}
PAGING_ClearTLB();
return EMM_NO_ERROR;
} else {
/* Illegal logical page it is */
return EMM_LOG_OUT_RANGE;
}
}
return EMM_ILL_PHYS;
}
static Bit8u EMM_ReleaseMemory(Bit16u handle) {
/* Check for valid handle */
if (!ValidHandle(handle)) return EMM_INVALID_HANDLE;
// should check for saved_page_map flag here, returning an error if it's true
// as apps are required to restore the pagemap beforehand; to be checked
// if (emm_handles[handle].saved_page_map) return EMM_SAVEMAP_ERROR;
if (emm_handles[handle].pages != 0) {
MEM_ReleasePages(emm_handles[handle].mem);
}
/* Reset handle */
emm_handles[handle].mem=0;
if (handle==0) {
emm_handles[handle].pages=0; // OS handle is NEVER deallocated
} else {
emm_handles[handle].pages=NULL_HANDLE;
}
emm_handles[handle].saved_page_map=false;
memset(&emm_handles[handle].name,0,8);
return EMM_NO_ERROR;
}
static Bit8u EMM_SavePageMap(Bit16u handle) {
/* Check for valid handle */
if (handle>=EMM_MAX_HANDLES || emm_handles[handle].pages==NULL_HANDLE) {
if (handle!=0) return EMM_INVALID_HANDLE;
}
/* Check for previous save */
if (emm_handles[handle].saved_page_map) return EMM_PAGE_MAP_SAVED;
/* Copy the mappings over */
for (Bitu i=0;i<EMM_MAX_PHYS;i++) {
emm_handles[handle].page_map[i].page=emm_mappings[i].page;
emm_handles[handle].page_map[i].handle=emm_mappings[i].handle;
}
emm_handles[handle].saved_page_map=true;
return EMM_NO_ERROR;
}
static Bit8u EMM_RestoreMappingTable(void) {
Bit8u result;
/* Move through the mappings table and setup mapping accordingly */
for (Bitu i=0;i<0x40;i++) {
/* Skip the pageframe */
if ((i>=EMM_PAGEFRAME/0x400) && (i<(EMM_PAGEFRAME/0x400)+EMM_MAX_PHYS)) continue;
result=EMM_MapSegment(i<<10,emm_segmentmappings[i].handle,emm_segmentmappings[i].page);
}
for (Bitu i=0;i<EMM_MAX_PHYS;i++) {
result=EMM_MapPage(i,emm_mappings[i].handle,emm_mappings[i].page);
}
return EMM_NO_ERROR;
}
static Bit8u EMM_RestorePageMap(Bit16u handle) {
/* Check for valid handle */
if (handle>=EMM_MAX_HANDLES || emm_handles[handle].pages==NULL_HANDLE) {
if (handle!=0) return EMM_INVALID_HANDLE;
}
/* Check for previous save */
if (!emm_handles[handle].saved_page_map) return EMM_NO_SAVED_PAGE_MAP;
/* Restore the mappings */
emm_handles[handle].saved_page_map=false;
for (Bitu i=0;i<EMM_MAX_PHYS;i++) {
emm_mappings[i].page=emm_handles[handle].page_map[i].page;
emm_mappings[i].handle=emm_handles[handle].page_map[i].handle;
}
return EMM_RestoreMappingTable();
}
static Bit8u EMM_GetPagesForAllHandles(PhysPt table,Bit16u & handles) {
handles=0;
for (Bit16u i=0;i<EMM_MAX_HANDLES;i++) {
if (emm_handles[i].pages!=NULL_HANDLE) {
handles++;
mem_writew(table,i);
mem_writew(table+2,emm_handles[i].pages);
table+=4;
}
}
return EMM_NO_ERROR;
}
static Bit8u EMM_PartialPageMapping(void) {
PhysPt list,data;Bit16u count;
switch (reg_al) {
case 0x00: /* Save Partial Page Map */
list = SegPhys(ds)+reg_si;
data = SegPhys(es)+reg_di;
count=mem_readw(list);list+=2;
mem_writew(data,count);data+=2;
for (;count>0;count--) {
Bit16u segment=mem_readw(list);list+=2;
if ((segment>=EMM_PAGEFRAME) && (segment<EMM_PAGEFRAME+0x1000)) {
Bit16u page = (segment-EMM_PAGEFRAME) / (EMM_PAGE_SIZE>>4);
mem_writew(data,segment);data+=2;
MEM_BlockWrite(data,&emm_mappings[page],sizeof(EMM_Mapping));
data+=sizeof(EMM_Mapping);
2012-02-09 03:35:43 +01:00
} else if ((ems_type==1) || (ems_type==3) || ((segment>=EMM_PAGEFRAME-0x1000) && (segment<EMM_PAGEFRAME)) || ((segment>=0xa000) && (segment<0xb000))) {
2010-11-05 05:55:33 +01:00
mem_writew(data,segment);data+=2;
MEM_BlockWrite(data,&emm_segmentmappings[segment>>10],sizeof(EMM_Mapping));
data+=sizeof(EMM_Mapping);
} else {
return EMM_ILL_PHYS;
}
}
break;
case 0x01: /* Restore Partial Page Map */
data = SegPhys(ds)+reg_si;
count= mem_readw(data);data+=2;
for (;count>0;count--) {
Bit16u segment=mem_readw(data);data+=2;
if ((segment>=EMM_PAGEFRAME) && (segment<EMM_PAGEFRAME+0x1000)) {
Bit16u page = (segment-EMM_PAGEFRAME) / (EMM_PAGE_SIZE>>4);
MEM_BlockRead(data,&emm_mappings[page],sizeof(EMM_Mapping));
2012-02-09 03:35:43 +01:00
} else if ((ems_type==1) || (ems_type==3) || ((segment>=EMM_PAGEFRAME-0x1000) && (segment<EMM_PAGEFRAME)) || ((segment>=0xa000) && (segment<0xb000))) {
2010-11-05 05:55:33 +01:00
MEM_BlockRead(data,&emm_segmentmappings[segment>>10],sizeof(EMM_Mapping));
} else {
return EMM_ILL_PHYS;
}
data+=sizeof(EMM_Mapping);
}
return EMM_RestoreMappingTable();
break;
case 0x02: /* Get Partial Page Map Array Size */
reg_al=(Bit8u)(2+reg_bx*(2+sizeof(EMM_Mapping)));
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X Subfunction %2X not supported",reg_ah,reg_al);
return EMM_FUNC_NOSUP;
}
return EMM_NO_ERROR;
}
static Bit8u HandleNameSearch(void) {
char name[9];
Bit16u handle=0;PhysPt data;
switch (reg_al) {
case 0x00: /* Get all handle names */
reg_al=0;data=SegPhys(es)+reg_di;
for (handle=0;handle<EMM_MAX_HANDLES;handle++) {
if (emm_handles[handle].pages!=NULL_HANDLE) {
reg_al++;
mem_writew(data,handle);
MEM_BlockWrite(data+2,emm_handles[handle].name,8);
data+=10;
}
}
break;
case 0x01: /* Search for a handle name */
MEM_StrCopy(SegPhys(ds)+reg_si,name,8);name[8]=0;
for (handle=0;handle<EMM_MAX_HANDLES;handle++) {
if (emm_handles[handle].pages!=NULL_HANDLE) {
if (!strncmp(name,emm_handles[handle].name,8)) {
reg_dx=handle;
return EMM_NO_ERROR;
}
}
}
return EMM_NOT_FOUND;
break;
case 0x02: /* Get Total number of handles */
reg_bx=EMM_MAX_HANDLES;
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X Subfunction %2X not supported",reg_ah,reg_al);
return EMM_INVALID_SUB;
}
return EMM_NO_ERROR;
}
static Bit8u GetSetHandleName(void) {
Bit16u handle=reg_dx;
switch (reg_al) {
case 0x00: /* Get Handle Name */
if (handle>=EMM_MAX_HANDLES || emm_handles[handle].pages==NULL_HANDLE) return EMM_INVALID_HANDLE;
MEM_BlockWrite(SegPhys(es)+reg_di,emm_handles[handle].name,8);
break;
case 0x01: /* Set Handle Name */
if (handle>=EMM_MAX_HANDLES || emm_handles[handle].pages==NULL_HANDLE) return EMM_INVALID_HANDLE;
MEM_BlockRead(SegPhys(es)+reg_di,emm_handles[handle].name,8);
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X Subfunction %2X not supported",reg_ah,reg_al);
return EMM_INVALID_SUB;
}
return EMM_NO_ERROR;
}
static void LoadMoveRegion(PhysPt data,MoveRegion & region) {
region.bytes=mem_readd(data+0x0);
region.src_type=mem_readb(data+0x4);
region.src_handle=mem_readw(data+0x5);
region.src_offset=mem_readw(data+0x7);
region.src_page_seg=mem_readw(data+0x9);
region.dest_type=mem_readb(data+0xb);
region.dest_handle=mem_readw(data+0xc);
region.dest_offset=mem_readw(data+0xe);
region.dest_page_seg=mem_readw(data+0x10);
}
static Bit8u MemoryRegion(void) {
MoveRegion region;
Bit8u buf_src[MEM_PAGE_SIZE];
Bit8u buf_dest[MEM_PAGE_SIZE];
if (reg_al>1) {
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X Subfunction %2X not supported",reg_ah,reg_al);
return EMM_FUNC_NOSUP;
}
LoadMoveRegion(SegPhys(ds)+reg_si,region);
/* Parse the region for information */
PhysPt src_mem = 0,dest_mem = 0;
MemHandle src_handle = 0,dest_handle = 0;
Bitu src_off = 0,dest_off = 0 ;Bitu src_remain = 0,dest_remain = 0;
if (!region.src_type) {
src_mem=region.src_page_seg*16+region.src_offset;
} else {
if (!ValidHandle(region.src_handle)) return EMM_INVALID_HANDLE;
if ((emm_handles[region.src_handle].pages*EMM_PAGE_SIZE) < ((region.src_page_seg*EMM_PAGE_SIZE)+region.src_offset+region.bytes)) return EMM_LOG_OUT_RANGE;
src_handle=emm_handles[region.src_handle].mem;
Bitu pages=region.src_page_seg*4+(region.src_offset/MEM_PAGE_SIZE);
for (;pages>0;pages--) src_handle=MEM_NextHandle(src_handle);
src_off=region.src_offset&(MEM_PAGE_SIZE-1);
src_remain=MEM_PAGE_SIZE-src_off;
}
if (!region.dest_type) {
dest_mem=region.dest_page_seg*16+region.dest_offset;
} else {
if (!ValidHandle(region.dest_handle)) return EMM_INVALID_HANDLE;
if (emm_handles[region.dest_handle].pages*EMM_PAGE_SIZE < (region.dest_page_seg*EMM_PAGE_SIZE)+region.dest_offset+region.bytes) return EMM_LOG_OUT_RANGE;
dest_handle=emm_handles[region.dest_handle].mem;
Bitu pages=region.dest_page_seg*4+(region.dest_offset/MEM_PAGE_SIZE);
for (;pages>0;pages--) dest_handle=MEM_NextHandle(dest_handle);
dest_off=region.dest_offset&(MEM_PAGE_SIZE-1);
dest_remain=MEM_PAGE_SIZE-dest_off;
}
Bitu toread;
while (region.bytes>0) {
if (region.bytes>MEM_PAGE_SIZE) toread=MEM_PAGE_SIZE;
else toread=region.bytes;
/* Read from the source */
if (!region.src_type) {
MEM_BlockRead(src_mem,buf_src,toread);
} else {
if (toread<src_remain) {
MEM_BlockRead((src_handle*MEM_PAGE_SIZE)+src_off,buf_src,toread);
} else {
MEM_BlockRead((src_handle*MEM_PAGE_SIZE)+src_off,buf_src,src_remain);
MEM_BlockRead((MEM_NextHandle(src_handle)*MEM_PAGE_SIZE),&buf_src[src_remain],toread-src_remain);
}
}
/* Check for a move */
if (reg_al==1) {
/* Read from the destination */
if (!region.dest_type) {
MEM_BlockRead(dest_mem,buf_dest,toread);
} else {
if (toread<dest_remain) {
MEM_BlockRead((dest_handle*MEM_PAGE_SIZE)+dest_off,buf_dest,toread);
} else {
MEM_BlockRead((dest_handle*MEM_PAGE_SIZE)+dest_off,buf_dest,dest_remain);
MEM_BlockRead((MEM_NextHandle(dest_handle)*MEM_PAGE_SIZE),&buf_dest[dest_remain],toread-dest_remain);
}
}
/* Write to the source */
if (!region.src_type) {
MEM_BlockWrite(src_mem,buf_dest,toread);
} else {
if (toread<src_remain) {
MEM_BlockWrite((src_handle*MEM_PAGE_SIZE)+src_off,buf_dest,toread);
} else {
MEM_BlockWrite((src_handle*MEM_PAGE_SIZE)+src_off,buf_dest,src_remain);
MEM_BlockWrite((MEM_NextHandle(src_handle)*MEM_PAGE_SIZE),&buf_dest[src_remain],toread-src_remain);
}
}
}
/* Write to the destination */
if (!region.dest_type) {
MEM_BlockWrite(dest_mem,buf_src,toread);
} else {
if (toread<dest_remain) {
MEM_BlockWrite((dest_handle*MEM_PAGE_SIZE)+dest_off,buf_src,toread);
} else {
MEM_BlockWrite((dest_handle*MEM_PAGE_SIZE)+dest_off,buf_src,dest_remain);
MEM_BlockWrite((MEM_NextHandle(dest_handle)*MEM_PAGE_SIZE),&buf_src[dest_remain],toread-dest_remain);
}
}
/* Advance the pointers */
if (!region.src_type) src_mem+=toread;
else src_handle=MEM_NextHandle(src_handle);
if (!region.dest_type) dest_mem+=toread;
else dest_handle=MEM_NextHandle(dest_handle);
region.bytes-=toread;
}
return EMM_NO_ERROR;
}
static Bitu INT67_Handler(void) {
Bitu i;
switch (reg_ah) {
case 0x40: /* Get Status */
reg_ah=EMM_NO_ERROR;
break;
case 0x41: /* Get PageFrame Segment */
reg_bx=EMM_PAGEFRAME;
reg_ah=EMM_NO_ERROR;
break;
case 0x42: /* Get number of pages */
reg_dx=(Bit16u)(MEM_TotalPages()/4); //Not entirely correct but okay
reg_bx=EMM_GetFreePages();
reg_ah=EMM_NO_ERROR;
break;
case 0x43: /* Get Handle and Allocate Pages */
reg_ah=EMM_AllocateMemory(reg_bx,reg_dx,false);
break;
case 0x44: /* Map Expanded Memory Page */
reg_ah=EMM_MapPage(reg_al,reg_dx,reg_bx);
break;
case 0x45: /* Release handle and free pages */
reg_ah=EMM_ReleaseMemory(reg_dx);
break;
case 0x46: /* Get EMM Version */
reg_ah=EMM_NO_ERROR;
reg_al=EMM_VERSION;
break;
case 0x47: /* Save Page Map */
reg_ah=EMM_SavePageMap(reg_dx);
break;
case 0x48: /* Restore Page Map */
reg_ah=EMM_RestorePageMap(reg_dx);
break;
case 0x4b: /* Get Handle Count */
reg_bx=0;
for (i=0;i<EMM_MAX_HANDLES;i++) if (emm_handles[i].pages!=NULL_HANDLE) reg_bx++;
reg_ah=EMM_NO_ERROR;
break;
case 0x4c: /* Get Pages for one Handle */
if (!ValidHandle(reg_dx)) {reg_ah=EMM_INVALID_HANDLE;break;}
reg_bx=emm_handles[reg_dx].pages;
reg_ah=EMM_NO_ERROR;
break;
case 0x4d: /* Get Pages for all Handles */
reg_ah=EMM_GetPagesForAllHandles(SegPhys(es)+reg_di,reg_bx);
break;
case 0x4e: /*Save/Restore Page Map */
switch (reg_al) {
case 0x00: /* Save Page Map */
MEM_BlockWrite(SegPhys(es)+reg_di,emm_mappings,sizeof(emm_mappings));
reg_ah=EMM_NO_ERROR;
break;
case 0x01: /* Restore Page Map */
MEM_BlockRead(SegPhys(ds)+reg_si,emm_mappings,sizeof(emm_mappings));
reg_ah=EMM_RestoreMappingTable();
break;
case 0x02: /* Save and Restore Page Map */
MEM_BlockWrite(SegPhys(es)+reg_di,emm_mappings,sizeof(emm_mappings));
MEM_BlockRead(SegPhys(ds)+reg_si,emm_mappings,sizeof(emm_mappings));
reg_ah=EMM_RestoreMappingTable();
break;
case 0x03: /* Get Page Map Array Size */
reg_al=sizeof(emm_mappings);
reg_ah=EMM_NO_ERROR;
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X Subfunction %2X not supported",reg_ah,reg_al);
reg_ah=EMM_INVALID_SUB;
break;
}
break;
case 0x4f: /* Save/Restore Partial Page Map */
reg_ah=EMM_PartialPageMapping();
break;
case 0x50: /* Map/Unmap multiple handle pages */
reg_ah = EMM_NO_ERROR;
switch (reg_al) {
case 0x00: // use physical page numbers
{ PhysPt data = SegPhys(ds)+reg_si;
for (int i=0; i<reg_cx; i++) {
Bit16u logPage = mem_readw(data); data+=2;
Bit16u physPage = mem_readw(data); data+=2;
reg_ah = EMM_MapPage(physPage,reg_dx,logPage);
if (reg_ah!=EMM_NO_ERROR) break;
};
} break;
case 0x01: // use segment address
{ PhysPt data = SegPhys(ds)+reg_si;
for (int i=0; i<reg_cx; i++) {
Bit16u logPage = mem_readw(data); data+=2;
reg_ah = EMM_MapSegment(mem_readw(data),reg_dx,logPage); data+=2;
if (reg_ah!=EMM_NO_ERROR) break;
};
}
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X Subfunction %2X not supported",reg_ah,reg_al);
reg_ah=EMM_INVALID_SUB;
break;
}
break;
case 0x51: /* Reallocate Pages */
reg_ah=EMM_ReallocatePages(reg_dx,reg_bx);
break;
case 0x53: // Set/Get Handlename
reg_ah=GetSetHandleName();
break;
case 0x54: /* Handle Functions */
reg_ah=HandleNameSearch();
break;
case 0x57: /* Memory region */
reg_ah=MemoryRegion();
if (reg_ah) LOG(LOG_MISC,LOG_ERROR)("EMS:Function 57 move failed");
break;
case 0x58: // Get mappable physical array address array
if (reg_al==0x00) {
PhysPt data = SegPhys(es)+reg_di;
Bit16u step = 0x1000 / EMM_MAX_PHYS;
for (Bit16u i=0; i<EMM_MAX_PHYS; i++) {
mem_writew(data,EMM_PAGEFRAME+step*i); data+=2;
mem_writew(data,i); data+=2;
};
};
// Set number of pages
reg_cx = EMM_MAX_PHYS;
reg_ah = EMM_NO_ERROR;
break;
case 0x5A: /* Allocate standard/raw Pages */
if (reg_al<=0x01) {
reg_ah=EMM_AllocateMemory(reg_bx,reg_dx,true); // can allocate 0 pages
} else {
LOG(LOG_MISC,LOG_ERROR)("EMS:Call 5A subfct %2X not supported",reg_al);
reg_ah=EMM_INVALID_SUB;
};
break;
case 0xDE: /* VCPI Functions */
if (!vcpi.enabled) {
LOG(LOG_MISC,LOG_ERROR)("EMS:VCPI Call %2X not supported",reg_al);
reg_ah=EMM_FUNC_NOSUP;
} else {
switch (reg_al) {
case 0x00: /* VCPI Installation Check */
if (((reg_cx==0) && (reg_di==0x0012)) || (cpu.pmode && (reg_flags & FLAG_VM))) {
/* JEMM detected or already in v86 mode */
reg_ah=EMM_NO_ERROR;
reg_bx=0x100;
} else {
reg_ah=EMM_FUNC_NOSUP;
}
break;
case 0x01: { /* VCPI Get Protected Mode Interface */
Bit16u ct;
/* Set up page table buffer */
for (ct=0; ct<0xff; ct++) {
real_writeb(SegValue(es),reg_di+ct*4+0x00,0x67); // access bits
real_writew(SegValue(es),reg_di+ct*4+0x01,ct*0x10); // mapping
real_writeb(SegValue(es),reg_di+ct*4+0x03,0x00);
}
for (ct=0xff; ct<0x100; ct++) {
real_writeb(SegValue(es),reg_di+ct*4+0x00,0x67); // access bits
real_writew(SegValue(es),reg_di+ct*4+0x01,(ct-0xff)*0x10+0x1100); // mapping
real_writeb(SegValue(es),reg_di+ct*4+0x03,0x00);
}
/* adjust paging entries for page frame (if mapped) */
for (ct=0; ct<4; ct++) {
Bit16u handle=emm_mappings[ct].handle;
if (handle!=0xffff) {
Bit16u memh=(Bit16u)MEM_NextHandleAt(emm_handles[handle].mem,emm_mappings[ct].page*4);
Bit16u entry_addr=reg_di+(EMM_PAGEFRAME>>6)+(ct*0x10);
real_writew(SegValue(es),entry_addr+0x00+0x01,(memh+0)*0x10); // mapping of 1/4 of page
real_writew(SegValue(es),entry_addr+0x04+0x01,(memh+1)*0x10); // mapping of 2/4 of page
real_writew(SegValue(es),entry_addr+0x08+0x01,(memh+2)*0x10); // mapping of 3/4 of page
real_writew(SegValue(es),entry_addr+0x0c+0x01,(memh+3)*0x10); // mapping of 4/4 of page
}
}
reg_di+=0x400; // advance pointer by 0x100*4
/* Set up three descriptor table entries */
Bit32u cbseg_low=(CALLBACK_GetBase()&0xffff)<<16;
Bit32u cbseg_high=(CALLBACK_GetBase()&0x1f0000)>>16;
/* Descriptor 1 (code segment, callback segment) */
real_writed(SegValue(ds),reg_si+0x00,0x0000ffff|cbseg_low);
real_writed(SegValue(ds),reg_si+0x04,0x00009a00|cbseg_high);
/* Descriptor 2 (data segment, full access) */
real_writed(SegValue(ds),reg_si+0x08,0x0000ffff);
real_writed(SegValue(ds),reg_si+0x0c,0x00009200);
/* Descriptor 3 (full access) */
real_writed(SegValue(ds),reg_si+0x10,0x0000ffff);
real_writed(SegValue(ds),reg_si+0x14,0x00009200);
reg_ebx=(vcpi.pm_interface&0xffff);
reg_ah=EMM_NO_ERROR;
break;
}
case 0x02: /* VCPI Maximum Physical Address */
reg_edx=((MEM_TotalPages()*MEM_PAGESIZE)-1)&0xfffff000;
reg_ah=EMM_NO_ERROR;
break;
case 0x03: /* VCPI Get Number of Free Pages */
reg_edx=MEM_FreeTotal();
reg_ah=EMM_NO_ERROR;
break;
case 0x04: { /* VCPI Allocate one Page */
MemHandle mem = MEM_AllocatePages(1,false);
if (mem) {
reg_edx=mem<<12;
reg_ah=EMM_NO_ERROR;
} else {
reg_ah=EMM_OUT_OF_LOG;
}
break;
}
case 0x05: /* VCPI Free Page */
MEM_ReleasePages(reg_edx>>12);
reg_ah=EMM_NO_ERROR;
break;
case 0x06: { /* VCPI Get Physical Address of Page in 1st MB */
if (((reg_cx<<8)>=EMM_PAGEFRAME) && ((reg_cx<<8)<EMM_PAGEFRAME+0x1000)) {
/* Page is in Pageframe, so check what EMS-page it is
and return the physical address */
Bit8u phys_page;
Bit16u mem_seg=reg_cx<<8;
if (mem_seg<EMM_PAGEFRAME+0x400) phys_page=0;
else if (mem_seg<EMM_PAGEFRAME+0x800) phys_page=1;
else if (mem_seg<EMM_PAGEFRAME+0xc00) phys_page=2;
else phys_page=3;
Bit16u handle=emm_mappings[phys_page].handle;
if (handle==0xffff) {
reg_ah=EMM_ILL_PHYS;
break;
} else {
MemHandle memh=MEM_NextHandleAt(
emm_handles[handle].mem,
emm_mappings[phys_page].page*4);
reg_edx=(memh+(reg_cx&3))<<12;
}
} else {
/* Page not in Pageframe, so just translate into physical address */
reg_edx=reg_cx<<12;
}
reg_ah=EMM_NO_ERROR;
}
break;
case 0x0a: /* VCPI Get PIC Vector Mappings */
reg_bx=vcpi.pic1_remapping; // master PIC
reg_cx=vcpi.pic2_remapping; // slave PIC
reg_ah=EMM_NO_ERROR;
break;
case 0x0b: /* VCPI Set PIC Vector Mappings */
reg_flags&=(~FLAG_IF);
vcpi.pic1_remapping=reg_bx&0xff;
vcpi.pic2_remapping=reg_cx&0xff;
reg_ah=EMM_NO_ERROR;
break;
case 0x0c: { /* VCPI Switch from V86 to Protected Mode */
reg_flags&=(~FLAG_IF);
cpu.cpl=0;
/* Read data from ESI (linear address) */
Bit32u new_cr3=mem_readd(reg_esi);
Bit32u new_gdt_addr=mem_readd(reg_esi+4);
Bit32u new_idt_addr=mem_readd(reg_esi+8);
Bit16u new_ldt=mem_readw(reg_esi+0x0c);
Bit16u new_tr=mem_readw(reg_esi+0x0e);
Bit32u new_eip=mem_readd(reg_esi+0x10);
Bit16u new_cs=mem_readw(reg_esi+0x14);
/* Get GDT and IDT entries */
Bit16u new_gdt_limit=mem_readw(new_gdt_addr);
Bit32u new_gdt_base=mem_readd(new_gdt_addr+2);
Bit16u new_idt_limit=mem_readw(new_idt_addr);
Bit32u new_idt_base=mem_readd(new_idt_addr+2);
/* Switch to protected mode, paging enabled if necessary */
Bit32u new_cr0=CPU_GET_CRX(0)|1;
if (new_cr3!=0) new_cr0|=0x80000000;
CPU_SET_CRX(0, new_cr0);
CPU_SET_CRX(3, new_cr3);
PhysPt tbaddr=new_gdt_base+(new_tr&0xfff8)+5;
Bit8u tb=mem_readb(tbaddr);
mem_writeb(tbaddr, tb&0xfd);
/* Load tables and initialize segment registers */
CPU_LGDT(new_gdt_limit, new_gdt_base);
CPU_LIDT(new_idt_limit, new_idt_base);
if (CPU_LLDT(new_ldt)) LOG_MSG("VCPI:Could not load LDT with %x",new_ldt);
if (CPU_LTR(new_tr)) LOG_MSG("VCPI:Could not load TR with %x",new_tr);
CPU_SetSegGeneral(ds,0);
CPU_SetSegGeneral(es,0);
CPU_SetSegGeneral(fs,0);
CPU_SetSegGeneral(gs,0);
// MEM_A20_Enable(true);
/* Switch to protected mode */
reg_flags&=(~(FLAG_VM|FLAG_NT));
reg_flags|=0x3000;
CPU_JMP(true, new_cs, new_eip, 0);
}
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:VCPI Call %x not supported",reg_ax);
reg_ah=EMM_FUNC_NOSUP;
break;
}
}
break;
default:
LOG(LOG_MISC,LOG_ERROR)("EMS:Call %2X not supported",reg_ah);
reg_ah=EMM_FUNC_NOSUP;
break;
}
return CBRET_NONE;
}
static Bitu VCPI_PM_Handler() {
// LOG_MSG("VCPI PMODE handler, function %x",reg_ax);
switch (reg_ax) {
case 0xDE03: /* VCPI Get Number of Free Pages */
reg_edx=MEM_FreeTotal();
reg_ah=EMM_NO_ERROR;
break;
case 0xDE04: { /* VCPI Allocate one Page */
MemHandle mem = MEM_AllocatePages(1,false);
if (mem) {
reg_edx=mem<<12;
reg_ah=EMM_NO_ERROR;
} else {
reg_ah=EMM_OUT_OF_LOG;
}
break;
}
case 0xDE05: /* VCPI Free Page */
MEM_ReleasePages(reg_edx>>12);
reg_ah=EMM_NO_ERROR;
break;
case 0xDE0C: { /* VCPI Switch from Protected Mode to V86 */
reg_flags&=(~FLAG_IF);
/* Flags need to be filled in, VM=true, IOPL=3 */
mem_writed(SegPhys(ss) + (reg_esp & cpu.stack.mask)+0x10, 0x23002);
/* Disable Paging */
CPU_SET_CRX(0, CPU_GET_CRX(0)&0x7ffffff7);
CPU_SET_CRX(3, 0);
PhysPt tbaddr=vcpi.private_area+0x0000+(0x10&0xfff8)+5;
Bit8u tb=mem_readb(tbaddr);
mem_writeb(tbaddr, tb&0xfd);
/* Load descriptor table registers */
CPU_LGDT(0xff, vcpi.private_area+0x0000);
CPU_LIDT(0x7ff, vcpi.private_area+0x2000);
if (CPU_LLDT(0x08)) LOG_MSG("VCPI:Could not load LDT");
if (CPU_LTR(0x10)) LOG_MSG("VCPI:Could not load TR");
reg_flags&=(~FLAG_NT);
reg_esp+=8; // skip interrupt return information
// MEM_A20_Enable(false);
/* Switch to v86-task */
CPU_IRET(true,0);
}
break;
default:
LOG(LOG_MISC,LOG_WARN)("Unhandled VCPI-function %x in protected mode",reg_al);
break;
}
return CBRET_NONE;
}
static Bitu V86_Monitor() {
/* Calculate which interrupt did occur */
Bitu int_num=(mem_readw(SegPhys(ss)+(reg_esp & cpu.stack.mask))-0x2803);
/* See if Exception 0x0d and not Interrupt 0x0d */
if ((int_num==(0x0d*4)) && ((reg_sp&0xffff)!=0x1fda)) {
/* Protection violation during V86-execution,
needs intervention by monitor (depends on faulting opcode) */
reg_esp+=6; // skip ip of CALL and error code of EXCEPTION 0x0d
2012-02-09 03:35:43 +01:00
/* Get address of faulting instruction */
2010-11-05 05:55:33 +01:00
Bit16u v86_cs=mem_readw(SegPhys(ss)+((reg_esp+4) & cpu.stack.mask));
Bit16u v86_ip=mem_readw(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask));
Bit8u v86_opcode=mem_readb((v86_cs<<4)+v86_ip);
// LOG_MSG("v86 monitor caught protection violation at %x:%x, opcode=%x",v86_cs,v86_ip,v86_opcode);
switch (v86_opcode) {
case 0x0f: // double byte opcode
v86_opcode=mem_readb((v86_cs<<4)+v86_ip+1);
switch (v86_opcode) {
case 0x20: { // mov reg,CRx
Bitu rm_val=mem_readb((v86_cs<<4)+v86_ip+2);
Bitu which=(rm_val >> 3) & 7;
if ((rm_val<0xc0) || (rm_val>=0xe8))
E_Exit("Invalid opcode 0x0f 0x20 %x caused a protection fault!",static_cast<unsigned int>(rm_val));
Bit32u crx=CPU_GET_CRX(which);
switch (rm_val&7) {
case 0: reg_eax=crx; break;
case 1: reg_ecx=crx; break;
case 2: reg_edx=crx; break;
case 3: reg_ebx=crx; break;
case 4: reg_esp=crx; break;
case 5: reg_ebp=crx; break;
case 6: reg_esi=crx; break;
case 7: reg_edi=crx; break;
}
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+3);
}
break;
case 0x22: { // mov CRx,reg
Bitu rm_val=mem_readb((v86_cs<<4)+v86_ip+2);
Bitu which=(rm_val >> 3) & 7;
if ((rm_val<0xc0) || (rm_val>=0xe8))
E_Exit("Invalid opcode 0x0f 0x22 %x caused a protection fault!",static_cast<unsigned int>(rm_val));
Bit32u crx=0;
switch (rm_val&7) {
case 0: crx=reg_eax; break;
case 1: crx=reg_ecx; break;
case 2: crx=reg_edx; break;
case 3: crx=reg_ebx; break;
case 4: crx=reg_esp; break;
case 5: crx=reg_ebp; break;
case 6: crx=reg_esi; break;
case 7: crx=reg_edi; break;
}
if (which==0) crx|=1; // protection bit always on
CPU_SET_CRX(which,crx);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+3);
}
break;
default:
E_Exit("Unhandled opcode 0x0f %x caused a protection fault!",v86_opcode);
}
break;
case 0xe4: // IN AL,Ib
reg_al=(Bit8u)(IO_ReadB(mem_readb((v86_cs<<4)+v86_ip+1))&0xff);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+2);
break;
case 0xe5: // IN AX,Ib
reg_ax=(Bit16u)(IO_ReadW(mem_readb((v86_cs<<4)+v86_ip+1))&0xffff);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+2);
break;
case 0xe6: // OUT Ib,AL
IO_WriteB(mem_readb((v86_cs<<4)+v86_ip+1),reg_al);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+2);
break;
case 0xe7: // OUT Ib,AX
IO_WriteW(mem_readb((v86_cs<<4)+v86_ip+1),reg_ax);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+2);
break;
case 0xec: // IN AL,DX
reg_al=(Bit8u)(IO_ReadB(reg_dx)&0xff);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+1);
break;
case 0xed: // IN AX,DX
reg_ax=(Bit16u)(IO_ReadW(reg_dx)&0xffff);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+1);
break;
case 0xee: // OUT DX,AL
IO_WriteB(reg_dx,reg_al);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+1);
break;
case 0xef: // OUT DX,AX
IO_WriteW(reg_dx,reg_ax);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+1);
break;
case 0xf0: // LOCK prefix
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+1);
break;
case 0xf4: // HLT
reg_flags|=FLAG_IF;
CPU_HLT(reg_eip);
mem_writew(SegPhys(ss)+((reg_esp+0) & cpu.stack.mask),v86_ip+1);
break;
default:
E_Exit("Unhandled opcode %x caused a protection fault!",v86_opcode);
}
return CBRET_NONE;
}
/* Get address to interrupt handler */
Bit16u vint_vector_seg=mem_readw(SegValue(ds)+int_num+2);
Bit16u vint_vector_ofs=mem_readw(int_num);
if (reg_sp!=0x1fda) reg_esp+=(2+3*4); // Interrupt from within protected mode
else reg_esp+=2;
/* Read entries that were pushed onto the stack by the interrupt */
Bit16u return_ip=mem_readw(SegPhys(ss)+(reg_esp & cpu.stack.mask));
Bit16u return_cs=mem_readw(SegPhys(ss)+((reg_esp+4) & cpu.stack.mask));
Bit32u return_eflags=mem_readd(SegPhys(ss)+((reg_esp+8) & cpu.stack.mask));
/* Modify stack to call v86-interrupt handler */
mem_writed(SegPhys(ss)+(reg_esp & cpu.stack.mask),vint_vector_ofs);
mem_writed(SegPhys(ss)+((reg_esp+4) & cpu.stack.mask),vint_vector_seg);
mem_writed(SegPhys(ss)+((reg_esp+8) & cpu.stack.mask),return_eflags&(~(FLAG_IF|FLAG_TF)));
/* Adjust SP of v86-stack */
Bit16u v86_ss=mem_readw(SegPhys(ss)+((reg_esp+0x10) & cpu.stack.mask));
Bit16u v86_sp=mem_readw(SegPhys(ss)+((reg_esp+0x0c) & cpu.stack.mask))-6;
mem_writew(SegPhys(ss)+((reg_esp+0x0c) & cpu.stack.mask),v86_sp);
/* Return to original code after v86-interrupt handler */
mem_writew((v86_ss<<4)+v86_sp+0,return_ip);
mem_writew((v86_ss<<4)+v86_sp+2,return_cs);
mem_writew((v86_ss<<4)+v86_sp+4,(Bit16u)(return_eflags&0xffff));
return CBRET_NONE;
}
static void SetupVCPI() {
vcpi.enabled=false;
vcpi.ems_handle=0; // use EMM system handle for VCPI data
vcpi.enabled=true;
vcpi.pic1_remapping=0x08; // master PIC base
vcpi.pic2_remapping=0x70; // slave PIC base
vcpi.private_area=emm_handles[vcpi.ems_handle].mem<<12;
/* GDT */
mem_writed(vcpi.private_area+0x0000,0x00000000); // descriptor 0
mem_writed(vcpi.private_area+0x0004,0x00000000); // descriptor 0
Bit32u ldt_address=(vcpi.private_area+0x1000);
Bit16u ldt_limit=0xff;
Bit32u ldt_desc_part=((ldt_address&0xffff)<<16)|ldt_limit;
mem_writed(vcpi.private_area+0x0008,ldt_desc_part); // descriptor 1 (LDT)
ldt_desc_part=((ldt_address&0xff0000)>>16)|(ldt_address&0xff000000)|0x8200;
mem_writed(vcpi.private_area+0x000c,ldt_desc_part); // descriptor 1
Bit32u tss_address=(vcpi.private_area+0x3000);
Bit32u tss_desc_part=((tss_address&0xffff)<<16)|(0x0068+0x200);
mem_writed(vcpi.private_area+0x0010,tss_desc_part); // descriptor 2 (TSS)
tss_desc_part=((tss_address&0xff0000)>>16)|(tss_address&0xff000000)|0x8900;
mem_writed(vcpi.private_area+0x0014,tss_desc_part); // descriptor 2
/* LDT */
mem_writed(vcpi.private_area+0x1000,0x00000000); // descriptor 0
mem_writed(vcpi.private_area+0x1004,0x00000000); // descriptor 0
Bit32u cs_desc_part=((vcpi.private_area&0xffff)<<16)|0xffff;
mem_writed(vcpi.private_area+0x1008,cs_desc_part); // descriptor 1 (code)
cs_desc_part=((vcpi.private_area&0xff0000)>>16)|(vcpi.private_area&0xff000000)|0x9a00;
mem_writed(vcpi.private_area+0x100c,cs_desc_part); // descriptor 1
Bit32u ds_desc_part=((vcpi.private_area&0xffff)<<16)|0xffff;
mem_writed(vcpi.private_area+0x1010,ds_desc_part); // descriptor 2 (data)
ds_desc_part=((vcpi.private_area&0xff0000)>>16)|(vcpi.private_area&0xff000000)|0x9200;
mem_writed(vcpi.private_area+0x1014,ds_desc_part); // descriptor 2
/* IDT setup */
for (Bit16u int_ct=0; int_ct<0x100; int_ct++) {
/* build a CALL NEAR V86MON, the value of IP pushed by the
CALL is used to identify the interrupt number */
mem_writeb(vcpi.private_area+0x2800+int_ct*4+0,0xe8); // call
mem_writew(vcpi.private_area+0x2800+int_ct*4+1,0x05fd-(int_ct*4));
mem_writeb(vcpi.private_area+0x2800+int_ct*4+3,0xcf); // iret (dummy)
/* put a Gate-Descriptor into the IDT */
mem_writed(vcpi.private_area+0x2000+int_ct*8+0,0x000c0000|(0x2800+int_ct*4));
mem_writed(vcpi.private_area+0x2000+int_ct*8+4,0x0000ee00);
}
/* TSS */
for (Bitu tse_ct=0; tse_ct<0x68+0x200; tse_ct++) {
/* clear the TSS as most entries are not used here */
mem_writeb(vcpi.private_area+0x3000,0);
}
/* Set up the ring0-stack */
mem_writed(vcpi.private_area+0x3004,0x00002000); // esp
mem_writed(vcpi.private_area+0x3008,0x00000014); // ss
mem_writed(vcpi.private_area+0x3066,0x0068); // io-map base (map follows, all zero)
}
static Bitu INT4B_Handler() {
switch (reg_ah) {
case 0x81:
CALLBACK_SCF(true);
reg_ax=0x1;
break;
default:
LOG(LOG_MISC,LOG_WARN)("Unhandled interrupt 4B function %x",reg_ah);
break;
}
return CBRET_NONE;
}
Bitu GetEMSType(Section_prop * section) {
Bitu rtype = 0;
std::string emstypestr(section->Get_string("ems"));
if (emstypestr=="true") {
rtype = 1; // mixed mode
} else if (emstypestr=="emsboard") {
rtype = 2;
} else if (emstypestr=="emm386") {
rtype = 3;
} else {
rtype = 0;
}
return rtype;
}
class EMS: public Module_base {
private:
DOS_Device * emm_device;
/* location in protected unfreeable memory where the ems name and callback are
* stored 32 bytes.*/
static Bit16u ems_baseseg;
RealPt old4b_pointer,old67_pointer;
CALLBACK_HandlerObject call_vdma,call_vcpi,call_v86mon;
Bitu call_int67;
public:
EMS(Section* configuration):Module_base(configuration) {
emm_device=NULL;
ems_type=0;
/* Virtual DMA interrupt callback */
call_vdma.Install(&INT4B_Handler,CB_IRET,"Int 4b vdma");
call_vdma.Set_RealVec(0x4b);
vcpi.enabled=false;
GEMMIS_seg=0;
Section_prop * section=static_cast<Section_prop *>(configuration);
ems_type=GetEMSType(section);
if (ems_type<=0) return;
if (machine==MCH_PCJR) {
ems_type=0;
LOG_MSG("EMS disabled for PCJr machine");
return;
}
BIOS_ZeroExtendedSize(true);
if (!ems_baseseg) ems_baseseg=DOS_GetMemory(2); //We have 32 bytes
/* Add a little hack so it appears that there is an actual ems device installed */
char const* emsname="EMMXXXX0";
MEM_BlockWrite(PhysMake(ems_baseseg,0xa),emsname,(Bitu)(strlen(emsname)+1));
call_int67=CALLBACK_Allocate();
CALLBACK_Setup(call_int67,&INT67_Handler,CB_IRET,PhysMake(ems_baseseg,4),"Int 67 ems");
RealSetVec(0x67,RealMake(ems_baseseg,4),old67_pointer);
/* Register the ems device */
//TODO MAYBE put it in the class.
emm_device = new device_EMM(ems_type!=2);
DOS_AddDevice(emm_device);
/* Clear handle and page tables */
Bitu i;
for (i=0;i<EMM_MAX_HANDLES;i++) {
emm_handles[i].mem=0;
emm_handles[i].pages=NULL_HANDLE;
memset(&emm_handles[i].name,0,8);
}
for (i=0;i<EMM_MAX_PHYS;i++) {
emm_mappings[i].page=NULL_PAGE;
emm_mappings[i].handle=NULL_HANDLE;
}
for (i=0;i<0x40;i++) {
emm_segmentmappings[i].page=NULL_PAGE;
emm_segmentmappings[i].handle=NULL_HANDLE;
}
EMM_AllocateSystemHandle(8); // allocate OS-dedicated handle (ems handle zero, 128kb)
if (ems_type==3) {
DMA_SetWrapping(0xffffffff); // emm386-bug that disables dma wrapping
}
if (!ENABLE_VCPI) return;
if (ems_type!=2) {
/* Install a callback that handles VCPI-requests in protected mode requests */
call_vcpi.Install(&VCPI_PM_Handler,CB_IRETD,"VCPI PM");
vcpi.pm_interface=(call_vcpi.Get_callback())*CB_SIZE;
/* Initialize private data area and set up descriptor tables */
SetupVCPI();
if (!vcpi.enabled) return;
/* Install v86-callback that handles interrupts occuring
in v86 mode, including protection fault exceptions */
call_v86mon.Install(&V86_Monitor,CB_IRET,"V86 Monitor");
mem_writeb(vcpi.private_area+0x2e00,(Bit8u)0xFE); //GRP 4
mem_writeb(vcpi.private_area+0x2e01,(Bit8u)0x38); //Extra Callback instruction
mem_writew(vcpi.private_area+0x2e02,call_v86mon.Get_callback()); //The immediate word
mem_writeb(vcpi.private_area+0x2e04,(Bit8u)0x66);
mem_writeb(vcpi.private_area+0x2e05,(Bit8u)0xCF); //A IRETD Instruction
/* Testcode only, starts up dosbox in v86-mode */
if (ENABLE_V86_STARTUP) {
/* Prepare V86-task */
CPU_SET_CRX(0, 1);
CPU_LGDT(0xff, vcpi.private_area+0x0000);
CPU_LIDT(0x7ff, vcpi.private_area+0x2000);
if (CPU_LLDT(0x08)) LOG_MSG("VCPI:Could not load LDT");
if (CPU_LTR(0x10)) LOG_MSG("VCPI:Could not load TR");
CPU_Push32(SegValue(gs));
CPU_Push32(SegValue(fs));
CPU_Push32(SegValue(ds));
CPU_Push32(SegValue(es));
CPU_Push32(SegValue(ss));
CPU_Push32(0x23002);
CPU_Push32(SegValue(cs));
CPU_Push32(reg_eip&0xffff);
/* Switch to V86-mode */
cpu.cpl=0;
CPU_IRET(true,0);
}
}
}
~EMS() {
if (ems_type<=0) return;
/* Undo Biosclearing */
BIOS_ZeroExtendedSize(false);
/* Remove ems device */
if (emm_device!=NULL) {
DOS_DelDevice(emm_device);
emm_device=NULL;
}
GEMMIS_seg=0;
/* Remove the emsname and callback hack */
char buf[32]= { 0 };
MEM_BlockWrite(PhysMake(ems_baseseg,0),buf,32);
RealSetVec(0x67,old67_pointer);
/* Release memory allocated to system handle */
if (emm_handles[EMM_SYSTEM_HANDLE].pages != NULL_HANDLE) {
MEM_ReleasePages(emm_handles[EMM_SYSTEM_HANDLE].mem);
}
/* Clear handle and page tables */
//TODO
if ((!ENABLE_VCPI) || (!vcpi.enabled)) return;
if (cpu.pmode && GETFLAG(VM)) {
/* Switch back to real mode if in v86-mode */
CPU_SET_CRX(0, 0);
CPU_SET_CRX(3, 0);
reg_flags&=(~(FLAG_IOPL|FLAG_VM));
CPU_LIDT(0x3ff, 0);
cpu.cpl=0;
}
}
};
static EMS* test;
void EMS_ShutDown(Section* /*sec*/) {
delete test;
}
void EMS_Init(Section* sec) {
test = new EMS(sec);
sec->AddDestroyFunction(&EMS_ShutDown,true);
}
//Initialize static members
Bit16u EMS::ems_baseseg = 0;