dosbox-wii/src/hardware/timer.cpp

466 lines
13 KiB
C++
Raw Normal View History

2009-11-10 10:06:59 +01:00
/*
* Copyright (C) 2002-2009 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* $Id: timer.cpp,v 1.49 2009-04-10 09:53:04 c2woody Exp $ */
#include <math.h>
#include "dosbox.h"
#include "inout.h"
#include "pic.h"
#include "mem.h"
#include "mixer.h"
#include "timer.h"
#include "setup.h"
static INLINE void BIN2BCD(Bit16u& val) {
Bit16u temp=val%10 + (((val/10)%10)<<4)+ (((val/100)%10)<<8) + (((val/1000)%10)<<12);
val=temp;
}
static INLINE void BCD2BIN(Bit16u& val) {
Bit16u temp= (val&0x0f) +((val>>4)&0x0f) *10 +((val>>8)&0x0f) *100 +((val>>12)&0x0f) *1000;
val=temp;
}
struct PIT_Block {
Bitu cntr;
float delay;
double start;
Bit16u read_latch;
Bit16u write_latch;
Bit8u mode;
Bit8u latch_mode;
Bit8u read_state;
Bit8u write_state;
bool bcd;
bool go_read_latch;
bool new_mode;
bool counterstatus_set;
bool counting;
bool update_count;
};
static PIT_Block pit[3];
static bool gate2;
static Bit8u latched_timerstatus;
// the timer status can not be overwritten until it is read or the timer was
// reprogrammed.
static bool latched_timerstatus_locked;
static void PIT0_Event(Bitu /*val*/) {
PIC_ActivateIRQ(0);
if (pit[0].mode != 0) {
pit[0].start += pit[0].delay;
if (GCC_UNLIKELY(pit[0].update_count)) {
pit[0].delay=(1000.0f/((float)PIT_TICK_RATE/(float)pit[0].cntr));
pit[0].update_count=false;
}
double error = pit[0].start - PIC_FullIndex();
PIC_AddEvent(PIT0_Event,(float)(pit[0].delay + error));
}
}
static bool counter_output(Bitu counter) {
PIT_Block * p=&pit[counter];
double index=PIC_FullIndex()-p->start;
switch (p->mode) {
case 0:
if (p->new_mode) return false;
if (index>p->delay) return true;
else return false;
break;
case 2:
if (p->new_mode) return true;
index=fmod(index,(double)p->delay);
return index>0;
case 3:
if (p->new_mode) return true;
index=fmod(index,(double)p->delay);
return index*2<p->delay;
case 4:
//Only low on terminal count
// if(fmod(index,(double)p->delay) == 0) return false; //Maybe take one rate tick in consideration
//Easiest solution is to report always high (Space marines uses this mode)
return true;
default:
LOG(LOG_PIT,LOG_ERROR)("Illegal Mode %d for reading output",p->mode);
return true;
}
}
static void status_latch(Bitu counter) {
// the timer status can not be overwritten until it is read or the timer was
// reprogrammed.
if(!latched_timerstatus_locked) {
PIT_Block * p=&pit[counter];
latched_timerstatus=0;
// Timer Status Word
// 0: BCD
// 1-3: Timer mode
// 4-5: read/load mode
// 6: "NULL" - this is 0 if "the counter value is in the counter" ;)
// should rarely be 1 (i.e. on exotic modes)
// 7: OUT - the logic level on the Timer output pin
if(p->bcd)latched_timerstatus|=0x1;
latched_timerstatus|=((p->mode&7)<<1);
if((p->read_state==0)||(p->read_state==3)) latched_timerstatus|=0x30;
else if(p->read_state==1) latched_timerstatus|=0x10;
else if(p->read_state==2) latched_timerstatus|=0x20;
if(counter_output(counter)) latched_timerstatus|=0x80;
if(p->new_mode) latched_timerstatus|=0x40;
// The first thing that is being read from this counter now is the
// counter status.
p->counterstatus_set=true;
latched_timerstatus_locked=true;
}
}
static void counter_latch(Bitu counter) {
/* Fill the read_latch of the selected counter with current count */
PIT_Block * p=&pit[counter];
p->go_read_latch=false;
//If gate2 is disabled don't update the read_latch
if(counter == 2 && !gate2 && p->mode !=1) return;
double index=PIC_FullIndex()-p->start;
switch (p->mode) {
case 4: /* Software Triggered Strobe */
case 0: /* Interrupt on Terminal Count */
/* Counter keeps on counting after passing terminal count */
if (index>p->delay) {
index-=p->delay;
if(p->bcd) {
index = fmod(index,(1000.0/PIT_TICK_RATE)*10000.0);
p->read_latch = (Bit16u)(9999-index*(PIT_TICK_RATE/1000.0));
} else {
index = fmod(index,(1000.0/PIT_TICK_RATE)*(double)0x10000);
p->read_latch = (Bit16u)(0xffff-index*(PIT_TICK_RATE/1000.0));
}
} else {
p->read_latch=(Bit16u)(p->cntr-index*(PIT_TICK_RATE/1000.0));
}
break;
case 1: // countdown
if(p->counting) {
if (index>p->delay) { // has timed out
p->read_latch = 0xffff; //unconfirmed
} else {
p->read_latch=(Bit16u)(p->cntr-index*(PIT_TICK_RATE/1000.0));
}
}
break;
case 2: /* Rate Generator */
index=fmod(index,(double)p->delay);
p->read_latch=(Bit16u)(p->cntr - (index/p->delay)*p->cntr);
break;
case 3: /* Square Wave Rate Generator */
index=fmod(index,(double)p->delay);
index*=2;
if (index>p->delay) index-=p->delay;
p->read_latch=(Bit16u)(p->cntr - (index/p->delay)*p->cntr);
// In mode 3 it never returns odd numbers LSB (if odd number is written 1 will be
// subtracted on first clock and then always 2)
// fixes "Corncob 3D"
p->read_latch&=0xfffe;
break;
default:
LOG(LOG_PIT,LOG_ERROR)("Illegal Mode %d for reading counter %d",p->mode,counter);
p->read_latch=0xffff;
break;
}
}
static void write_latch(Bitu port,Bitu val,Bitu /*iolen*/) {
//LOG(LOG_PIT,LOG_ERROR)("port %X write:%X state:%X",port,val,pit[port-0x40].write_state);
Bitu counter=port-0x40;
PIT_Block * p=&pit[counter];
if(p->bcd == true) BIN2BCD(p->write_latch);
switch (p->write_state) {
case 0:
p->write_latch = p->write_latch | ((val & 0xff) << 8);
p->write_state = 3;
break;
case 3:
p->write_latch = val & 0xff;
p->write_state = 0;
break;
case 1:
p->write_latch = val & 0xff;
break;
case 2:
p->write_latch = (val & 0xff) << 8;
break;
}
if (p->bcd==true) BCD2BIN(p->write_latch);
if (p->write_state != 0) {
if (p->write_latch == 0) {
if (p->bcd == false) p->cntr = 0x10000;
else p->cntr=9999;
} else p->cntr = p->write_latch;
if ((!p->new_mode) && (p->mode == 2) && (counter == 0)) {
// In mode 2 writing another value has no direct effect on the count
// until the old one has run out. This might apply to other modes too.
// This is not fixed for PIT2 yet!!
p->update_count=true;
return;
}
p->start=PIC_FullIndex();
p->delay=(1000.0f/((float)PIT_TICK_RATE/(float)p->cntr));
switch (counter) {
case 0x00: /* Timer hooked to IRQ 0 */
if (p->new_mode || p->mode == 0 ) {
if(p->mode==0) PIC_RemoveEvents(PIT0_Event); // DoWhackaDo demo
PIC_AddEvent(PIT0_Event,p->delay);
} else LOG(LOG_PIT,LOG_NORMAL)("PIT 0 Timer set without new control word");
LOG(LOG_PIT,LOG_NORMAL)("PIT 0 Timer at %.4f Hz mode %d",1000.0/p->delay,p->mode);
break;
case 0x02: /* Timer hooked to PC-Speaker */
// LOG(LOG_PIT,"PIT 2 Timer at %.3g Hz mode %d",PIT_TICK_RATE/(double)p->cntr,p->mode);
PCSPEAKER_SetCounter(p->cntr,p->mode);
break;
default:
LOG(LOG_PIT,LOG_ERROR)("PIT:Illegal timer selected for writing");
}
p->new_mode=false;
}
}
static Bitu read_latch(Bitu port,Bitu /*iolen*/) {
//LOG(LOG_PIT,LOG_ERROR)("port read %X",port);
Bit32u counter=port-0x40;
Bit8u ret=0;
if(GCC_UNLIKELY(pit[counter].counterstatus_set)){
pit[counter].counterstatus_set = false;
latched_timerstatus_locked = false;
ret = latched_timerstatus;
} else {
if (pit[counter].go_read_latch == true)
counter_latch(counter);
if( pit[counter].bcd == true) BIN2BCD(pit[counter].read_latch);
switch (pit[counter].read_state) {
case 0: /* read MSB & return to state 3 */
ret=(pit[counter].read_latch >> 8) & 0xff;
pit[counter].read_state = 3;
pit[counter].go_read_latch = true;
break;
case 3: /* read LSB followed by MSB */
ret = pit[counter].read_latch & 0xff;
if (pit[counter].mode & 0x80) pit[counter].mode &= 7;
else pit[counter].read_state = 0;
break;
case 1: /* read LSB */
ret = pit[counter].read_latch & 0xff;
pit[counter].go_read_latch = true;
break;
case 2: /* read MSB */
ret = (pit[counter].read_latch >> 8) & 0xff;
pit[counter].go_read_latch = true;
break;
default:
E_Exit("Timer.cpp: error in readlatch");
break;
}
if( pit[counter].bcd == true) BCD2BIN(pit[counter].read_latch);
}
return ret;
}
static void write_p43(Bitu /*port*/,Bitu val,Bitu /*iolen*/) {
//LOG(LOG_PIT,LOG_ERROR)("port 43 %X",val);
Bitu latch=(val >> 6) & 0x03;
switch (latch) {
case 0:
case 1:
case 2:
if ((val & 0x30) == 0) {
/* Counter latch command */
counter_latch(latch);
} else {
pit[latch].bcd = (val&1)>0;
if (val & 1) {
if(pit[latch].cntr>=9999) pit[latch].cntr=9999;
}
// Timer is being reprogrammed, unlock the status
if(pit[latch].counterstatus_set) {
pit[latch].counterstatus_set=false;
latched_timerstatus_locked=false;
}
pit[latch].update_count = false;
pit[latch].counting = false;
pit[latch].read_state = (val >> 4) & 0x03;
pit[latch].write_state = (val >> 4) & 0x03;
Bit8u mode = (val >> 1) & 0x07;
if (mode > 5)
mode -= 4; //6,7 become 2 and 3
/* Don't set it directly so counter_output uses the old mode */
/* That's theory. It breaks panic. So set it here again */
if(!pit[latch].mode) pit[latch].mode = mode;
/* If the line goes from low to up => generate irq.
* ( BUT needs to stay up until acknowlegded by the cpu!!! therefore: )
* If the line goes to low => disable irq.
* Mode 0 starts with a low line. (so always disable irq)
* Mode 2,3 start with a high line.
* counter_output tells if the current counter is high or low
* So actually a mode 2 timer enables and disables irq al the time. (not handled) */
if (latch == 0) {
PIC_RemoveEvents(PIT0_Event);
if (!counter_output(0) && mode) {
PIC_ActivateIRQ(0);
//Don't raise instantaniously. (Origamo)
if(CPU_Cycles < 25) CPU_Cycles = 25;
}
if(!mode)
PIC_DeActivateIRQ(0);
}
pit[latch].new_mode = true;
pit[latch].mode = mode; //Set the correct mode (here)
}
break;
case 3:
if ((val & 0x20)==0) { /* Latch multiple pit counters */
if (val & 0x02) counter_latch(0);
if (val & 0x04) counter_latch(1);
if (val & 0x08) counter_latch(2);
}
// status and values can be latched simultaneously
if ((val & 0x10)==0) { /* Latch status words */
// but only 1 status can be latched simultaneously
if (val & 0x02) status_latch(0);
else if (val & 0x04) status_latch(1);
else if (val & 0x08) status_latch(2);
}
break;
}
}
void TIMER_SetGate2(bool in) {
//No changes if gate doesn't change
if(gate2 == in) return;
Bit8u & mode=pit[2].mode;
switch(mode) {
case 0:
if(in) pit[2].start = PIC_FullIndex();
else {
//Fill readlatch and store it.
counter_latch(2);
pit[2].cntr = pit[2].read_latch;
}
break;
case 1:
// gate 1 on: reload counter; off: nothing
if(in) {
pit[2].counting = true;
pit[2].start = PIC_FullIndex();
}
break;
case 2:
case 3:
//If gate is enabled restart counting. If disable store the current read_latch
if(in) pit[2].start = PIC_FullIndex();
else counter_latch(2);
break;
case 4:
case 5:
LOG(LOG_MISC,LOG_WARN)("unsupported gate 2 mode %x",mode);
break;
}
gate2 = in; //Set it here so the counter_latch above works
}
class TIMER:public Module_base{
private:
IO_ReadHandleObject ReadHandler[4];
IO_WriteHandleObject WriteHandler[4];
public:
TIMER(Section* configuration):Module_base(configuration){
WriteHandler[0].Install(0x40,write_latch,IO_MB);
// WriteHandler[1].Install(0x41,write_latch,IO_MB);
WriteHandler[2].Install(0x42,write_latch,IO_MB);
WriteHandler[3].Install(0x43,write_p43,IO_MB);
ReadHandler[0].Install(0x40,read_latch,IO_MB);
ReadHandler[1].Install(0x41,read_latch,IO_MB);
ReadHandler[2].Install(0x42,read_latch,IO_MB);
/* Setup Timer 0 */
pit[0].cntr=0x10000;
pit[0].write_state = 3;
pit[0].read_state = 3;
pit[0].read_latch=0;
pit[0].write_latch=0;
pit[0].mode=3;
pit[0].bcd = false;
pit[0].go_read_latch = true;
pit[0].counterstatus_set = false;
pit[0].update_count = false;
pit[1].bcd = false;
pit[1].write_state = 1;
pit[1].read_state = 1;
pit[1].go_read_latch = true;
pit[1].cntr = 18;
pit[1].mode = 2;
pit[1].write_state = 3;
pit[1].counterstatus_set = false;
pit[2].read_latch=1320; /* MadTv1 */
pit[2].write_state = 3; /* Chuck Yeager */
pit[2].read_state = 3;
pit[2].mode=3;
pit[2].bcd=false;
pit[2].cntr=1320;
pit[2].go_read_latch=true;
pit[2].counterstatus_set = false;
pit[2].counting = false;
pit[0].delay=(1000.0f/((float)PIT_TICK_RATE/(float)pit[0].cntr));
pit[1].delay=(1000.0f/((float)PIT_TICK_RATE/(float)pit[1].cntr));
pit[2].delay=(1000.0f/((float)PIT_TICK_RATE/(float)pit[2].cntr));
latched_timerstatus_locked=false;
gate2 = false;
PIC_AddEvent(PIT0_Event,pit[0].delay);
}
~TIMER(){
PIC_RemoveEvents(PIT0_Event);
}
};
static TIMER* test;
void TIMER_Destroy(Section*){
delete test;
}
void TIMER_Init(Section* sec) {
test = new TIMER(sec);
sec->AddDestroyFunction(&TIMER_Destroy);
}