/* * Copyright (C) 2002-2009 The DOSBox Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* $Id: risc_armv4le-thumb.h,v 1.4 2009/05/16 21:52:47 c2woody Exp $ */ /* ARMv4 (little endian) backend by M-HT (thumb version) */ // temporary "lo" registers #define templo1 HOST_v3 #define templo2 HOST_v4 // temporary "lo" register - value must be preserved when using it #define templosav HOST_a3 // temporary "hi" register #define temphi1 HOST_ip // register that holds function return values #define FC_RETOP HOST_v2 // register used for address calculations, #define FC_ADDR HOST_v1 // has to be saved across calls, see DRC_PROTECT_ADDR_REG // register that holds the first parameter #define FC_OP1 HOST_a1 // register that holds the second parameter #define FC_OP2 HOST_a2 // register that holds byte-accessible temporary values #define FC_TMP_BA1 HOST_a1 // register that holds byte-accessible temporary values #define FC_TMP_BA2 HOST_a2 // temporary register for LEA #define TEMP_REG_DRC HOST_a4 #ifdef DRC_USE_REGS_ADDR // used to hold the address of "cpu_regs" - preferably filled in function gen_run_code #define FC_REGS_ADDR HOST_v7 #endif #ifdef DRC_USE_SEGS_ADDR // used to hold the address of "Segs" - preferably filled in function gen_run_code #define FC_SEGS_ADDR HOST_v8 #endif // instruction encodings // move // mov dst, #imm @ 0 <= imm <= 255 #define MOV_IMM(dst, imm) (0x2000 + ((dst) << 8) + (imm) ) // mov dst, src #define MOV_REG(dst, src) ADD_IMM3(dst, src, 0) // mov dst, src #define MOV_LO_HI(dst, src) (0x4640 + (dst) + (((src) - HOST_r8) << 3) ) // mov dst, src #define MOV_HI_LO(dst, src) (0x4680 + ((dst) - HOST_r8) + ((src) << 3) ) // arithmetic // add dst, src, #imm @ 0 <= imm <= 7 #define ADD_IMM3(dst, src, imm) (0x1c00 + (dst) + ((src) << 3) + ((imm) << 6) ) // add dst, #imm @ 0 <= imm <= 255 #define ADD_IMM8(dst, imm) (0x3000 + ((dst) << 8) + (imm) ) // add dst, src1, src2 #define ADD_REG(dst, src1, src2) (0x1800 + (dst) + ((src1) << 3) + ((src2) << 6) ) // add dst, src #define ADD_LO_HI(dst, src) (0x4440 + (dst) + (((src) - HOST_r8) << 3) ) // add dst, pc, #imm @ 0 <= imm < 1024 & imm mod 4 = 0 #define ADD_LO_PC_IMM(dst, imm) (0xa000 + ((dst) << 8) + ((imm) >> 2) ) // sub dst, src1, src2 #define SUB_REG(dst, src1, src2) (0x1a00 + (dst) + ((src1) << 3) + ((src2) << 6) ) // sub dst, src, #imm @ 0 <= imm <= 7 #define SUB_IMM3(dst, src, imm) (0x1e00 + (dst) + ((src) << 3) + ((imm) << 6) ) // sub dst, #imm @ 0 <= imm <= 255 #define SUB_IMM8(dst, imm) (0x3800 + ((dst) << 8) + (imm) ) // neg dst, src #define NEG(dst, src) (0x4240 + (dst) + ((src) << 3) ) // cmp dst, #imm @ 0 <= imm <= 255 #define CMP_IMM(dst, imm) (0x2800 + ((dst) << 8) + (imm) ) // nop #define NOP (0x46c0) // logical // and dst, src #define AND(dst, src) (0x4000 + (dst) + ((src) << 3) ) // eor dst, src #define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) ) // orr dst, src #define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) ) // shift/rotate // lsl dst, src, #imm #define LSL_IMM(dst, src, imm) (0x0000 + (dst) + ((src) << 3) + ((imm) << 6) ) // lsl dst, reg #define LSL_REG(dst, reg) (0x4080 + (dst) + ((reg) << 3) ) // lsr dst, src, #imm #define LSR_IMM(dst, src, imm) (0x0800 + (dst) + ((src) << 3) + ((imm) << 6) ) // lsr dst, reg #define LSR_REG(dst, reg) (0x40c0 + (dst) + ((reg) << 3) ) // asr dst, src, #imm #define ASR_IMM(dst, src, imm) (0x1000 + (dst) + ((src) << 3) + ((imm) << 6) ) // asr dst, reg #define ASR_REG(dst, reg) (0x4100 + (dst) + ((reg) << 3) ) // ror dst, reg #define ROR_REG(dst, reg) (0x41c0 + (dst) + ((reg) << 3) ) // load // ldr reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0 #define LDR_IMM(reg, addr, imm) (0x6800 + (reg) + ((addr) << 3) + ((imm) << 4) ) // ldrh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0 #define LDRH_IMM(reg, addr, imm) (0x8800 + (reg) + ((addr) << 3) + ((imm) << 5) ) // ldrb reg, [addr, #imm] @ 0 <= imm < 32 #define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) ) // ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0 #define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) ) // store // str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0 #define STR_IMM(reg, addr, imm) (0x6000 + (reg) + ((addr) << 3) + ((imm) << 4) ) // strh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0 #define STRH_IMM(reg, addr, imm) (0x8000 + (reg) + ((addr) << 3) + ((imm) << 5) ) // strb reg, [addr, #imm] @ 0 <= imm < 32 #define STRB_IMM(reg, addr, imm) (0x7000 + (reg) + ((addr) << 3) + ((imm) << 6) ) // branch // beq pc+imm @ 0 <= imm < 256 & imm mod 2 = 0 #define BEQ_FWD(imm) (0xd000 + ((imm) >> 1) ) // bne pc+imm @ 0 <= imm < 256 & imm mod 2 = 0 #define BNE_FWD(imm) (0xd100 + ((imm) >> 1) ) // bgt pc+imm @ 0 <= imm < 256 & imm mod 2 = 0 #define BGT_FWD(imm) (0xdc00 + ((imm) >> 1) ) // b pc+imm @ 0 <= imm < 2048 & imm mod 2 = 0 #define B_FWD(imm) (0xe000 + ((imm) >> 1) ) // bx reg #define BX(reg) (0x4700 + ((reg) << 3) ) // move a full register from reg_src to reg_dst static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) { if(reg_src == reg_dst) return; cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src } // move a 32bit constant value into dest_reg static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) { if ((imm & 0xffffff00) == 0) { cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm) } else if ((imm & 0xffff00ff) == 0) { cache_addw( MOV_IMM(dest_reg, imm >> 8) ); // mov dest_reg, #(imm >> 8) cache_addw( LSL_IMM(dest_reg, dest_reg, 8) ); // lsl dest_reg, dest_reg, #8 } else if ((imm & 0xff00ffff) == 0) { cache_addw( MOV_IMM(dest_reg, imm >> 16) ); // mov dest_reg, #(imm >> 16) cache_addw( LSL_IMM(dest_reg, dest_reg, 16) ); // lsl dest_reg, dest_reg, #16 } else if ((imm & 0x00ffffff) == 0) { cache_addw( MOV_IMM(dest_reg, imm >> 24) ); // mov dest_reg, #(imm >> 24) cache_addw( LSL_IMM(dest_reg, dest_reg, 24) ); // lsl dest_reg, dest_reg, #24 } else { Bit32u diff; diff = imm - ((Bit32u)cache.pos+4); if ((diff < 1024) && ((imm & 0x03) == 0)) { if (((Bit32u)cache.pos & 0x03) == 0) { cache_addw( ADD_LO_PC_IMM(dest_reg, diff) ); // add dest_reg, pc, #(diff >> 2) } else { cache_addw( NOP ); // nop cache_addw( ADD_LO_PC_IMM(dest_reg, diff - 2) ); // add dest_reg, pc, #((diff - 2) >> 2) } } else { if (((Bit32u)cache.pos & 0x03) == 0) { cache_addw( LDR_PC_IMM(dest_reg, 0) ); // ldr dest_reg, [pc, #0] cache_addw( B_FWD(2) ); // b next_code (pc+2) cache_addd(imm); // .int imm // next_code: } else { cache_addw( LDR_PC_IMM(dest_reg, 4) ); // ldr dest_reg, [pc, #4] cache_addw( B_FWD(4) ); // b next_code (pc+4) cache_addw( NOP ); // nop cache_addd(imm); // .int imm // next_code: } } } } // helper function for gen_mov_word_to_reg static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) { // alignment.... if (dword) { if ((Bit32u)data & 3) { if ( ((Bit32u)data & 3) == 2 ) { cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg] cache_addw( LDRH_IMM(templo1, data_reg, 2) ); // ldrh templo1, [data_reg, #2] cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16 cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1 } else { cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg] cache_addw( ADD_IMM3(templo1, data_reg, 1) ); // add templo1, data_reg, #1 cache_addw( LDRH_IMM(templo1, templo1, 0) ); // ldrh templo1, [templo1] cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8 cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1 cache_addw( LDRB_IMM(templo1, data_reg, 3) ); // ldrb templo1, [data_reg, #3] cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24 cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1 } } else { cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg] } } else { if ((Bit32u)data & 1) { cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg] cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1] cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8 cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1 } else { cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg] } } } // move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg // 16bit moves may destroy the upper 16bit of the destination register static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) { gen_mov_dword_to_reg_imm(templo2, (Bit32u)data); gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2); } // move a 16bit constant value into dest_reg // the upper 16bit of the destination register may be destroyed static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) { gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm); } // helper function for gen_mov_word_from_reg static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) { // alignment.... if (dword) { if ((Bit32u)dest & 3) { if ( ((Bit32u)dest & 3) == 2 ) { cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg] cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16 cache_addw( STRH_IMM(templo1, data_reg, 2) ); // strh templo1, [data_reg, #2] } else { cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg] cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8 cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1] cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16 cache_addw( STRB_IMM(templo1, data_reg, 2) ); // strb templo1, [data_reg, #2] cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24 cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3] } } else { cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg] } } else { if ((Bit32u)dest & 1) { cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg] cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8 cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1] } else { cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg] } } } // move 32bit (dword==true) or 16bit (dword==false) of a register into memory static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) { gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest); gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2); } // move an 8bit value from memory into dest_reg // the upper 24bit of the destination register can be destroyed // this function does not use FC_OP1/FC_OP2 as dest_reg as these // registers might not be directly byte-accessible on some architectures static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) { gen_mov_dword_to_reg_imm(templo1, (Bit32u)data); cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1] } // move an 8bit value from memory into dest_reg // the upper 24bit of the destination register can be destroyed // this function can use FC_OP1/FC_OP2 as dest_reg which are // not directly byte-accessible on some architectures static void INLINE gen_mov_byte_to_reg_low_canuseword(HostReg dest_reg,void* data) { gen_mov_byte_to_reg_low(dest_reg, data); } // move an 8bit constant value into dest_reg // the upper 24bit of the destination register can be destroyed // this function does not use FC_OP1/FC_OP2 as dest_reg as these // registers might not be directly byte-accessible on some architectures static void gen_mov_byte_to_reg_low_imm(HostReg dest_reg,Bit8u imm) { cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm) } // move an 8bit constant value into dest_reg // the upper 24bit of the destination register can be destroyed // this function can use FC_OP1/FC_OP2 as dest_reg which are // not directly byte-accessible on some architectures static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u imm) { gen_mov_byte_to_reg_low_imm(dest_reg, imm); } // move the lowest 8bit of a register into memory static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) { gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest); cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1] } // convert an 8bit word to a 32bit dword // the register is zero-extended (sign==false) or sign-extended (sign==true) static void gen_extend_byte(bool sign,HostReg reg) { cache_addw( LSL_IMM(reg, reg, 24) ); // lsl reg, reg, #24 if (sign) { cache_addw( ASR_IMM(reg, reg, 24) ); // asr reg, reg, #24 } else { cache_addw( LSR_IMM(reg, reg, 24) ); // lsr reg, reg, #24 } } // convert a 16bit word to a 32bit dword // the register is zero-extended (sign==false) or sign-extended (sign==true) static void gen_extend_word(bool sign,HostReg reg) { cache_addw( LSL_IMM(reg, reg, 16) ); // lsl reg, reg, #16 if (sign) { cache_addw( ASR_IMM(reg, reg, 16) ); // asr reg, reg, #16 } else { cache_addw( LSR_IMM(reg, reg, 16) ); // lsr reg, reg, #16 } } // add a 32bit value from memory to a full register static void gen_add(HostReg reg,void* op) { cache_addw( MOV_HI_LO(temphi1, reg) ); // mov temphi1, reg gen_mov_word_to_reg(reg, op, 1); cache_addw( ADD_LO_HI(reg, temphi1) ); // add reg, temphi1 } // add a 32bit constant value to a full register static void gen_add_imm(HostReg reg,Bit32u imm) { if(!imm) return; gen_mov_dword_to_reg_imm(templo1, imm); cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1 } // and a 32bit constant value with a full register static void gen_and_imm(HostReg reg,Bit32u imm) { if(imm == 0xffffffff) return; gen_mov_dword_to_reg_imm(templo1, imm); cache_addw( AND(reg, templo1) ); // and reg, templo1 } // move a 32bit constant value into memory static void gen_mov_direct_dword(void* dest,Bit32u imm) { cache_addw( MOV_HI_LO(temphi1, templosav) ); // mov temphi1, templosav gen_mov_dword_to_reg_imm(templosav, imm); gen_mov_word_from_reg(templosav, dest, 1); cache_addw( MOV_LO_HI(templosav, temphi1) ); // mov templosav, temphi1 } // move an address into memory static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) { gen_mov_direct_dword(dest,(Bit32u)imm); } // add an 8bit constant value to a dword memory value static void gen_add_direct_byte(void* dest,Bit8s imm) { if(!imm) return; cache_addw( MOV_HI_LO(temphi1, templosav) ); // mov temphi1, templosav gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest); gen_mov_word_to_reg_helper(templosav, dest, 1, templo2); if (imm >= 0) { cache_addw( ADD_IMM8(templosav, (Bit32s)imm) ); // add templosav, #(imm) } else { cache_addw( SUB_IMM8(templosav, -((Bit32s)imm)) ); // sub templosav, #(-imm) } gen_mov_word_from_reg_helper(templosav, dest, 1, templo2); cache_addw( MOV_LO_HI(templosav, temphi1) ); // mov templosav, temphi1 } // add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) { if(!imm) return; if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) { gen_add_direct_byte(dest,(Bit8s)imm); return; } cache_addw( MOV_HI_LO(temphi1, templosav) ); // mov temphi1, templosav gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest); gen_mov_word_to_reg_helper(templosav, dest, dword, templo2); if (dword) { gen_mov_dword_to_reg_imm(templo1, imm); } else { gen_mov_word_to_reg_imm(templo1, (Bit16u)imm); } cache_addw( ADD_REG(templosav, templosav, templo1) ); // add templosav, templosav, templo1 gen_mov_word_from_reg_helper(templosav, dest, dword, templo2); cache_addw( MOV_LO_HI(templosav, temphi1) ); // mov templosav, temphi1 } // subtract an 8bit constant value from a dword memory value static void gen_sub_direct_byte(void* dest,Bit8s imm) { if(!imm) return; cache_addw( MOV_HI_LO(temphi1, templosav) ); // mov temphi1, templosav gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest); gen_mov_word_to_reg_helper(templosav, dest, 1, templo2); if (imm >= 0) { cache_addw( SUB_IMM8(templosav, (Bit32s)imm) ); // sub templosav, #(imm) } else { cache_addw( ADD_IMM8(templosav, -((Bit32s)imm)) ); // add templosav, #(-imm) } gen_mov_word_from_reg_helper(templosav, dest, 1, templo2); cache_addw( MOV_LO_HI(templosav, temphi1) ); // mov templosav, temphi1 } // subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) { if(!imm) return; if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) { gen_sub_direct_byte(dest,(Bit8s)imm); return; } cache_addw( MOV_HI_LO(temphi1, templosav) ); // mov temphi1, templosav gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest); gen_mov_word_to_reg_helper(templosav, dest, dword, templo2); if (dword) { gen_mov_dword_to_reg_imm(templo1, imm); } else { gen_mov_word_to_reg_imm(templo1, (Bit16u)imm); } cache_addw( SUB_REG(templosav, templosav, templo1) ); // sub templosav, templosav, templo1 gen_mov_word_from_reg_helper(templosav, dest, dword, templo2); cache_addw( MOV_LO_HI(templosav, temphi1) ); // mov templosav, temphi1 } // effective address calculation, destination is dest_reg // scale_reg is scaled by scale (scale_reg*(2^scale)) and // added to dest_reg, then the immediate value is added static INLINE void gen_lea(HostReg dest_reg,HostReg scale_reg,Bitu scale,Bits imm) { if (scale) { cache_addw( LSL_IMM(templo1, scale_reg, scale) ); // lsl templo1, scale_reg, #(scale) cache_addw( ADD_REG(dest_reg, dest_reg, templo1) ); // add dest_reg, dest_reg, templo1 } else { cache_addw( ADD_REG(dest_reg, dest_reg, scale_reg) ); // add dest_reg, dest_reg, scale_reg } gen_add_imm(dest_reg, imm); } // effective address calculation, destination is dest_reg // dest_reg is scaled by scale (dest_reg*(2^scale)), // then the immediate value is added static INLINE void gen_lea(HostReg dest_reg,Bitu scale,Bits imm) { if (scale) { cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #(scale) } gen_add_imm(dest_reg, imm); } // generate a call to a parameterless function static void INLINE gen_call_function_raw(void * func) { if (((Bit32u)cache.pos & 0x03) == 0) { cache_addw( LDR_PC_IMM(templo1, 4) ); // ldr templo1, [pc, #4] cache_addw( ADD_LO_PC_IMM(templo2, 8) ); // adr templo2, after_call (add templo2, pc, #8) cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2 cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state } else { cache_addw( LDR_PC_IMM(templo1, 8) ); // ldr templo1, [pc, #8] cache_addw( ADD_LO_PC_IMM(templo2, 8) ); // adr templo2, after_call (add templo2, pc, #8) cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2 cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state cache_addw( NOP ); // nop } cache_addd((Bit32u)func); // .int func // after_call: // switch from arm to thumb state cache_addd(0xe2800000 + (templo1 << 12) + (HOST_pc << 16) + (1)); // add templo1, pc, #1 cache_addd(0xe12fff10 + (templo1)); // bx templo1 // thumb state from now on cache_addw( MOV_REG(FC_RETOP, HOST_a1) ); // mov FC_RETOP, a1 } // generate a call to a function with paramcount parameters // note: the parameters are loaded in the architecture specific way // using the gen_load_param_ functions below static Bit32u INLINE gen_call_function_setup(void * func,Bitu paramcount,bool fastcall=false) { Bit32u proc_addr = (Bit32u)cache.pos; gen_call_function_raw(func); return proc_addr; // if proc_addr is on word boundary ((proc_addr & 0x03) == 0) // then length of generated code is 22 bytes // otherwise length of generated code is 24 bytes } #if (1) // max of 4 parameters in a1-a4 // load an immediate value as param'th function parameter static void INLINE gen_load_param_imm(Bitu imm,Bitu param) { gen_mov_dword_to_reg_imm(param, imm); } // load an address as param'th function parameter static void INLINE gen_load_param_addr(Bitu addr,Bitu param) { gen_mov_dword_to_reg_imm(param, addr); } // load a host-register as param'th function parameter static void INLINE gen_load_param_reg(Bitu reg,Bitu param) { gen_mov_regs(param, reg); } // load a value from memory as param'th function parameter static void INLINE gen_load_param_mem(Bitu mem,Bitu param) { gen_mov_word_to_reg(param, (void *)mem, 1); } #else other arm abis #endif // jump to an address pointed at by ptr, offset is in imm static void gen_jmp_ptr(void * ptr,Bits imm=0) { cache_addw( MOV_HI_LO(temphi1, templosav) ); // mov temphi1, templosav gen_mov_word_to_reg(templosav, ptr, 1); if (imm) { gen_mov_dword_to_reg_imm(templo2, imm); cache_addw( ADD_REG(templosav, templosav, templo2) ); // add templosav, templosav, templo2 } #if (1) // (*ptr) should be word aligned if ((imm & 0x03) == 0) { cache_addw( LDR_IMM(templo2, templosav, 0) ); // ldr templo2, [templosav] } else #endif { cache_addw( LDRB_IMM(templo2, templosav, 0) ); // ldrb templo2, [templosav] cache_addw( LDRB_IMM(templo1, templosav, 1) ); // ldrb templo1, [templosav, #1] cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8 cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1 cache_addw( LDRB_IMM(templo1, templosav, 2) ); // ldrb templo1, [templosav, #2] cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16 cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1 cache_addw( LDRB_IMM(templo1, templosav, 3) ); // ldrb templo1, [templosav, #3] cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24 cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1 } // increase jmp address to keep thumb state cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1 cache_addw( MOV_LO_HI(templosav, temphi1) ); // mov templosav, temphi1 cache_addw( BX(templo2) ); // bx templo2 } // short conditional jump (+-127 bytes) if register is zero // the destination is set by gen_fill_branch() later static Bit32u gen_create_branch_on_zero(HostReg reg,bool dword) { if (dword) { cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0 } else { cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16 } cache_addw( BEQ_FWD(0) ); // beq j return ((Bit32u)cache.pos-2); } // short conditional jump (+-127 bytes) if register is nonzero // the destination is set by gen_fill_branch() later static Bit32u gen_create_branch_on_nonzero(HostReg reg,bool dword) { if (dword) { cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0 } else { cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16 } cache_addw( BNE_FWD(0) ); // bne j return ((Bit32u)cache.pos-2); } // calculate relative offset and fill it into the location pointed to by data static void INLINE gen_fill_branch(DRC_PTR_SIZE_IM data) { #if C_DEBUG Bits len=(Bit32u)cache.pos-(data+4); if (len<0) len=-len; if (len>252) LOG_MSG("Big jump %d",len); #endif *(Bit8u*)data=(Bit8u)( ((Bit32u)cache.pos-(data+4)) >> 1 ); } // conditional jump if register is nonzero // for isdword==true the 32bit of the register are tested // for isdword==false the lowest 8bit of the register are tested static Bit32u gen_create_branch_long_nonzero(HostReg reg,bool isdword) { if (isdword) { cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0 } else { cache_addw( LSL_IMM(templo2, reg, 24) ); // lsl templo2, reg, #24 } if (((Bit32u)cache.pos & 0x03) == 0) { cache_addw( BEQ_FWD(8) ); // beq nobranch (pc+8) cache_addw( LDR_PC_IMM(templo1, 4) ); // ldr templo1, [pc, #4] cache_addw( BX(templo1) ); // bx templo1 cache_addw( NOP ); // nop } else { cache_addw( BEQ_FWD(6) ); // beq nobranch (pc+6) cache_addw( LDR_PC_IMM(templo1, 0) ); // ldr templo1, [pc, #0] cache_addw( BX(templo1) ); // bx templo1 } cache_addd(0); // fill j // nobranch: return ((Bit32u)cache.pos-4); } // compare 32bit-register against zero and jump if value less/equal than zero static Bit32u gen_create_branch_long_leqzero(HostReg reg) { cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0 if (((Bit32u)cache.pos & 0x03) == 0) { cache_addw( BGT_FWD(8) ); // bgt nobranch (pc+8) cache_addw( LDR_PC_IMM(templo1, 4) ); // ldr templo1, [pc, #4] cache_addw( BX(templo1) ); // bx templo1 cache_addw( NOP ); // nop } else { cache_addw( BGT_FWD(6) ); // bgt nobranch (pc+6) cache_addw( LDR_PC_IMM(templo1, 0) ); // ldr templo1, [pc, #0] cache_addw( BX(templo1) ); // bx templo1 } cache_addd(0); // fill j // nobranch: return ((Bit32u)cache.pos-4); } // calculate long relative offset and fill it into the location pointed to by data static void INLINE gen_fill_branch_long(Bit32u data) { // this is an absolute branch *(Bit32u*)data=((Bit32u)cache.pos) + 1; // add 1 to keep processor in thumb state } static void gen_run_code(void) { // switch from arm to thumb state cache_addd(0xe2800000 + (HOST_r3 << 12) + (HOST_pc << 16) + (1)); // add r3, pc, #1 cache_addd(0xe12fff10 + (HOST_r3)); // bx r3 // thumb state from now on cache_addw(0xb500); // push {lr} cache_addw( MOV_LO_HI(HOST_r3, FC_SEGS_ADDR) ); // mov r3, FC_SEGS_ADDR cache_addw( MOV_LO_HI(HOST_r2, FC_REGS_ADDR) ); // mov r2, FC_REGS_ADDR cache_addw(0xb4fc); // push {r2,r3,v1-v4} // adr: 16 cache_addw( LDR_PC_IMM(HOST_r3, 64 - (16 + 4)) ); // ldr r3, [pc, #(&Segs)] // adr: 18 cache_addw( LDR_PC_IMM(HOST_r2, 68 - (18 + 2)) ); // ldr r2, [pc, #(&cpu_regs)] cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3 cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2 // align 4 cache_addw( ADD_LO_PC_IMM(HOST_r3, 8) ); // add r3, pc, #8 cache_addw( ADD_IMM8(HOST_r0, 1) ); // add r0, #1 cache_addw( ADD_IMM8(HOST_r3, 1) ); // add r3, #1 cache_addw(0xb408); // push {r3} cache_addw( BX(HOST_r0) ); // bx r0 cache_addw( NOP ); // nop // align 4 cache_addw(0xbcfc); // pop {r2,r3,v1-v4} cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3 cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2 cache_addw(0xbc08); // pop {r3} cache_addw( BX(HOST_r3) ); // bx r3 // fill up to 64 bytes cache_addw( NOP ); // nop cache_addd( NOP | (NOP << 16) ); // nop, nop cache_addd( NOP | (NOP << 16) ); // nop, nop cache_addd( NOP | (NOP << 16) ); // nop, nop cache_addd( NOP | (NOP << 16) ); // nop, nop // adr: 64 cache_addd((Bit32u)&Segs); // address of "Segs" // adr: 68 cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs" } // return from a function static void gen_return_function(void) { cache_addw( MOV_REG(HOST_a1, FC_RETOP) ); // mov a1, FC_RETOP cache_addw(0xbc08); // pop {r3} cache_addw( BX(HOST_r3) ); // bx r3 } #ifdef DRC_FLAGS_INVALIDATION // called when a call to a function can be replaced by a // call to a simpler function static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) { #ifdef DRC_FLAGS_INVALIDATION_DCODE if (((Bit32u)pos & 0x03) == 0) { // try to avoid function calls but rather directly fill in code switch (flags_type) { case t_ADDb: case t_ADDw: case t_ADDd: *(Bit16u*)pos=ADD_REG(FC_RETOP, HOST_a1, HOST_a2); // add FC_RETOP, a1, a2 *(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16) break; case t_ORb: case t_ORw: case t_ORd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=ORR(FC_RETOP, HOST_a2); // orr FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_ANDb: case t_ANDw: case t_ANDd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=AND(FC_RETOP, HOST_a2); // and FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_SUBb: case t_SUBw: case t_SUBd: *(Bit16u*)pos=SUB_REG(FC_RETOP, HOST_a1, HOST_a2); // sub FC_RETOP, a1, a2 *(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16) break; case t_XORb: case t_XORw: case t_XORd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=EOR(FC_RETOP, HOST_a2); // eor FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_CMPb: case t_CMPw: case t_CMPd: case t_TESTb: case t_TESTw: case t_TESTd: *(Bit16u*)pos=B_FWD(18); // b after_call (pc+18) break; case t_INCb: case t_INCw: case t_INCd: *(Bit16u*)pos=ADD_IMM3(FC_RETOP, HOST_a1, 1); // add FC_RETOP, a1, #1 *(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16) break; case t_DECb: case t_DECw: case t_DECd: *(Bit16u*)pos=SUB_IMM3(FC_RETOP, HOST_a1, 1); // sub FC_RETOP, a1, #1 *(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16) break; case t_SHLb: case t_SHLw: case t_SHLd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=LSL_REG(FC_RETOP, HOST_a2); // lsl FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_SHRb: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 24); // lsl FC_RETOP, a1, #24 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, FC_RETOP, 24); // lsr FC_RETOP, FC_RETOP, #24 *(Bit16u*)(pos+4)=LSR_REG(FC_RETOP, HOST_a2); // lsr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12) break; case t_SHRw: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 16); // lsl FC_RETOP, a1, #16 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, FC_RETOP, 16); // lsr FC_RETOP, FC_RETOP, #16 *(Bit16u*)(pos+4)=LSR_REG(FC_RETOP, HOST_a2); // lsr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12) break; case t_SHRd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=LSR_REG(FC_RETOP, HOST_a2); // lsr FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_SARb: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 24); // lsl FC_RETOP, a1, #24 *(Bit16u*)(pos+2)=ASR_IMM(FC_RETOP, FC_RETOP, 24); // asr FC_RETOP, FC_RETOP, #24 *(Bit16u*)(pos+4)=ASR_REG(FC_RETOP, HOST_a2); // asr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12) break; case t_SARw: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 16); // lsl FC_RETOP, a1, #16 *(Bit16u*)(pos+2)=ASR_IMM(FC_RETOP, FC_RETOP, 16); // asr FC_RETOP, FC_RETOP, #16 *(Bit16u*)(pos+4)=ASR_REG(FC_RETOP, HOST_a2); // asr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(12); // b after_call (pc+12) break; case t_SARd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=ASR_REG(FC_RETOP, HOST_a2); // asr FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_RORb: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, HOST_a1, 8); // lsr FC_RETOP, a1, #8 *(Bit16u*)(pos+4)=ORR(HOST_a1, FC_RETOP); // orr a1, FC_RETOP *(Bit16u*)(pos+6)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+8)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+10)=ROR_REG(FC_RETOP, HOST_a2); // ror FC_RETOP, a2 *(Bit16u*)(pos+12)=B_FWD(6); // b after_call (pc+6) break; case t_RORw: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+4)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+6)=ROR_REG(FC_RETOP, HOST_a2); // ror FC_RETOP, a2 *(Bit16u*)(pos+8)=B_FWD(10); // b after_call (pc+10) break; case t_RORd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=ROR_REG(FC_RETOP, HOST_a2); // ror FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(14); // b after_call (pc+14) break; case t_ROLb: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24 *(Bit16u*)(pos+2)=NEG(templo1, HOST_a2); // neg templo1, a2 *(Bit16u*)(pos+4)=LSR_IMM(FC_RETOP, HOST_a1, 8); // lsr FC_RETOP, a1, #8 *(Bit16u*)(pos+6)=ADD_IMM8(templo1, 32); // add templo1, #32 *(Bit16u*)(pos+8)=ORR(HOST_a1, FC_RETOP); // orr a1, FC_RETOP *(Bit16u*)(pos+10)=NOP; // nop *(Bit16u*)(pos+12)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+14)=NOP; // nop *(Bit16u*)(pos+16)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+18)=NOP; // nop *(Bit16u*)(pos+20)=ROR_REG(FC_RETOP, templo1); // ror FC_RETOP, templo1 break; case t_ROLw: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16 *(Bit16u*)(pos+2)=NEG(templo1, HOST_a2); // neg templo1, a2 *(Bit16u*)(pos+4)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+6)=ADD_IMM8(templo1, 32); // add templo1, #32 *(Bit16u*)(pos+8)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+10)=ROR_REG(FC_RETOP, templo1); // ror FC_RETOP, templo1 *(Bit16u*)(pos+12)=B_FWD(6); // b after_call (pc+6) break; case t_ROLd: *(Bit16u*)pos=NEG(templo1, HOST_a2); // neg templo1, a2 *(Bit16u*)(pos+2)=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+4)=ADD_IMM8(templo1, 32); // add templo1, #32 *(Bit16u*)(pos+6)=ROR_REG(FC_RETOP, templo1); // ror FC_RETOP, templo1 *(Bit16u*)(pos+8)=B_FWD(10); // b after_call (pc+10) break; case t_NEGb: case t_NEGw: case t_NEGd: *(Bit16u*)pos=NEG(FC_RETOP, HOST_a1); // neg FC_RETOP, a1 *(Bit16u*)(pos+2)=B_FWD(16); // b after_call (pc+16) break; default: *(Bit32u*)(pos+8)=(Bit32u)fct_ptr; // simple_func break; } } else { // try to avoid function calls but rather directly fill in code switch (flags_type) { case t_ADDb: case t_ADDw: case t_ADDd: *(Bit16u*)pos=ADD_REG(FC_RETOP, HOST_a1, HOST_a2); // add FC_RETOP, a1, a2 *(Bit16u*)(pos+2)=B_FWD(18); // b after_call (pc+18) break; case t_ORb: case t_ORw: case t_ORd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=ORR(FC_RETOP, HOST_a2); // orr FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_ANDb: case t_ANDw: case t_ANDd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=AND(FC_RETOP, HOST_a2); // and FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_SUBb: case t_SUBw: case t_SUBd: *(Bit16u*)pos=SUB_REG(FC_RETOP, HOST_a1, HOST_a2); // sub FC_RETOP, a1, a2 *(Bit16u*)(pos+2)=B_FWD(18); // b after_call (pc+18) break; case t_XORb: case t_XORw: case t_XORd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=EOR(FC_RETOP, HOST_a2); // eor FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_CMPb: case t_CMPw: case t_CMPd: case t_TESTb: case t_TESTw: case t_TESTd: *(Bit16u*)pos=B_FWD(20); // b after_call (pc+20) break; case t_INCb: case t_INCw: case t_INCd: *(Bit16u*)pos=ADD_IMM3(FC_RETOP, HOST_a1, 1); // add FC_RETOP, a1, #1 *(Bit16u*)(pos+2)=B_FWD(18); // b after_call (pc+18) break; case t_DECb: case t_DECw: case t_DECd: *(Bit16u*)pos=SUB_IMM3(FC_RETOP, HOST_a1, 1); // sub FC_RETOP, a1, #1 *(Bit16u*)(pos+2)=B_FWD(18); // b after_call (pc+18) break; case t_SHLb: case t_SHLw: case t_SHLd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=LSL_REG(FC_RETOP, HOST_a2); // lsl FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_SHRb: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 24); // lsl FC_RETOP, a1, #24 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, FC_RETOP, 24); // lsr FC_RETOP, FC_RETOP, #24 *(Bit16u*)(pos+4)=LSR_REG(FC_RETOP, HOST_a2); // lsr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(14); // b after_call (pc+14) break; case t_SHRw: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 16); // lsl FC_RETOP, a1, #16 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, FC_RETOP, 16); // lsr FC_RETOP, FC_RETOP, #16 *(Bit16u*)(pos+4)=LSR_REG(FC_RETOP, HOST_a2); // lsr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(14); // b after_call (pc+14) break; case t_SHRd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=LSR_REG(FC_RETOP, HOST_a2); // lsr FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_SARb: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 24); // lsl FC_RETOP, a1, #24 *(Bit16u*)(pos+2)=ASR_IMM(FC_RETOP, FC_RETOP, 24); // asr FC_RETOP, FC_RETOP, #24 *(Bit16u*)(pos+4)=ASR_REG(FC_RETOP, HOST_a2); // asr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(14); // b after_call (pc+14) break; case t_SARw: *(Bit16u*)pos=LSL_IMM(FC_RETOP, HOST_a1, 16); // lsl FC_RETOP, a1, #16 *(Bit16u*)(pos+2)=ASR_IMM(FC_RETOP, FC_RETOP, 16); // asr FC_RETOP, FC_RETOP, #16 *(Bit16u*)(pos+4)=ASR_REG(FC_RETOP, HOST_a2); // asr FC_RETOP, a2 *(Bit16u*)(pos+6)=B_FWD(14); // b after_call (pc+14) break; case t_SARd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=ASR_REG(FC_RETOP, HOST_a2); // asr FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_RORb: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, HOST_a1, 8); // lsr FC_RETOP, a1, #8 *(Bit16u*)(pos+4)=ORR(HOST_a1, FC_RETOP); // orr a1, FC_RETOP *(Bit16u*)(pos+6)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+8)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+10)=ROR_REG(FC_RETOP, HOST_a2); // ror FC_RETOP, a2 *(Bit16u*)(pos+12)=B_FWD(8); // b after_call (pc+8) break; case t_RORw: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16 *(Bit16u*)(pos+2)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+4)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+6)=ROR_REG(FC_RETOP, HOST_a2); // ror FC_RETOP, a2 *(Bit16u*)(pos+8)=B_FWD(12); // b after_call (pc+12) break; case t_RORd: *(Bit16u*)pos=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+2)=ROR_REG(FC_RETOP, HOST_a2); // ror FC_RETOP, a2 *(Bit16u*)(pos+4)=B_FWD(16); // b after_call (pc+16) break; case t_ROLb: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24 *(Bit16u*)(pos+2)=NEG(templo1, HOST_a2); // neg templo1, a2 *(Bit16u*)(pos+4)=LSR_IMM(FC_RETOP, HOST_a1, 8); // lsr FC_RETOP, a1, #8 *(Bit16u*)(pos+6)=ADD_IMM8(templo1, 32); // add templo1, #32 *(Bit16u*)(pos+8)=ORR(HOST_a1, FC_RETOP); // orr a1, FC_RETOP *(Bit16u*)(pos+10)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+12)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+14)=ROR_REG(FC_RETOP, templo1); // ror FC_RETOP, templo1 *(Bit16u*)(pos+16)=B_FWD(4); // b after_call (pc+4) break; case t_ROLw: *(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16 *(Bit16u*)(pos+2)=NEG(templo1, HOST_a2); // neg templo1, a2 *(Bit16u*)(pos+4)=LSR_IMM(FC_RETOP, HOST_a1, 16); // lsr FC_RETOP, a1, #16 *(Bit16u*)(pos+6)=ADD_IMM8(templo1, 32); // add templo1, #32 *(Bit16u*)(pos+8)=ORR(FC_RETOP, HOST_a1); // orr FC_RETOP, a1 *(Bit16u*)(pos+10)=ROR_REG(FC_RETOP, templo1); // ror FC_RETOP, templo1 *(Bit16u*)(pos+12)=B_FWD(8); // b after_call (pc+8) break; case t_ROLd: *(Bit16u*)pos=NEG(templo1, HOST_a2); // neg templo1, a2 *(Bit16u*)(pos+2)=MOV_REG(FC_RETOP, HOST_a1); // mov FC_RETOP, a1 *(Bit16u*)(pos+4)=ADD_IMM8(templo1, 32); // add templo1, #32 *(Bit16u*)(pos+6)=ROR_REG(FC_RETOP, templo1); // ror FC_RETOP, templo1 *(Bit16u*)(pos+8)=B_FWD(12); // b after_call (pc+12) break; case t_NEGb: case t_NEGw: case t_NEGd: *(Bit16u*)pos=NEG(FC_RETOP, HOST_a1); // neg FC_RETOP, a1 *(Bit16u*)(pos+2)=B_FWD(18); // b after_call (pc+18) break; default: *(Bit32u*)(pos+10)=(Bit32u)fct_ptr; // simple_func break; } } #else if (((Bit32u)pos & 0x03) == 0) { *(Bit32u*)(pos+8)=(Bit32u)fct_ptr; // simple_func } else { *(Bit32u*)(pos+10)=(Bit32u)fct_ptr; // simple_func } #endif } #endif static void cache_block_before_close(void) { } #ifdef DRC_USE_SEGS_ADDR // mov 16bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 2 must be zero) // 16bit moves may destroy the upper 16bit of the destination register static void gen_mov_seg16_to_reg(HostReg dest_reg,Bitu index) { cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR cache_addw( LDRH_IMM(dest_reg, templo1, index) ); // ldrh dest_reg, [templo1, #index] } // mov 32bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 4 must be zero) static void gen_mov_seg32_to_reg(HostReg dest_reg,Bitu index) { cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR cache_addw( LDR_IMM(dest_reg, templo1, index) ); // ldr dest_reg, [templo1, #index] } // add a 32bit value from Segs[index] to a full register using FC_SEGS_ADDR (index modulo 4 must be zero) static void gen_add_seg32_to_reg(HostReg reg,Bitu index) { cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR cache_addw( LDR_IMM(templo2, templo1, index) ); // ldr templo2, [templo1, #index] cache_addw( ADD_REG(reg, reg, templo2) ); // add reg, reg, templo2 } #endif #ifdef DRC_USE_REGS_ADDR // mov 16bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 2 must be zero) // 16bit moves may destroy the upper 16bit of the destination register static void gen_mov_regval16_to_reg(HostReg dest_reg,Bitu index) { cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index] } // mov 32bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 4 must be zero) static void gen_mov_regval32_to_reg(HostReg dest_reg,Bitu index) { cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index] } // move a 32bit (dword==true) or 16bit (dword==false) value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero) // 16bit moves may destroy the upper 16bit of the destination register static void gen_mov_regword_to_reg(HostReg dest_reg,Bitu index,bool dword) { cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR if (dword) { cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index] } else { cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index] } } // move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR // the upper 24bit of the destination register can be destroyed // this function does not use FC_OP1/FC_OP2 as dest_reg as these // registers might not be directly byte-accessible on some architectures static void gen_mov_regbyte_to_reg_low(HostReg dest_reg,Bitu index) { cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index] } // move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR // the upper 24bit of the destination register can be destroyed // this function can use FC_OP1/FC_OP2 as dest_reg which are // not directly byte-accessible on some architectures static void INLINE gen_mov_regbyte_to_reg_low_canuseword(HostReg dest_reg,Bitu index) { cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index] } // add a 32bit value from cpu_regs[index] to a full register using FC_REGS_ADDR (index modulo 4 must be zero) static void gen_add_regval32_to_reg(HostReg reg,Bitu index) { cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR cache_addw( LDR_IMM(templo1, templo2, index) ); // ldr templo1, [templo2, #index] cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1 } // move 16bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 2 must be zero) static void gen_mov_regval16_from_reg(HostReg src_reg,Bitu index) { cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index] } // move 32bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 4 must be zero) static void gen_mov_regval32_from_reg(HostReg src_reg,Bitu index) { cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index] } // move 32bit (dword==true) or 16bit (dword==false) of a register into cpu_regs[index] using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero) static void gen_mov_regword_from_reg(HostReg src_reg,Bitu index,bool dword) { cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR if (dword) { cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index] } else { cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index] } } // move the lowest 8bit of a register into cpu_regs[index] using FC_REGS_ADDR static void gen_mov_regbyte_from_reg_low(HostReg src_reg,Bitu index) { cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR cache_addw( STRB_IMM(src_reg, templo1, index) ); // strb src_reg, [templo1, #index] } #endif