/* * Copyright (C) 2002-2009 The DOSBox Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* $Id: cpu.cpp,v 1.116 2009-03-16 18:10:08 c2woody Exp $ */ #include #include #include "dosbox.h" #include "cpu.h" #ifdef HW_RVL #include "string.h" #else #include "memory.h" #endif #include "debug.h" #include "mapper.h" #include "setup.h" #include "programs.h" #include "paging.h" #include "lazyflags.h" #include "support.h" Bitu DEBUG_EnableDebugger(void); extern void GFX_SetTitle(Bit32s cycles ,Bits frameskip,bool paused); #if 1 #undef LOG #if defined (_MSC_VER) #define LOG(X,Y) #else #define LOG(X,Y) CPU_LOG #define CPU_LOG(...) #endif #endif CPU_Regs cpu_regs; CPUBlock cpu; Segments Segs; Bit32s CPU_Cycles = 0; Bit32s CPU_CycleLeft = 0; Bit32s CPU_CycleMax = 3000; Bit32s CPU_OldCycleMax = 3000; Bit32s CPU_CyclePercUsed = 100; Bit32s CPU_CycleLimit = -1; Bit32s CPU_CycleUp = 0; Bit32s CPU_CycleDown = 0; Bit64s CPU_IODelayRemoved = 0; CPU_Decoder * cpudecoder; bool CPU_CycleAutoAdjust = false; bool CPU_SkipCycleAutoAdjust = false; Bitu CPU_AutoDetermineMode = 0; Bitu CPU_ArchitectureType = CPU_ARCHTYPE_MIXED; Bitu CPU_flag_id_toggle=0; Bitu CPU_PrefetchQueueSize=0; void CPU_Core_Full_Init(void); void CPU_Core_Normal_Init(void); void CPU_Core_Simple_Init(void); #if (C_DYNAMIC_X86) void CPU_Core_Dyn_X86_Init(void); void CPU_Core_Dyn_X86_Cache_Init(bool enable_cache); void CPU_Core_Dyn_X86_Cache_Close(void); void CPU_Core_Dyn_X86_SetFPUMode(bool dh_fpu); #elif (C_DYNREC) void CPU_Core_Dynrec_Init(void); void CPU_Core_Dynrec_Cache_Init(bool enable_cache); void CPU_Core_Dynrec_Cache_Close(void); #endif /* In debug mode exceptions are tested and dosbox exits when * a unhandled exception state is detected. * USE CHECK_EXCEPT to raise an exception in that case to see if that exception * solves the problem. * * In non-debug mode dosbox doesn't do detection (and hence doesn't crash at * that point). (game might crash later due to the unhandled exception) */ #if C_DEBUG // #define CPU_CHECK_EXCEPT 1 // #define CPU_CHECK_IGNORE 1 /* Use CHECK_EXCEPT when something doesn't work to see if a exception is * needed that isn't enabled by default.*/ #else /* NORMAL NO CHECKING => More Speed */ #define CPU_CHECK_IGNORE 1 #endif /* C_DEBUG */ #if defined(CPU_CHECK_IGNORE) #define CPU_CHECK_COND(cond,msg,exc,sel) { \ if (cond) do {} while (0); \ } #elif defined(CPU_CHECK_EXCEPT) #define CPU_CHECK_COND(cond,msg,exc,sel) { \ if (cond) { \ CPU_Exception(exc,sel); \ return; \ } \ } #else #define CPU_CHECK_COND(cond,msg,exc,sel) { \ if (cond) E_Exit(msg); \ } #endif void Descriptor::Load(PhysPt address) { cpu.mpl=0; Bit32u* data = (Bit32u*)&saved; *data = mem_readd(address); *(data+1) = mem_readd(address+4); cpu.mpl=3; } void Descriptor:: Save(PhysPt address) { cpu.mpl=0; Bit32u* data = (Bit32u*)&saved; mem_writed(address,*data); mem_writed(address+4,*(data+1)); cpu.mpl=03; } void CPU_Push16(Bitu value) { Bit32u new_esp=(reg_esp&cpu.stack.notmask)|((reg_esp-2)&cpu.stack.mask); mem_writew(SegPhys(ss) + (new_esp & cpu.stack.mask) ,value); reg_esp=new_esp; } void CPU_Push32(Bitu value) { Bit32u new_esp=(reg_esp&cpu.stack.notmask)|((reg_esp-4)&cpu.stack.mask); mem_writed(SegPhys(ss) + (new_esp & cpu.stack.mask) ,value); reg_esp=new_esp; } Bitu CPU_Pop16(void) { Bitu val=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask)); reg_esp=(reg_esp&cpu.stack.notmask)|((reg_esp+2)&cpu.stack.mask); return val; } Bitu CPU_Pop32(void) { Bitu val=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask)); reg_esp=(reg_esp&cpu.stack.notmask)|((reg_esp+4)&cpu.stack.mask); return val; } PhysPt SelBase(Bitu sel) { if (cpu.cr0 & CR0_PROTECTION) { Descriptor desc; cpu.gdt.GetDescriptor(sel,desc); return desc.GetBase(); } else { return sel<<4; } } void CPU_SetFlags(Bitu word,Bitu mask) { mask|=CPU_flag_id_toggle; // ID-flag can be toggled on cpuid-supporting CPUs reg_flags=(reg_flags & ~mask)|(word & mask)|2; cpu.direction=1-((reg_flags & FLAG_DF) >> 9); } bool CPU_PrepareException(Bitu which,Bitu error) { cpu.exception.which=which; cpu.exception.error=error; return true; } bool CPU_CLI(void) { if (cpu.pmode && ((!GETFLAG(VM) && (GETFLAG_IOPL0)) mask &= (~FLAG_IOPL); if (cpu.pmode && !GETFLAG(VM) && (GETFLAG_IOPLdesc.DPL()) needs_invalidation=true; break; default: break; } if (needs_invalidation) CPU_SetSegGeneral(es,0); needs_invalidation=false; if (!cpu.gdt.GetDescriptor(SegValue(ds),desc)) needs_invalidation=true; else switch (desc.Type()) { case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA: if (cpu.cpl>desc.DPL()) needs_invalidation=true; break; default: break; } if (needs_invalidation) CPU_SetSegGeneral(ds,0); needs_invalidation=false; if (!cpu.gdt.GetDescriptor(SegValue(fs),desc)) needs_invalidation=true; else switch (desc.Type()) { case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA: if (cpu.cpl>desc.DPL()) needs_invalidation=true; break; default: break; } if (needs_invalidation) CPU_SetSegGeneral(fs,0); needs_invalidation=false; if (!cpu.gdt.GetDescriptor(SegValue(gs),desc)) needs_invalidation=true; else switch (desc.Type()) { case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA: if (cpu.cpl>desc.DPL()) needs_invalidation=true; break; default: break; } if (needs_invalidation) CPU_SetSegGeneral(gs,0); } class TaskStateSegment { public: TaskStateSegment() { valid=false; } bool IsValid(void) { return valid; } Bitu Get_back(void) { cpu.mpl=0; Bit16u backlink=mem_readw(base); cpu.mpl=3; return backlink; } void SaveSelector(void) { cpu.gdt.SetDescriptor(selector,desc); } void Get_SSx_ESPx(Bitu level,Bitu & _ss,Bitu & _esp) { cpu.mpl=0; if (is386) { PhysPt where=base+offsetof(TSS_32,esp0)+level*8; _esp=mem_readd(where); _ss=mem_readw(where+4); } else { PhysPt where=base+offsetof(TSS_16,sp0)+level*4; _esp=mem_readw(where); _ss=mem_readw(where+2); } cpu.mpl=3; } bool SetSelector(Bitu new_sel) { valid=false; if ((new_sel & 0xfffc)==0) { selector=0; base=0; limit=0; is386=1; return true; } if (new_sel&4) return false; if (!cpu.gdt.GetDescriptor(new_sel,desc)) return false; switch (desc.Type()) { case DESC_286_TSS_A: case DESC_286_TSS_B: case DESC_386_TSS_A: case DESC_386_TSS_B: break; default: return false; } if (!desc.saved.seg.p) return false; selector=new_sel; valid=true; base=desc.GetBase(); limit=desc.GetLimit(); is386=desc.Is386(); return true; } TSS_Descriptor desc; Bitu selector; PhysPt base; Bitu limit; Bitu is386; bool valid; }; TaskStateSegment cpu_tss; enum TSwitchType { TSwitch_JMP,TSwitch_CALL_INT,TSwitch_IRET }; bool CPU_SwitchTask(Bitu new_tss_selector,TSwitchType tstype,Bitu old_eip) { FillFlags(); TaskStateSegment new_tss; if (!new_tss.SetSelector(new_tss_selector)) E_Exit("Illegal TSS for switch, selector=%x, switchtype=%x",new_tss_selector,tstype); if (tstype==TSwitch_IRET) { if (!new_tss.desc.IsBusy()) E_Exit("TSS not busy for IRET"); } else { if (new_tss.desc.IsBusy()) E_Exit("TSS busy for JMP/CALL/INT"); } Bitu new_cr3=0; Bitu new_eax,new_ebx,new_ecx,new_edx,new_esp,new_ebp,new_esi,new_edi; Bitu new_es,new_cs,new_ss,new_ds,new_fs,new_gs; Bitu new_ldt,new_eip,new_eflags; /* Read new context from new TSS */ if (new_tss.is386) { new_cr3=mem_readd(new_tss.base+offsetof(TSS_32,cr3)); new_eip=mem_readd(new_tss.base+offsetof(TSS_32,eip)); new_eflags=mem_readd(new_tss.base+offsetof(TSS_32,eflags)); new_eax=mem_readd(new_tss.base+offsetof(TSS_32,eax)); new_ecx=mem_readd(new_tss.base+offsetof(TSS_32,ecx)); new_edx=mem_readd(new_tss.base+offsetof(TSS_32,edx)); new_ebx=mem_readd(new_tss.base+offsetof(TSS_32,ebx)); new_esp=mem_readd(new_tss.base+offsetof(TSS_32,esp)); new_ebp=mem_readd(new_tss.base+offsetof(TSS_32,ebp)); new_edi=mem_readd(new_tss.base+offsetof(TSS_32,edi)); new_esi=mem_readd(new_tss.base+offsetof(TSS_32,esi)); new_es=mem_readw(new_tss.base+offsetof(TSS_32,es)); new_cs=mem_readw(new_tss.base+offsetof(TSS_32,cs)); new_ss=mem_readw(new_tss.base+offsetof(TSS_32,ss)); new_ds=mem_readw(new_tss.base+offsetof(TSS_32,ds)); new_fs=mem_readw(new_tss.base+offsetof(TSS_32,fs)); new_gs=mem_readw(new_tss.base+offsetof(TSS_32,gs)); new_ldt=mem_readw(new_tss.base+offsetof(TSS_32,ldt)); } else { E_Exit("286 task switch"); new_cr3=0; new_eip=0; new_eflags=0; new_eax=0; new_ecx=0; new_edx=0; new_ebx=0; new_esp=0; new_ebp=0; new_edi=0; new_esi=0; new_es=0; new_cs=0; new_ss=0; new_ds=0; new_fs=0; new_gs=0; new_ldt=0; } /* Check if we need to clear busy bit of old TASK */ if (tstype==TSwitch_JMP || tstype==TSwitch_IRET) { cpu_tss.desc.SetBusy(false); cpu_tss.SaveSelector(); } Bit32u old_flags = reg_flags; if (tstype==TSwitch_IRET) old_flags &= (~FLAG_NT); /* Save current context in current TSS */ if (cpu_tss.is386) { mem_writed(cpu_tss.base+offsetof(TSS_32,eflags),old_flags); mem_writed(cpu_tss.base+offsetof(TSS_32,eip),old_eip); mem_writed(cpu_tss.base+offsetof(TSS_32,eax),reg_eax); mem_writed(cpu_tss.base+offsetof(TSS_32,ecx),reg_ecx); mem_writed(cpu_tss.base+offsetof(TSS_32,edx),reg_edx); mem_writed(cpu_tss.base+offsetof(TSS_32,ebx),reg_ebx); mem_writed(cpu_tss.base+offsetof(TSS_32,esp),reg_esp); mem_writed(cpu_tss.base+offsetof(TSS_32,ebp),reg_ebp); mem_writed(cpu_tss.base+offsetof(TSS_32,esi),reg_esi); mem_writed(cpu_tss.base+offsetof(TSS_32,edi),reg_edi); mem_writed(cpu_tss.base+offsetof(TSS_32,es),SegValue(es)); mem_writed(cpu_tss.base+offsetof(TSS_32,cs),SegValue(cs)); mem_writed(cpu_tss.base+offsetof(TSS_32,ss),SegValue(ss)); mem_writed(cpu_tss.base+offsetof(TSS_32,ds),SegValue(ds)); mem_writed(cpu_tss.base+offsetof(TSS_32,fs),SegValue(fs)); mem_writed(cpu_tss.base+offsetof(TSS_32,gs),SegValue(gs)); } else { E_Exit("286 task switch"); } /* Setup a back link to the old TSS in new TSS */ if (tstype==TSwitch_CALL_INT) { if (new_tss.is386) { mem_writed(new_tss.base+offsetof(TSS_32,back),cpu_tss.selector); } else { mem_writew(new_tss.base+offsetof(TSS_16,back),cpu_tss.selector); } /* And make the new task's eflag have the nested task bit */ new_eflags|=FLAG_NT; } /* Set the busy bit in the new task */ if (tstype==TSwitch_JMP || tstype==TSwitch_CALL_INT) { new_tss.desc.SetBusy(true); new_tss.SaveSelector(); } // cpu.cr0|=CR0_TASKSWITCHED; if (new_tss_selector == cpu_tss.selector) { reg_eip = old_eip; new_cs = SegValue(cs); new_ss = SegValue(ss); new_ds = SegValue(ds); new_es = SegValue(es); new_fs = SegValue(fs); new_gs = SegValue(gs); } else { /* Setup the new cr3 */ PAGING_SetDirBase(new_cr3); /* Load new context */ if (new_tss.is386) { reg_eip=new_eip; CPU_SetFlags(new_eflags,FMASK_ALL | FLAG_VM); reg_eax=new_eax; reg_ecx=new_ecx; reg_edx=new_edx; reg_ebx=new_ebx; reg_esp=new_esp; reg_ebp=new_ebp; reg_edi=new_edi; reg_esi=new_esi; // new_cs=mem_readw(new_tss.base+offsetof(TSS_32,cs)); } else { E_Exit("286 task switch"); } } /* Load the new selectors */ if (reg_flags & FLAG_VM) { SegSet16(cs,new_cs); cpu.code.big=false; cpu.cpl=3; //We don't have segment caches so this will do } else { /* Protected mode task */ if (new_ldt!=0) CPU_LLDT(new_ldt); /* Load the new CS*/ Descriptor cs_desc; cpu.cpl=new_cs & 3; if (!cpu.gdt.GetDescriptor(new_cs,cs_desc)) E_Exit("Task switch with CS beyond limits"); if (!cs_desc.saved.seg.p) E_Exit("Task switch with non present code-segment"); switch (cs_desc.Type()) { case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA: if (cpu.cpl != cs_desc.DPL()) E_Exit("Task CS RPL != DPL"); goto doconforming; case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA: if (cpu.cpl < cs_desc.DPL()) E_Exit("Task CS RPL < DPL"); doconforming: Segs.phys[cs]=cs_desc.GetBase(); cpu.code.big=cs_desc.Big()>0; Segs.val[cs]=new_cs; break; default: E_Exit("Task switch CS Type %d",cs_desc.Type()); } } CPU_SetSegGeneral(es,new_es); CPU_SetSegGeneral(ss,new_ss); CPU_SetSegGeneral(ds,new_ds); CPU_SetSegGeneral(fs,new_fs); CPU_SetSegGeneral(gs,new_gs); if (!cpu_tss.SetSelector(new_tss_selector)) { LOG(LOG_CPU,LOG_NORMAL)("TaskSwitch: set tss selector %X failed",new_tss_selector); } // cpu_tss.desc.SetBusy(true); // cpu_tss.SaveSelector(); // LOG_MSG("Task CPL %X CS:%X IP:%X SS:%X SP:%X eflags %x",cpu.cpl,SegValue(cs),reg_eip,SegValue(ss),reg_esp,reg_flags); return true; } bool CPU_IO_Exception(Bitu port,Bitu size) { if (cpu.pmode && ((GETFLAG_IOPLcpu_tss.limit) goto doexception; bwhere=cpu_tss.base+ofs+(port/8); Bitu map=mem_readw(bwhere); Bitu mask=(0xffff>>(16-size)) << (port&7); if (map & mask) goto doexception; cpu.mpl=3; } return false; doexception: cpu.mpl=3; LOG(LOG_CPU,LOG_NORMAL)("IO Exception port %X",port); return CPU_PrepareException(EXCEPTION_GP,0); } void CPU_Exception(Bitu which,Bitu error ) { // LOG_MSG("Exception %d error %x",which,error); cpu.exception.error=error; CPU_Interrupt(which,CPU_INT_EXCEPTION | ((which>=8) ? CPU_INT_HAS_ERROR : 0),reg_eip); } Bit8u lastint; void CPU_Interrupt(Bitu num,Bitu type,Bitu oldeip) { lastint=num; FillFlags(); #if C_DEBUG switch (num) { case 0xcd: #if C_HEAVY_DEBUG LOG(LOG_CPU,LOG_ERROR)("Call to interrupt 0xCD this is BAD"); DEBUG_HeavyWriteLogInstruction(); E_Exit("Call to interrupt 0xCD this is BAD"); #endif break; case 0x03: if (DEBUG_Breakpoint()) { CPU_Cycles=0; return; } }; #endif if (!cpu.pmode) { /* Save everything on a 16-bit stack */ CPU_Push16(reg_flags & 0xffff); CPU_Push16(SegValue(cs)); CPU_Push16(oldeip); SETFLAGBIT(IF,false); SETFLAGBIT(TF,false); /* Get the new CS:IP from vector table */ PhysPt base=cpu.idt.GetBase(); reg_eip=mem_readw(base+(num << 2)); Segs.val[cs]=mem_readw(base+(num << 2)+2); Segs.phys[cs]=Segs.val[cs]<<4; cpu.code.big=false; return; } else { /* Protected Mode Interrupt */ if ((reg_flags & FLAG_VM) && (type&CPU_INT_SOFTWARE) && !(type&CPU_INT_NOIOPLCHECK)) { // LOG_MSG("Software int in v86, AH %X IOPL %x",reg_ah,(reg_flags & FLAG_IOPL) >>12); if ((reg_flags & FLAG_IOPL)!=FLAG_IOPL) { CPU_Exception(EXCEPTION_GP,0); return; } } Descriptor gate; if (!cpu.idt.GetDescriptor(num<<3,gate)) { // zone66 CPU_Exception(EXCEPTION_GP,num*8+2+(type&CPU_INT_SOFTWARE)?0:1); return; } if ((type&CPU_INT_SOFTWARE) && (gate.DPL()cpu.cpl, "Interrupt to higher privilege", EXCEPTION_GP,(gate_sel & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1) switch (cs_desc.Type()) { case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA: if (cs_dpl0", EXCEPTION_GP,gate_sel & 0xfffc) Bitu n_ss,n_esp; Bitu o_ss,o_esp; o_ss=SegValue(ss); o_esp=reg_esp; cpu_tss.Get_SSx_ESPx(cs_dpl,n_ss,n_esp); CPU_CHECK_COND((n_ss & 0xfffc)==0, "INT:Gate with SS zero selector", EXCEPTION_TS,(type&CPU_INT_SOFTWARE)?0:1) Descriptor n_ss_desc; CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss,n_ss_desc), "INT:Gate with SS beyond limit", EXCEPTION_TS,(n_ss & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1) CPU_CHECK_COND(((n_ss & 3)!=cs_dpl) || (n_ss_desc.DPL()!=cs_dpl), "INT:Inner level with CS_DPL!=SS_DPL and SS_RPL", EXCEPTION_TS,(n_ss & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1) // check if stack segment is a writable data segment switch (n_ss_desc.Type()) { case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: break; default: E_Exit("INT:Inner level:Stack segment not writable."); // or #TS(ss_sel+EXT) } CPU_CHECK_COND(!n_ss_desc.saved.seg.p, "INT:Inner level with nonpresent SS", EXCEPTION_SS,(n_ss & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1) // commit point Segs.phys[ss]=n_ss_desc.GetBase(); Segs.val[ss]=n_ss; if (n_ss_desc.Big()) { cpu.stack.big=true; cpu.stack.mask=0xffffffff; cpu.stack.notmask=0; reg_esp=n_esp; } else { cpu.stack.big=false; cpu.stack.mask=0xffff; cpu.stack.notmask=0xffff0000; reg_sp=n_esp & 0xffff; } cpu.cpl=cs_dpl; if (gate.Type() & 0x8) { /* 32-bit Gate */ if (reg_flags & FLAG_VM) { CPU_Push32(SegValue(gs));SegSet16(gs,0x0); CPU_Push32(SegValue(fs));SegSet16(fs,0x0); CPU_Push32(SegValue(ds));SegSet16(ds,0x0); CPU_Push32(SegValue(es));SegSet16(es,0x0); } CPU_Push32(o_ss); CPU_Push32(o_esp); } else { /* 16-bit Gate */ if (reg_flags & FLAG_VM) E_Exit("V86 to 16-bit gate"); CPU_Push16(o_ss); CPU_Push16(o_esp); } // LOG_MSG("INT:Gate to inner level SS:%X SP:%X",n_ss,n_esp); goto do_interrupt; } if (cs_dpl!=cpu.cpl) E_Exit("Non-conforming intra privilege INT with DPL!=CPL"); case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA: /* Prepare stack for gate to same priviledge */ CPU_CHECK_COND(!cs_desc.saved.seg.p, "INT:Same level:CS segment not present", EXCEPTION_NP,(gate_sel & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1) if ((reg_flags & FLAG_VM) && (cs_dpl0; reg_eip=gate_off; if (!(gate.Type()&1)) { SETFLAGBIT(IF,false); } SETFLAGBIT(TF,false); SETFLAGBIT(NT,false); SETFLAGBIT(VM,false); LOG(LOG_CPU,LOG_NORMAL)("INT:Gate to %X:%X big %d %s",gate_sel,gate_off,cs_desc.Big(),gate.Type() & 0x8 ? "386" : "286"); return; } case DESC_TASK_GATE: CPU_CHECK_COND(!gate.saved.seg.p, "INT:Gate segment not present", EXCEPTION_NP,num*8+2+(type&CPU_INT_SOFTWARE)?0:1) CPU_SwitchTask(gate.GetSelector(),TSwitch_CALL_INT,oldeip); if (type & CPU_INT_HAS_ERROR) { //TODO Be sure about this, seems somewhat unclear if (cpu_tss.is386) CPU_Push32(cpu.exception.error); else CPU_Push16(cpu.exception.error); } return; default: E_Exit("Illegal descriptor type %X for int %X",gate.Type(),num); } } assert(1); return ; // make compiler happy } void CPU_IRET(bool use32,Bitu oldeip) { if (!cpu.pmode) { /* RealMode IRET */ if (use32) { reg_eip=CPU_Pop32(); SegSet16(cs,CPU_Pop32()); CPU_SetFlags(CPU_Pop32(),FMASK_ALL); } else { reg_eip=CPU_Pop16(); SegSet16(cs,CPU_Pop16()); CPU_SetFlags(CPU_Pop16(),FMASK_ALL & 0xffff); } cpu.code.big=false; DestroyConditionFlags(); return; } else { /* Protected mode IRET */ if (reg_flags & FLAG_VM) { if ((reg_flags & FLAG_IOPL)!=FLAG_IOPL) { // win3.x e CPU_Exception(EXCEPTION_GP,0); return; } else { if (use32) { Bit32u new_eip=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask)); Bit32u tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+4)&cpu.stack.mask); Bit32u new_cs=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask)); tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask); Bit32u new_flags=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask)); reg_esp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask); reg_eip=new_eip; SegSet16(cs,(Bit16u)(new_cs&0xffff)); /* IOPL can not be modified in v86 mode by IRET */ CPU_SetFlags(new_flags,FMASK_NORMAL|FLAG_NT); } else { Bit16u new_eip=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask)); Bit32u tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+2)&cpu.stack.mask); Bit16u new_cs=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask)); tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask); Bit16u new_flags=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask)); reg_esp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask); reg_eip=(Bit32u)new_eip; SegSet16(cs,new_cs); /* IOPL can not be modified in v86 mode by IRET */ CPU_SetFlags(new_flags,FMASK_NORMAL|FLAG_NT); } cpu.code.big=false; DestroyConditionFlags(); return; } } /* Check if this is task IRET */ if (GETFLAG(NT)) { if (GETFLAG(VM)) E_Exit("Pmode IRET with VM bit set"); CPU_CHECK_COND(!cpu_tss.IsValid(), "TASK Iret without valid TSS", EXCEPTION_TS,cpu_tss.selector & 0xfffc) if (!cpu_tss.desc.IsBusy()) { LOG(LOG_CPU,LOG_ERROR)("TASK Iret:TSS not busy"); } Bitu back_link=cpu_tss.Get_back(); CPU_SwitchTask(back_link,TSwitch_IRET,oldeip); return; } Bitu n_cs_sel,n_eip,n_flags; Bit32u tempesp; if (use32) { n_eip=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask)); tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+4)&cpu.stack.mask); n_cs_sel=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask)) & 0xffff; tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask); n_flags=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask)); tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask); if ((n_flags & FLAG_VM) && (cpu.cpl==0)) { // commit point reg_esp=tempesp; reg_eip=n_eip & 0xffff; Bitu n_ss,n_esp,n_es,n_ds,n_fs,n_gs; n_esp=CPU_Pop32(); n_ss=CPU_Pop32() & 0xffff; n_es=CPU_Pop32() & 0xffff; n_ds=CPU_Pop32() & 0xffff; n_fs=CPU_Pop32() & 0xffff; n_gs=CPU_Pop32() & 0xffff; CPU_SetFlags(n_flags,FMASK_ALL | FLAG_VM); DestroyConditionFlags(); cpu.cpl=3; CPU_SetSegGeneral(ss,n_ss); CPU_SetSegGeneral(es,n_es); CPU_SetSegGeneral(ds,n_ds); CPU_SetSegGeneral(fs,n_fs); CPU_SetSegGeneral(gs,n_gs); reg_esp=n_esp; cpu.code.big=false; SegSet16(cs,n_cs_sel); LOG(LOG_CPU,LOG_NORMAL)("IRET:Back to V86: CS:%X IP %X SS:%X SP %X FLAGS:%X",SegValue(cs),reg_eip,SegValue(ss),reg_esp,reg_flags); return; } if (n_flags & FLAG_VM) E_Exit("IRET from pmode to v86 with CPL!=0"); } else { n_eip=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask)); tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+2)&cpu.stack.mask); n_cs_sel=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask)); tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask); n_flags=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask)); n_flags|=(reg_flags & 0xffff0000); tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask); if (n_flags & FLAG_VM) E_Exit("VM Flag in 16-bit iret"); } CPU_CHECK_COND((n_cs_sel & 0xfffc)==0, "IRET:CS selector zero", EXCEPTION_GP,0) Bitu n_cs_rpl=n_cs_sel & 3; Descriptor n_cs_desc; CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_cs_sel,n_cs_desc), "IRET:CS selector beyond limits", EXCEPTION_GP,n_cs_sel & 0xfffc) CPU_CHECK_COND(n_cs_rpln_cs_rpl, "IRET:C:DPL>RPL", EXCEPTION_GP,n_cs_sel & 0xfffc) break; default: E_Exit("IRET:Illegal descriptor type %X",n_cs_desc.Type()); } CPU_CHECK_COND(!n_cs_desc.saved.seg.p, "IRET with nonpresent code segment", EXCEPTION_NP,n_cs_sel & 0xfffc) if (n_cs_rpl==cpu.cpl) { /* Return to same level */ // commit point reg_esp=tempesp; Segs.phys[cs]=n_cs_desc.GetBase(); cpu.code.big=n_cs_desc.Big()>0; Segs.val[cs]=n_cs_sel; reg_eip=n_eip; Bitu mask=cpu.cpl ? (FMASK_NORMAL | FLAG_NT) : FMASK_ALL; if (GETFLAG_IOPL0; Segs.val[cs]=n_cs_sel; Bitu mask=cpu.cpl ? (FMASK_NORMAL | FLAG_NT) : FMASK_ALL; if (GETFLAG_IOPLcpu.cpl, "JMP:NC:RPL>CPL", EXCEPTION_GP,selector & 0xfffc) CPU_CHECK_COND(cpu.cpl!=desc.DPL(), "JMP:NC:RPL != DPL", EXCEPTION_GP,selector & 0xfffc) LOG(LOG_CPU,LOG_NORMAL)("JMP:Code:NC to %X:%X big %d",selector,offset,desc.Big()); goto CODE_jmp; case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA: LOG(LOG_CPU,LOG_NORMAL)("JMP:Code:C to %X:%X big %d",selector,offset,desc.Big()); CPU_CHECK_COND(cpu.cpl0; Segs.val[cs]=(selector & 0xfffc) | cpu.cpl; reg_eip=offset; return; case DESC_386_TSS_A: CPU_CHECK_COND(desc.DPL()cpu.cpl, "CALL:CODE:NC:RPL>CPL", EXCEPTION_GP,selector & 0xfffc) CPU_CHECK_COND(call.DPL()!=cpu.cpl, "CALL:CODE:NC:DPL!=CPL", EXCEPTION_GP,selector & 0xfffc) LOG(LOG_CPU,LOG_NORMAL)("CALL:CODE:NC to %X:%X",selector,offset); goto call_code; case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA: CPU_CHECK_COND(call.DPL()>cpu.cpl, "CALL:CODE:C:DPL>CPL", EXCEPTION_GP,selector & 0xfffc) LOG(LOG_CPU,LOG_NORMAL)("CALL:CODE:C to %X:%X",selector,offset); call_code: if (!call.saved.seg.p) { // borland extender (RTM) CPU_Exception(EXCEPTION_NP,selector & 0xfffc); return; } // commit point if (!use32) { CPU_Push16(SegValue(cs)); CPU_Push16(oldeip); reg_eip=offset & 0xffff; } else { CPU_Push32(SegValue(cs)); CPU_Push32(oldeip); reg_eip=offset; } Segs.phys[cs]=call.GetBase(); cpu.code.big=call.Big()>0; Segs.val[cs]=(selector & 0xfffc) | cpu.cpl; return; case DESC_386_CALL_GATE: case DESC_286_CALL_GATE: { CPU_CHECK_COND(call.DPL()cpu.cpl, "CALL:Gate:CS DPL>CPL", EXCEPTION_GP,n_cs_sel & 0xfffc) CPU_CHECK_COND(!n_cs_desc.saved.seg.p, "CALL:Gate:CS not present", EXCEPTION_NP,n_cs_sel & 0xfffc) Bitu n_eip = call.GetOffset(); switch (n_cs_desc.Type()) { case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA: /* Check if we goto inner priviledge */ if (n_cs_dpl < cpu.cpl) { /* Get new SS:ESP out of TSS */ Bitu n_ss_sel,n_esp; Descriptor n_ss_desc; cpu_tss.Get_SSx_ESPx(n_cs_dpl,n_ss_sel,n_esp); CPU_CHECK_COND((n_ss_sel & 0xfffc)==0, "CALL:Gate:NC:SS selector zero", EXCEPTION_TS,0) CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss_sel,n_ss_desc), "CALL:Gate:Invalid SS selector", EXCEPTION_TS,n_ss_sel & 0xfffc) CPU_CHECK_COND(((n_ss_sel & 3)!=n_cs_desc.DPL()) || (n_ss_desc.DPL()!=n_cs_desc.DPL()), "CALL:Gate:Invalid SS selector privileges", EXCEPTION_TS,n_ss_sel & 0xfffc) switch (n_ss_desc.Type()) { case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: // writable data segment break; default: E_Exit("Call:Gate:SS no writable data segment"); // or #TS(ss_sel) } CPU_CHECK_COND(!n_ss_desc.saved.seg.p, "CALL:Gate:Stack segment not present", EXCEPTION_SS,n_ss_sel & 0xfffc) /* Load the new SS:ESP and save data on it */ Bitu o_esp = reg_esp; Bitu o_ss = SegValue(ss); PhysPt o_stack = SegPhys(ss)+(reg_esp & cpu.stack.mask); // catch pagefaults if (call.saved.gate.paramcount&31) { if (call.Type()==DESC_386_CALL_GATE) { for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--) mem_readd(o_stack+i*4); } else { for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--) mem_readw(o_stack+i*2); } } // commit point Segs.val[ss]=n_ss_sel; Segs.phys[ss]=n_ss_desc.GetBase(); if (n_ss_desc.Big()) { cpu.stack.big=true; cpu.stack.mask=0xffffffff; cpu.stack.notmask=0; reg_esp=n_esp; } else { cpu.stack.big=false; cpu.stack.mask=0xffff; cpu.stack.notmask=0xffff0000; reg_sp=n_esp & 0xffff; } cpu.cpl = n_cs_desc.DPL(); Bit16u oldcs = SegValue(cs); /* Switch to new CS:EIP */ Segs.phys[cs] = n_cs_desc.GetBase(); Segs.val[cs] = (n_cs_sel & 0xfffc) | cpu.cpl; cpu.code.big = n_cs_desc.Big()>0; reg_eip = n_eip; if (!use32) reg_eip&=0xffff; if (call.Type()==DESC_386_CALL_GATE) { CPU_Push32(o_ss); //save old stack CPU_Push32(o_esp); if (call.saved.gate.paramcount&31) for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--) CPU_Push32(mem_readd(o_stack+i*4)); CPU_Push32(oldcs); CPU_Push32(oldeip); } else { CPU_Push16(o_ss); //save old stack CPU_Push16(o_esp); if (call.saved.gate.paramcount&31) for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--) CPU_Push16(mem_readw(o_stack+i*2)); CPU_Push16(oldcs); CPU_Push16(oldeip); } break; } else if (n_cs_dpl > cpu.cpl) E_Exit("CALL:GATE:CS DPL>CPL"); // or #GP(sel) case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA: // zrdx extender if (call.Type()==DESC_386_CALL_GATE) { CPU_Push32(SegValue(cs)); CPU_Push32(oldeip); } else { CPU_Push16(SegValue(cs)); CPU_Push16(oldeip); } /* Switch to new CS:EIP */ Segs.phys[cs] = n_cs_desc.GetBase(); Segs.val[cs] = (n_cs_sel & 0xfffc) | cpu.cpl; cpu.code.big = n_cs_desc.Big()>0; reg_eip = n_eip; if (!use32) reg_eip&=0xffff; break; default: E_Exit("CALL:GATE:CS no executable segment"); } } /* Call Gates */ break; case DESC_386_TSS_A: CPU_CHECK_COND(call.DPL()cpu.cpl, "RET to C segment of higher privilege", EXCEPTION_GP,selector & 0xfffc) break; default: E_Exit("RET from illegal descriptor type %X",desc.Type()); } RET_same_level: if (!desc.saved.seg.p) { // borland extender (RTM) CPU_Exception(EXCEPTION_NP,selector & 0xfffc); return; } // commit point if (!use32) { offset=CPU_Pop16(); selector=CPU_Pop16(); } else { offset=CPU_Pop32(); selector=CPU_Pop32() & 0xffff; } Segs.phys[cs]=desc.GetBase(); cpu.code.big=desc.Big()>0; Segs.val[cs]=selector; reg_eip=offset; if (cpu.stack.big) { reg_esp+=bytes; } else { reg_sp+=bytes; } LOG(LOG_CPU,LOG_NORMAL)("RET - Same level to %X:%X RPL %X DPL %X",selector,offset,rpl,desc.DPL()); return; } else { /* Return to outer level */ switch (desc.Type()) { case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA: CPU_CHECK_COND(desc.DPL()!=rpl, "RET to outer NC segment with DPL!=RPL", EXCEPTION_GP,selector & 0xfffc) break; case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA: CPU_CHECK_COND(desc.DPL()>rpl, "RET to outer C segment with DPL>RPL", EXCEPTION_GP,selector & 0xfffc) break; default: E_Exit("RET from illegal descriptor type %X",desc.Type()); // or #GP(selector) } CPU_CHECK_COND(!desc.saved.seg.p, "RET:Outer level:CS not present", EXCEPTION_NP,selector & 0xfffc) // commit point Bitu n_esp,n_ss; if (use32) { offset=CPU_Pop32(); selector=CPU_Pop32() & 0xffff; reg_esp+=bytes; n_esp = CPU_Pop32(); n_ss = CPU_Pop32() & 0xffff; } else { offset=CPU_Pop16(); selector=CPU_Pop16(); reg_esp+=bytes; n_esp = CPU_Pop16(); n_ss = CPU_Pop16(); } CPU_CHECK_COND((n_ss & 0xfffc)==0, "RET to outer level with SS selector zero", EXCEPTION_GP,0) Descriptor n_ss_desc; CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss,n_ss_desc), "RET:SS beyond limits", EXCEPTION_GP,n_ss & 0xfffc) CPU_CHECK_COND(((n_ss & 3)!=rpl) || (n_ss_desc.DPL()!=rpl), "RET to outer segment with invalid SS privileges", EXCEPTION_GP,n_ss & 0xfffc) switch (n_ss_desc.Type()) { case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: break; default: E_Exit("RET:SS selector type no writable data segment"); // or #GP(selector) } CPU_CHECK_COND(!n_ss_desc.saved.seg.p, "RET:Stack segment not present", EXCEPTION_SS,n_ss & 0xfffc) cpu.cpl = rpl; Segs.phys[cs]=desc.GetBase(); cpu.code.big=desc.Big()>0; Segs.val[cs]=(selector&0xfffc) | cpu.cpl; reg_eip=offset; Segs.val[ss]=n_ss; Segs.phys[ss]=n_ss_desc.GetBase(); if (n_ss_desc.Big()) { cpu.stack.big=true; cpu.stack.mask=0xffffffff; cpu.stack.notmask=0; reg_esp=n_esp+bytes; } else { cpu.stack.big=false; cpu.stack.mask=0xffff; cpu.stack.notmask=0xffff0000; reg_sp=(n_esp & 0xffff)+bytes; } CPU_CheckSegments(); // LOG(LOG_MISC,LOG_ERROR)("RET - Higher level to %X:%X RPL %X DPL %X",selector,offset,rpl,desc.DPL()); return; } LOG(LOG_CPU,LOG_NORMAL)("Prot ret %X:%X",selector,offset); return; } assert(1); } Bitu CPU_SLDT(void) { return cpu.gdt.SLDT(); } bool CPU_LLDT(Bitu selector) { if (!cpu.gdt.LLDT(selector)) { LOG(LOG_CPU,LOG_ERROR)("LLDT failed, selector=%X",selector); return true; } LOG(LOG_CPU,LOG_NORMAL)("LDT Set to %X",selector); return false; } Bitu CPU_STR(void) { return cpu_tss.selector; } bool CPU_LTR(Bitu selector) { if ((selector & 0xfffc)==0) { cpu_tss.SetSelector(selector); return false; } TSS_Descriptor desc; if ((selector & 4) || (!cpu.gdt.GetDescriptor(selector,desc))) { LOG(LOG_CPU,LOG_ERROR)("LTR failed, selector=%X",selector); return CPU_PrepareException(EXCEPTION_GP,selector); } if ((desc.Type()==DESC_286_TSS_A) || (desc.Type()==DESC_386_TSS_A)) { if (!desc.saved.seg.p) { LOG(LOG_CPU,LOG_ERROR)("LTR failed, selector=%X (not present)",selector); return CPU_PrepareException(EXCEPTION_NP,selector); } if (!cpu_tss.SetSelector(selector)) E_Exit("LTR failed, selector=%X",selector); cpu_tss.desc.SetBusy(true); cpu_tss.SaveSelector(); } else { /* Descriptor was no available TSS descriptor */ LOG(LOG_CPU,LOG_NORMAL)("LTR failed, selector=%X (type=%X)",selector,desc.Type()); return CPU_PrepareException(EXCEPTION_GP,selector); } return false; } void CPU_LGDT(Bitu limit,Bitu base) { LOG(LOG_CPU,LOG_NORMAL)("GDT Set to base:%X limit:%X",base,limit); cpu.gdt.SetLimit(limit); cpu.gdt.SetBase(base); } void CPU_LIDT(Bitu limit,Bitu base) { LOG(LOG_CPU,LOG_NORMAL)("IDT Set to base:%X limit:%X",base,limit); cpu.idt.SetLimit(limit); cpu.idt.SetBase(base); } Bitu CPU_SGDT_base(void) { return cpu.gdt.GetBase(); } Bitu CPU_SGDT_limit(void) { return cpu.gdt.GetLimit(); } Bitu CPU_SIDT_base(void) { return cpu.idt.GetBase(); } Bitu CPU_SIDT_limit(void) { return cpu.idt.GetLimit(); } void CPU_SET_CRX(Bitu cr,Bitu value) { switch (cr) { case 0: { Bitu changed=cpu.cr0 ^ value; if (!changed) return; cpu.cr0=value; if (value & CR0_PROTECTION) { cpu.pmode=true; LOG(LOG_CPU,LOG_NORMAL)("Protected mode"); PAGING_Enable((value & CR0_PAGING)>0); if (!(CPU_AutoDetermineMode&CPU_AUTODETERMINE_MASK)) break; if (CPU_AutoDetermineMode&CPU_AUTODETERMINE_CYCLES) { CPU_CycleAutoAdjust=true; CPU_CycleLeft=0; CPU_Cycles=0; CPU_OldCycleMax=CPU_CycleMax; GFX_SetTitle(CPU_CyclePercUsed,-1,false); } else { GFX_SetTitle(-1,-1,false); } #if (C_DYNAMIC_X86) if (CPU_AutoDetermineMode&CPU_AUTODETERMINE_CORE) { CPU_Core_Dyn_X86_Cache_Init(true); cpudecoder=&CPU_Core_Dyn_X86_Run; } #elif (C_DYNREC) if (CPU_AutoDetermineMode&CPU_AUTODETERMINE_CORE) { CPU_Core_Dynrec_Cache_Init(true); cpudecoder=&CPU_Core_Dynrec_Run; } #endif CPU_AutoDetermineMode<<=CPU_AUTODETERMINE_SHIFT; } else { cpu.pmode=false; if (value & CR0_PAGING) LOG_MSG("Paging requested without PE=1"); PAGING_Enable(false); LOG(LOG_CPU,LOG_NORMAL)("Real mode"); } break; } case 2: paging.cr2=value; break; case 3: PAGING_SetDirBase(value); break; default: LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV CR%d,%X",cr,value); break; } } bool CPU_WRITE_CRX(Bitu cr,Bitu value) { /* Check if privileged to access control registers */ if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0); if ((cr==1) || (cr>4)) return CPU_PrepareException(EXCEPTION_UD,0); if (CPU_ArchitectureType=CPU_ARCHTYPE_PENTIUMSLOW) return cpu.cr0; else if (CPU_ArchitectureType>=CPU_ARCHTYPE_486OLDSLOW) return (cpu.cr0 & 0xe005003f); else return (cpu.cr0 | 0x7ffffff0); case 2: return paging.cr2; case 3: return PAGING_GetDirBase() & 0xfffff000; default: LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, CR%d",cr); break; } return 0; } bool CPU_READ_CRX(Bitu cr,Bit32u & retvalue) { /* Check if privileged to access control registers */ if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0); if ((cr==1) || (cr>4)) return CPU_PrepareException(EXCEPTION_UD,0); retvalue=CPU_GET_CRX(cr); return false; } bool CPU_WRITE_DRX(Bitu dr,Bitu value) { /* Check if privileged to access control registers */ if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0); switch (dr) { case 0: case 1: case 2: case 3: cpu.drx[dr]=value; break; case 4: case 6: cpu.drx[6]=(value|0xffff0ff0) & 0xffffefff; break; case 5: case 7: if (CPU_ArchitectureType0)) return CPU_PrepareException(EXCEPTION_GP,0); switch (dr) { case 0: case 1: case 2: case 3: case 6: case 7: retvalue=cpu.drx[dr]; break; case 4: retvalue=cpu.drx[6]; break; case 5: retvalue=cpu.drx[7]; break; default: LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, DR%d",dr); retvalue=0; break; } return false; } bool CPU_WRITE_TRX(Bitu tr,Bitu value) { /* Check if privileged to access control registers */ if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0); switch (tr) { // case 3: case 6: case 7: cpu.trx[tr]=value; return false; default: LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV TR%d,%X",tr,value); break; } return CPU_PrepareException(EXCEPTION_UD,0); } bool CPU_READ_TRX(Bitu tr,Bit32u & retvalue) { /* Check if privileged to access control registers */ if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0); switch (tr) { // case 3: case 6: case 7: retvalue=cpu.trx[tr]; return false; default: LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, TR%d",tr); break; } return CPU_PrepareException(EXCEPTION_UD,0); } Bitu CPU_SMSW(void) { return cpu.cr0; } bool CPU_LMSW(Bitu word) { if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0); word&=0xf; if (cpu.cr0 & 1) word|=1; word|=(cpu.cr0&0xfffffff0); CPU_SET_CRX(0,word); return false; } void CPU_ARPL(Bitu & dest_sel,Bitu src_sel) { FillFlags(); if ((dest_sel & 3) < (src_sel & 3)) { dest_sel=(dest_sel & 0xfffc) + (src_sel & 3); // dest_sel|=0xff3f0000; SETFLAGBIT(ZF,true); } else { SETFLAGBIT(ZF,false); } } void CPU_LAR(Bitu selector,Bitu & ar) { FillFlags(); if (selector == 0) { SETFLAGBIT(ZF,false); return; } Descriptor desc;Bitu rpl=selector & 3; if (!cpu.gdt.GetDescriptor(selector,desc)){ SETFLAGBIT(ZF,false); return; } switch (desc.Type()){ case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA: case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA: break; case DESC_286_INT_GATE: case DESC_286_TRAP_GATE: { case DESC_386_INT_GATE: case DESC_386_TRAP_GATE: SETFLAGBIT(ZF,false); return; } case DESC_LDT: case DESC_TASK_GATE: case DESC_286_TSS_A: case DESC_286_TSS_B: case DESC_286_CALL_GATE: case DESC_386_TSS_A: case DESC_386_TSS_B: case DESC_386_CALL_GATE: case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A: case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A: case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA: if (desc.DPL()desc.DPL()) || (cpu.cpl>desc.DPL())) { // extreme pinball return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc); } break; case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA: break; default: // gabriel knight return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc); } if (!desc.saved.seg.p) { // win return CPU_PrepareException(EXCEPTION_NP,value & 0xfffc); } Segs.val[seg]=value; Segs.phys[seg]=desc.GetBase(); } return false; } } bool CPU_PopSeg(SegNames seg,bool use32) { Bitu val=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask)); if (CPU_SetSegGeneral(seg,val)) return true; Bitu addsp=use32?0x04:0x02; reg_esp=(reg_esp&cpu.stack.notmask)|((reg_esp+addsp)&cpu.stack.mask); return false; } bool CPU_CPUID(void) { if (CPU_ArchitectureType100) CPU_CyclePercUsed=100; LOG_MSG("CPU:%d percent",CPU_CyclePercUsed); GFX_SetTitle(CPU_CyclePercUsed,-1,false); } else { Bit32s old_cycles=CPU_CycleMax; if (CPU_CycleUp < 100) { CPU_CycleMax = (Bit32s)(CPU_CycleMax * (1 + (float)CPU_CycleUp / 100.0)); } else { CPU_CycleMax = (Bit32s)(CPU_CycleMax + CPU_CycleUp); } CPU_CycleLeft=0;CPU_Cycles=0; if (CPU_CycleMax==old_cycles) CPU_CycleMax++; LOG_MSG("CPU:%d cycles",CPU_CycleMax); GFX_SetTitle(CPU_CycleMax,-1,false); } } static void CPU_CycleDecrease(bool pressed) { if (!pressed) return; if (CPU_CycleAutoAdjust) { CPU_CyclePercUsed-=5; if (CPU_CyclePercUsed<=0) CPU_CyclePercUsed=1; LOG_MSG("CPU:%d percent",CPU_CyclePercUsed); GFX_SetTitle(CPU_CyclePercUsed,-1,false); } else { if (CPU_CycleDown < 100) { CPU_CycleMax = (Bit32s)(CPU_CycleMax / (1 + (float)CPU_CycleDown / 100.0)); } else { CPU_CycleMax = (Bit32s)(CPU_CycleMax - CPU_CycleDown); } CPU_CycleLeft=0;CPU_Cycles=0; if (CPU_CycleMax <= 0) CPU_CycleMax=1; LOG_MSG("CPU:%d cycles",CPU_CycleMax); GFX_SetTitle(CPU_CycleMax,-1,false); } } void CPU_Enable_SkipAutoAdjust(void) { if (CPU_CycleAutoAdjust) { CPU_CycleMax /= 2; if (CPU_CycleMax < CPU_CYCLES_LOWER_LIMIT) CPU_CycleMax = CPU_CYCLES_LOWER_LIMIT; } CPU_SkipCycleAutoAdjust=true; } void CPU_Disable_SkipAutoAdjust(void) { CPU_SkipCycleAutoAdjust=false; } extern Bit32s ticksDone; extern Bit32u ticksScheduled; void CPU_Reset_AutoAdjust(void) { CPU_IODelayRemoved = 0; ticksDone = 0; ticksScheduled = 0; } class CPU: public Module_base { private: static bool inited; public: CPU(Section* configuration):Module_base(configuration) { if(inited) { Change_Config(configuration); return; } // Section_prop * section=static_cast(configuration); inited=true; reg_eax=0; reg_ebx=0; reg_ecx=0; reg_edx=0; reg_edi=0; reg_esi=0; reg_ebp=0; reg_esp=0; SegSet16(cs,0); SegSet16(ds,0); SegSet16(es,0); SegSet16(fs,0); SegSet16(gs,0); SegSet16(ss,0); CPU_SetFlags(FLAG_IF,FMASK_ALL); //Enable interrupts cpu.cr0=0xffffffff; CPU_SET_CRX(0,0); //Initialize cpu.code.big=false; cpu.stack.mask=0xffff; cpu.stack.notmask=0xffff0000; cpu.stack.big=false; cpu.trap_skip=false; cpu.idt.SetBase(0); cpu.idt.SetLimit(1023); for (Bitu i=0; i<7; i++) { cpu.drx[i]=0; cpu.trx[i]=0; } if (CPU_ArchitectureType==CPU_ARCHTYPE_PENTIUMSLOW) { cpu.drx[6]=0xffff0ff0; } else { cpu.drx[6]=0xffff1ff0; } cpu.drx[7]=0x00000400; /* Init the cpu cores */ CPU_Core_Normal_Init(); CPU_Core_Simple_Init(); CPU_Core_Full_Init(); #if (C_DYNAMIC_X86) CPU_Core_Dyn_X86_Init(); #elif (C_DYNREC) CPU_Core_Dynrec_Init(); #endif MAPPER_AddHandler(CPU_CycleDecrease,MK_f11,MMOD1,"cycledown","Dec Cycles"); MAPPER_AddHandler(CPU_CycleIncrease,MK_f12,MMOD1,"cycleup" ,"Inc Cycles"); Change_Config(configuration); CPU_JMP(false,0,0,0); //Setup the first cpu core } bool Change_Config(Section* newconfig){ Section_prop * section=static_cast(newconfig); CPU_AutoDetermineMode=CPU_AUTODETERMINE_NONE; CPU_CycleLeft=0;//needed ? CPU_Cycles=0; CPU_SkipCycleAutoAdjust=false; Prop_multival* p = section->Get_multival("cycles"); std::string type = p->GetSection()->Get_string("type"); std::string str ; CommandLine cmd(0,p->GetSection()->Get_string("parameters")); if (type=="max") { CPU_CycleMax=0; CPU_CyclePercUsed=100; CPU_CycleAutoAdjust=true; CPU_CycleLimit=-1; for (Bitu cmdnum=1; cmdnum<=cmd.GetCount(); cmdnum++) { if (cmd.FindCommand(cmdnum,str)) { if (str.find('%')==str.length()-1) { str.erase(str.find('%')); int percval=0; std::istringstream stream(str); stream >> percval; if ((percval>0) && (percval<=100)) CPU_CyclePercUsed=(Bit32s)percval; } else if (str=="limit") { cmdnum++; if (cmd.FindCommand(cmdnum,str)) { int cyclimit=0; std::istringstream stream(str); stream >> cyclimit; if (cyclimit>0) CPU_CycleLimit=cyclimit; } } } } } else { if (type=="auto") { CPU_AutoDetermineMode|=CPU_AUTODETERMINE_CYCLES; CPU_CycleMax=3000; CPU_OldCycleMax=3000; CPU_CyclePercUsed=100; for (Bitu cmdnum=0; cmdnum<=cmd.GetCount(); cmdnum++) { if (cmd.FindCommand(cmdnum,str)) { if (str.find('%')==str.length()-1) { str.erase(str.find('%')); int percval=0; std::istringstream stream(str); stream >> percval; if ((percval>0) && (percval<=100)) CPU_CyclePercUsed=(Bit32s)percval; } else if (str=="limit") { cmdnum++; if (cmd.FindCommand(cmdnum,str)) { int cyclimit=0; std::istringstream stream(str); stream >> cyclimit; if (cyclimit>0) CPU_CycleLimit=cyclimit; } } else { int rmdval=0; std::istringstream stream(str); stream >> rmdval; if (rmdval>0) { CPU_CycleMax=(Bit32s)rmdval; CPU_OldCycleMax=(Bit32s)rmdval; } } } } } else if(type =="fixed") { cmd.FindCommand(1,str); int rmdval=0; std::istringstream stream(str); stream >> rmdval; CPU_CycleMax=(Bit32s)rmdval; } else { std::istringstream stream(type); int rmdval=0; stream >> rmdval; if(rmdval) CPU_CycleMax=(Bit32s)rmdval; } CPU_CycleAutoAdjust=false; } CPU_CycleUp=section->Get_int("cycleup"); CPU_CycleDown=section->Get_int("cycledown"); std::string core(section->Get_string("core")); cpudecoder=&CPU_Core_Normal_Run; if (core == "normal") { cpudecoder=&CPU_Core_Normal_Run; } else if (core =="simple") { cpudecoder=&CPU_Core_Simple_Run; } else if (core == "full") { cpudecoder=&CPU_Core_Full_Run; } else if (core == "auto") { cpudecoder=&CPU_Core_Normal_Run; #if (C_DYNAMIC_X86) CPU_AutoDetermineMode|=CPU_AUTODETERMINE_CORE; } else if (core == "dynamic") { cpudecoder=&CPU_Core_Dyn_X86_Run; CPU_Core_Dyn_X86_SetFPUMode(true); } else if (core == "dynamic_nodhfpu") { cpudecoder=&CPU_Core_Dyn_X86_Run; CPU_Core_Dyn_X86_SetFPUMode(false); #elif (C_DYNREC) CPU_AutoDetermineMode|=CPU_AUTODETERMINE_CORE; } else if (core == "dynamic") { cpudecoder=&CPU_Core_Dynrec_Run; #else #endif } #if (C_DYNAMIC_X86) CPU_Core_Dyn_X86_Cache_Init((core == "dynamic") || (core == "dynamic_nodhfpu")); #elif (C_DYNREC) CPU_Core_Dynrec_Cache_Init( core == "dynamic" ); #endif CPU_ArchitectureType = CPU_ARCHTYPE_MIXED; std::string cputype(section->Get_string("cputype")); if (cputype == "auto") { CPU_ArchitectureType = CPU_ARCHTYPE_MIXED; } else if (cputype == "386") { CPU_ArchitectureType = CPU_ARCHTYPE_386FAST; } else if (cputype == "386_prefetch") { CPU_ArchitectureType = CPU_ARCHTYPE_386FAST; if (core == "normal") { cpudecoder=&CPU_Core_Prefetch_Run; CPU_PrefetchQueueSize = 16; } else if (core == "auto") { cpudecoder=&CPU_Core_Prefetch_Run; CPU_PrefetchQueueSize = 16; CPU_AutoDetermineMode&=(~CPU_AUTODETERMINE_CORE); } else { E_Exit("prefetch queue emulation requires the normal core setting."); } } else if (cputype == "386_slow") { CPU_ArchitectureType = CPU_ARCHTYPE_386SLOW; } else if (cputype == "486_slow") { CPU_ArchitectureType = CPU_ARCHTYPE_486NEWSLOW; } else if (cputype == "486_prefetch") { CPU_ArchitectureType = CPU_ARCHTYPE_486NEWSLOW; if (core == "normal") { cpudecoder=&CPU_Core_Prefetch_Run; CPU_PrefetchQueueSize = 32; } else if (core == "auto") { cpudecoder=&CPU_Core_Prefetch_Run; CPU_PrefetchQueueSize = 32; CPU_AutoDetermineMode&=(~CPU_AUTODETERMINE_CORE); } else { E_Exit("prefetch queue emulation requires the normal core setting."); } } else if (cputype == "pentium_slow") { CPU_ArchitectureType = CPU_ARCHTYPE_PENTIUMSLOW; } if (CPU_ArchitectureType>=CPU_ARCHTYPE_486NEWSLOW) CPU_flag_id_toggle=FLAG_ID; else CPU_flag_id_toggle=0; if(CPU_CycleMax <= 0) CPU_CycleMax = 3000; if(CPU_CycleUp <= 0) CPU_CycleUp = 500; if(CPU_CycleDown <= 0) CPU_CycleDown = 20; if (CPU_CycleAutoAdjust) GFX_SetTitle(CPU_CyclePercUsed,-1,false); else GFX_SetTitle(CPU_CycleMax,-1,false); return true; } ~CPU(){ /* empty */}; }; static CPU * test; void CPU_ShutDown(Section* sec) { #if (C_DYNAMIC_X86) CPU_Core_Dyn_X86_Cache_Close(); #elif (C_DYNREC) CPU_Core_Dynrec_Cache_Close(); #endif delete test; } void CPU_Init(Section* sec) { test = new CPU(sec); sec->AddDestroyFunction(&CPU_ShutDown,true); } //initialize static members bool CPU::inited=false;