// license:GPL-2.0+ // copyright-holders:Jarek Burczynski /* ** ** File: ymf262.c - software implementation of YMF262 ** FM sound generator type OPL3 ** ** Copyright Jarek Burczynski ** ** Version 0.2 ** Revision History: 03-03-2003: initial release - thanks to Olivier Galibert and Chris Hardy for YMF262 and YAC512 chips - thanks to Stiletto for the datasheets Features as listed in 4MF262A6 data sheet: 1. Registers are compatible with YM3812 (OPL2) FM sound source. 2. Up to six sounds can be used as four-operator melody sounds for variety. 3. 18 simultaneous melody sounds, or 15 melody sounds with 5 rhythm sounds (with two operators). 4. 6 four-operator melody sounds and 6 two-operator melody sounds, or 6 four-operator melody sounds, 3 two-operator melody sounds and 5 rhythm sounds (with four operators). 5. 8 selectable waveforms. 6. 4-channel sound output. 7. YMF262 compabile DAC (YAC512) is available. 8. LFO for vibrato and tremolo effedts. 9. 2 programable timers. 10. Shorter register access time compared with YM3812. 11. 5V single supply silicon gate CMOS process. 12. 24 Pin SOP Package (YMF262-M), 48 Pin SQFP Package (YMF262-S). differences between OPL2 and OPL3 not documented in Yamaha datahasheets: - sinus table is a little different: the negative part is off by one... - in order to enable selection of four different waveforms on OPL2 one must set bit 5 in register 0x01(test). on OPL3 this bit is ignored and 4-waveform select works *always*. (Don't confuse this with OPL3's 8-waveform select.) - Envelope Generator: all 15 x rates take zero time on OPL3 (on OPL2 15 0 and 15 1 rates take some time while 15 2 and 15 3 rates take zero time) - channel calculations: output of operator 1 is in perfect sync with output of operator 2 on OPL3; on OPL and OPL2 output of operator 1 is always delayed by one sample compared to output of operator 2 differences between OPL2 and OPL3 shown in datasheets: - YMF262 does not support CSM mode */ #include "emu.h" #include "ymf262.h" /* output final shift */ #if (OPL3_SAMPLE_BITS==16) #define FINAL_SH (0) #define MAXOUT (+32767) #define MINOUT (-32768) #else #define FINAL_SH (8) #define MAXOUT (+127) #define MINOUT (-128) #endif #define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */ #define EG_SH 16 /* 16.16 fixed point (EG timing) */ #define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */ #define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */ #define FREQ_MASK ((1<>8)&0xff,sample[0]); \ } #else /*save to STEREO file */ #define SAVE_ALL_CHANNELS \ { signed int pom = a; \ fputc((unsigned short)pom&0xff,sample[0]); \ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ pom = b; \ fputc((unsigned short)pom&0xff,sample[0]); \ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ } #endif #endif #define OPL3_TYPE_YMF262 (0) /* 36 operators, 8 waveforms */ struct OPL3_SLOT { uint32_t ar; /* attack rate: AR<<2 */ uint32_t dr; /* decay rate: DR<<2 */ uint32_t rr; /* release rate:RR<<2 */ uint8_t KSR; /* key scale rate */ uint8_t ksl; /* keyscale level */ uint8_t ksr; /* key scale rate: kcode>>KSR */ uint8_t mul; /* multiple: mul_tab[ML] */ /* Phase Generator */ uint32_t Cnt; /* frequency counter */ uint32_t Incr; /* frequency counter step */ uint8_t FB; /* feedback shift value */ uint8_t conn_enum; /* slot output route */ int32_t *connect; /* slot output pointer */ int32_t op1_out[2]; /* slot1 output for feedback */ uint8_t CON; /* connection (algorithm) type */ /* Envelope Generator */ uint8_t eg_type; /* percussive/non-percussive mode */ uint8_t state; /* phase type */ uint32_t TL; /* total level: TL << 2 */ int32_t TLL; /* adjusted now TL */ int32_t volume; /* envelope counter */ uint32_t sl; /* sustain level: sl_tab[SL] */ uint32_t eg_m_ar; /* (attack state) */ uint8_t eg_sh_ar; /* (attack state) */ uint8_t eg_sel_ar; /* (attack state) */ uint32_t eg_m_dr; /* (decay state) */ uint8_t eg_sh_dr; /* (decay state) */ uint8_t eg_sel_dr; /* (decay state) */ uint32_t eg_m_rr; /* (release state) */ uint8_t eg_sh_rr; /* (release state) */ uint8_t eg_sel_rr; /* (release state) */ uint32_t key; /* 0 = KEY OFF, >0 = KEY ON */ /* LFO */ uint32_t AMmask; /* LFO Amplitude Modulation enable mask */ uint8_t vib; /* LFO Phase Modulation enable flag (active high)*/ /* waveform select */ uint8_t waveform_number; unsigned int wavetable; //unsigned char reserved[128-84];//speedup: pump up the struct size to power of 2 unsigned char reserved[128-100];//speedup: pump up the struct size to power of 2 }; struct OPL3_CH { OPL3_SLOT SLOT[2]; uint32_t block_fnum; /* block+fnum */ uint32_t fc; /* Freq. Increment base */ uint32_t ksl_base; /* KeyScaleLevel Base step */ uint8_t kcode; /* key code (for key scaling) */ /* there are 12 2-operator channels which can be combined in pairs to form six 4-operator channel, they are: 0 and 3, 1 and 4, 2 and 5, 9 and 12, 10 and 13, 11 and 14 */ uint8_t extended; /* set to 1 if this channel forms up a 4op channel with another channel(only used by first of pair of channels, ie 0,1,2 and 9,10,11) */ unsigned char reserved[512-272];//speedup:pump up the struct size to power of 2 }; /* OPL3 state */ struct OPL3 { OPL3_CH P_CH[18]; /* OPL3 chips have 18 channels */ uint32_t pan[18*4]; /* channels output masks (0xffffffff = enable); 4 masks per one channel */ uint32_t pan_ctrl_value[18]; /* output control values 1 per one channel (1 value contains 4 masks) */ signed int chanout[18]; signed int phase_modulation; /* phase modulation input (SLOT 2) */ signed int phase_modulation2; /* phase modulation input (SLOT 3 in 4 operator channels) */ uint32_t eg_cnt; /* global envelope generator counter */ uint32_t eg_timer; /* global envelope generator counter works at frequency = chipclock/288 (288=8*36) */ uint32_t eg_timer_add; /* step of eg_timer */ uint32_t eg_timer_overflow; /* envelope generator timer overflows every 1 sample (on real chip) */ uint32_t fn_tab[1024]; /* fnumber->increment counter */ /* LFO */ uint32_t LFO_AM; int32_t LFO_PM; uint8_t lfo_am_depth; uint8_t lfo_pm_depth_range; uint32_t lfo_am_cnt; uint32_t lfo_am_inc; uint32_t lfo_pm_cnt; uint32_t lfo_pm_inc; uint32_t noise_rng; /* 23 bit noise shift register */ uint32_t noise_p; /* current noise 'phase' */ uint32_t noise_f; /* current noise period */ uint8_t OPL3_mode; /* OPL3 extension enable flag */ uint8_t rhythm; /* Rhythm mode */ int T[2]; /* timer counters */ uint8_t st[2]; /* timer enable */ uint32_t address; /* address register */ uint8_t status; /* status flag */ uint8_t statusmask; /* status mask */ uint8_t nts; /* NTS (note select) */ /* external event callback handlers */ OPL3_TIMERHANDLER timer_handler; device_t *TimerParam; OPL3_IRQHANDLER IRQHandler; device_t *IRQParam; OPL3_UPDATEHANDLER UpdateHandler; device_t *UpdateParam; uint8_t type; /* chip type */ int clock; /* master clock (Hz) */ int rate; /* sampling rate (Hz) */ double freqbase; /* frequency base */ //attotime TimerBase; /* Timer base time (==sampling time)*/ device_t *device; /* Optional handlers */ void SetTimerHandler(OPL3_TIMERHANDLER handler, device_t *device) { timer_handler = handler; TimerParam = device; } void SetIRQHandler(OPL3_IRQHANDLER handler, device_t *device) { IRQHandler = handler; IRQParam = device; } void SetUpdateHandler(OPL3_UPDATEHANDLER handler, device_t *device) { UpdateHandler = handler; UpdateParam = device; } }; } // anonymous namespace /* mapping of register number (offset) to slot number used by the emulator */ static const int slot_array[32]= { 0, 2, 4, 1, 3, 5,-1,-1, 6, 8,10, 7, 9,11,-1,-1, 12,14,16,13,15,17,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1 }; /* key scale level */ /* table is 3dB/octave , DV converts this into 6dB/octave */ /* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */ #define DV (0.1875/2.0) static const double ksl_tab[8*16]= { /* OCT 0 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, /* OCT 1 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, /* OCT 2 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, /* OCT 3 */ 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, /* OCT 4 */ 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 10.875/DV,11.250/DV,11.625/DV,12.000/DV, /* OCT 5 */ 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 13.875/DV,14.250/DV,14.625/DV,15.000/DV, /* OCT 6 */ 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 16.875/DV,17.250/DV,17.625/DV,18.000/DV, /* OCT 7 */ 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 19.875/DV,20.250/DV,20.625/DV,21.000/DV }; #undef DV /* 0 / 3.0 / 1.5 / 6.0 dB/OCT */ static const uint32_t ksl_shift[4] = { 31, 1, 2, 0 }; /* sustain level table (3dB per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ #define SC(db) (uint32_t) ( db * (2.0/ENV_STEP) ) static const uint32_t sl_tab[16]={ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) }; #undef SC #define RATE_STEPS (8) static const unsigned char eg_inc[15*RATE_STEPS]={ /*cycle:0 1 2 3 4 5 6 7*/ /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */ /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */ /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */ /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */ /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */ /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */ /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */ /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */ /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */ /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */ /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */ /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */ /*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 for decay */ /*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 for attack (zero time) */ /*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ }; #define O(a) (a*RATE_STEPS) /* note that there is no O(13) in this table - it's directly in the code */ static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), /* rates 00-12 */ O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), /* rate 13 */ O( 4),O( 5),O( 6),O( 7), /* rate 14 */ O( 8),O( 9),O(10),O(11), /* rate 15 */ O(12),O(12),O(12),O(12), /* 16 dummy rates (same as 15 3) */ O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), }; #undef O /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */ /*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */ /*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */ #define O(a) (a*1) static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), /* rates 00-12 */ O(12),O(12),O(12),O(12), O(11),O(11),O(11),O(11), O(10),O(10),O(10),O(10), O( 9),O( 9),O( 9),O( 9), O( 8),O( 8),O( 8),O( 8), O( 7),O( 7),O( 7),O( 7), O( 6),O( 6),O( 6),O( 6), O( 5),O( 5),O( 5),O( 5), O( 4),O( 4),O( 4),O( 4), O( 3),O( 3),O( 3),O( 3), O( 2),O( 2),O( 2),O( 2), O( 1),O( 1),O( 1),O( 1), O( 0),O( 0),O( 0),O( 0), /* rate 13 */ O( 0),O( 0),O( 0),O( 0), /* rate 14 */ O( 0),O( 0),O( 0),O( 0), /* rate 15 */ O( 0),O( 0),O( 0),O( 0), /* 16 dummy rates (same as 15 3) */ O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), }; #undef O /* multiple table */ #define ML 2 static const uint8_t mul_tab[16]= { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */ ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML, 8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML }; #undef ML /* TL_TAB_LEN is calculated as: * (12+1)=13 - sinus amplitude bits (Y axis) * additional 1: to compensate for calculations of negative part of waveform * (if we don't add it then the greatest possible _negative_ value would be -2 * and we really need -1 for waveform #7) * 2 - sinus sign bit (Y axis) * TL_RES_LEN - sinus resolution (X axis) */ #define TL_TAB_LEN (13*2*TL_RES_LEN) static signed int tl_tab[TL_TAB_LEN]; #define ENV_QUIET (TL_TAB_LEN>>4) /* sin waveform table in 'decibel' scale */ /* there are eight waveforms on OPL3 chips */ static unsigned int sin_tab[SIN_LEN * 8]; /* LFO Amplitude Modulation table (verified on real YM3812) 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples Length: 210 elements. Each of the elements has to be repeated exactly 64 times (on 64 consecutive samples). The whole table takes: 64 * 210 = 13440 samples. When AM = 1 data is used directly When AM = 0 data is divided by 4 before being used (losing precision is important) */ #define LFO_AM_TAB_ELEMENTS 210 static const uint8_t lfo_am_table[LFO_AM_TAB_ELEMENTS] = { 0,0,0,0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8, 9,9,9,9, 10,10,10,10, 11,11,11,11, 12,12,12,12, 13,13,13,13, 14,14,14,14, 15,15,15,15, 16,16,16,16, 17,17,17,17, 18,18,18,18, 19,19,19,19, 20,20,20,20, 21,21,21,21, 22,22,22,22, 23,23,23,23, 24,24,24,24, 25,25,25,25, 26,26,26, 25,25,25,25, 24,24,24,24, 23,23,23,23, 22,22,22,22, 21,21,21,21, 20,20,20,20, 19,19,19,19, 18,18,18,18, 17,17,17,17, 16,16,16,16, 15,15,15,15, 14,14,14,14, 13,13,13,13, 12,12,12,12, 11,11,11,11, 10,10,10,10, 9,9,9,9, 8,8,8,8, 7,7,7,7, 6,6,6,6, 5,5,5,5, 4,4,4,4, 3,3,3,3, 2,2,2,2, 1,1,1,1 }; /* LFO Phase Modulation table (verified on real YM3812) */ static const int8_t lfo_pm_table[8*8*2] = { /* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/ }; /* lock level of common table */ static int num_lock = 0; /* work table */ #define SLOT7_1 (&chip->P_CH[7].SLOT[SLOT1]) #define SLOT7_2 (&chip->P_CH[7].SLOT[SLOT2]) #define SLOT8_1 (&chip->P_CH[8].SLOT[SLOT1]) #define SLOT8_2 (&chip->P_CH[8].SLOT[SLOT2]) static inline void OPL3_SLOT_CONNECT(OPL3 *chip, OPL3_SLOT *slot) { if (slot->conn_enum == CONN_NULL) { slot->connect = 0; } else if (slot->conn_enum >= CONN_CHAN0 && slot->conn_enum < CONN_PHASEMOD) { slot->connect = &chip->chanout[slot->conn_enum]; } else if (slot->conn_enum == CONN_PHASEMOD) { slot->connect = &chip->phase_modulation; } else if (slot->conn_enum == CONN_PHASEMOD2) { slot->connect = &chip->phase_modulation2; } } static inline int limit( int val, int max, int min ) { if ( val > max ) val = max; else if ( val < min ) val = min; return val; } /* status set and IRQ handling */ static inline void OPL3_STATUS_SET(OPL3 *chip,int flag) { /* set status flag masking out disabled IRQs */ chip->status |= (flag & chip->statusmask); if(!(chip->status & 0x80)) { if(chip->status & 0x7f) { /* IRQ on */ chip->status |= 0x80; /* callback user interrupt handler (IRQ is OFF to ON) */ if(chip->IRQHandler) (chip->IRQHandler)(chip->IRQParam,1); } } } /* status reset and IRQ handling */ static inline void OPL3_STATUS_RESET(OPL3 *chip,int flag) { /* reset status flag */ chip->status &= ~flag; if(chip->status & 0x80) { if (!(chip->status & 0x7f)) { chip->status &= 0x7f; /* callback user interrupt handler (IRQ is ON to OFF) */ if(chip->IRQHandler) (chip->IRQHandler)(chip->IRQParam,0); } } } /* IRQ mask set */ static inline void OPL3_STATUSMASK_SET(OPL3 *chip,int flag) { chip->statusmask = flag; /* IRQ handling check */ OPL3_STATUS_SET(chip,0); OPL3_STATUS_RESET(chip,0); } /* advance LFO to next sample */ static inline void advance_lfo(OPL3 *chip) { uint8_t tmp; /* LFO */ chip->lfo_am_cnt += chip->lfo_am_inc; if (chip->lfo_am_cnt >= ((uint32_t)LFO_AM_TAB_ELEMENTS<lfo_am_cnt -= ((uint32_t)LFO_AM_TAB_ELEMENTS<lfo_am_cnt >> LFO_SH ]; if (chip->lfo_am_depth) chip->LFO_AM = tmp; else chip->LFO_AM = tmp>>2; chip->lfo_pm_cnt += chip->lfo_pm_inc; chip->LFO_PM = ((chip->lfo_pm_cnt>>LFO_SH) & 7) | chip->lfo_pm_depth_range; } /* advance to next sample */ static inline void advance(OPL3 *chip) { OPL3_CH *CH; OPL3_SLOT *op; int i; chip->eg_timer += chip->eg_timer_add; while (chip->eg_timer >= chip->eg_timer_overflow) { chip->eg_timer -= chip->eg_timer_overflow; chip->eg_cnt++; for (i=0; i<9*2*2; i++) { CH = &chip->P_CH[i/2]; op = &CH->SLOT[i&1]; #if 1 /* Envelope Generator */ switch(op->state) { case EG_ATT: /* attack phase */ // if ( !(chip->eg_cnt & ((1<eg_sh_ar)-1) ) ) if ( !(chip->eg_cnt & op->eg_m_ar) ) { op->volume += (~op->volume * (eg_inc[op->eg_sel_ar + ((chip->eg_cnt>>op->eg_sh_ar)&7)]) ) >>3; if (op->volume <= MIN_ATT_INDEX) { op->volume = MIN_ATT_INDEX; op->state = EG_DEC; } } break; case EG_DEC: /* decay phase */ // if ( !(chip->eg_cnt & ((1<eg_sh_dr)-1) ) ) if ( !(chip->eg_cnt & op->eg_m_dr) ) { op->volume += eg_inc[op->eg_sel_dr + ((chip->eg_cnt>>op->eg_sh_dr)&7)]; if ( op->volume >= op->sl ) op->state = EG_SUS; } break; case EG_SUS: /* sustain phase */ /* this is important behaviour: one can change percusive/non-percussive modes on the fly and the chip will remain in sustain phase - verified on real YM3812 */ if(op->eg_type) /* non-percussive mode */ { /* do nothing */ } else /* percussive mode */ { /* during sustain phase chip adds Release Rate (in percussive mode) */ // if ( !(chip->eg_cnt & ((1<eg_sh_rr)-1) ) ) if ( !(chip->eg_cnt & op->eg_m_rr) ) { op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) op->volume = MAX_ATT_INDEX; } /* else do nothing in sustain phase */ } break; case EG_REL: /* release phase */ // if ( !(chip->eg_cnt & ((1<eg_sh_rr)-1) ) ) if ( !(chip->eg_cnt & op->eg_m_rr) ) { op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) { op->volume = MAX_ATT_INDEX; op->state = EG_OFF; } } break; default: break; } #endif } } for (i=0; i<9*2*2; i++) { CH = &chip->P_CH[i/2]; op = &CH->SLOT[i&1]; /* Phase Generator */ if(op->vib) { uint8_t block; unsigned int block_fnum = CH->block_fnum; unsigned int fnum_lfo = (block_fnum&0x0380) >> 7; signed int lfo_fn_table_index_offset = lfo_pm_table[chip->LFO_PM + 16*fnum_lfo ]; if (lfo_fn_table_index_offset) /* LFO phase modulation active */ { block_fnum += lfo_fn_table_index_offset; block = (block_fnum&0x1c00) >> 10; op->Cnt += (chip->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul; } else /* LFO phase modulation = zero */ { op->Cnt += op->Incr; } } else /* LFO phase modulation disabled for this operator */ { op->Cnt += op->Incr; } } /* The Noise Generator of the YM3812 is 23-bit shift register. * Period is equal to 2^23-2 samples. * Register works at sampling frequency of the chip, so output * can change on every sample. * * Output of the register and input to the bit 22 is: * bit0 XOR bit14 XOR bit15 XOR bit22 * * Simply use bit 22 as the noise output. */ chip->noise_p += chip->noise_f; i = chip->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */ chip->noise_p &= FREQ_MASK; while (i) { /* uint32_t j; j = ( (chip->noise_rng) ^ (chip->noise_rng>>14) ^ (chip->noise_rng>>15) ^ (chip->noise_rng>>22) ) & 1; chip->noise_rng = (j<<22) | (chip->noise_rng>>1); */ /* Instead of doing all the logic operations above, we use a trick here (and use bit 0 as the noise output). The difference is only that the noise bit changes one step ahead. This doesn't matter since we don't know what is real state of the noise_rng after the reset. */ if (chip->noise_rng & 1) chip->noise_rng ^= 0x800302; chip->noise_rng >>= 1; i--; } } static inline signed int op_calc(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab) { uint32_t p; p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } static inline signed int op_calc1(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab) { uint32_t p; p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm))>>FREQ_SH) & SIN_MASK)]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } #define volume_calc(OP) ((OP)->TLL + ((uint32_t)(OP)->volume) + (chip->LFO_AM & (OP)->AMmask)) /* calculate output of a standard 2 operator channel (or 1st part of a 4-op channel) */ static inline void chan_calc( OPL3 *chip, OPL3_CH *CH ) { OPL3_SLOT *SLOT; unsigned int env; signed int out; chip->phase_modulation = 0; chip->phase_modulation2= 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; SLOT->op1_out[1] = 0; if (env < ENV_QUIET) { if (!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); } if (SLOT->connect) { *SLOT->connect += SLOT->op1_out[1]; } //logerror("out0=%5i vol0=%4i ", SLOT->op1_out[1], env ); /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if ((env < ENV_QUIET) && SLOT->connect) *SLOT->connect += op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable); //logerror("out1=%5i vol1=%4i\n", op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable), env ); } /* calculate output of a 2nd part of 4-op channel */ static inline void chan_calc_ext( OPL3 *chip, OPL3_CH *CH ) { OPL3_SLOT *SLOT; unsigned int env; chip->phase_modulation = 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env = volume_calc(SLOT); if (env < ENV_QUIET && SLOT->connect) *SLOT->connect += op_calc(SLOT->Cnt, env, chip->phase_modulation2, SLOT->wavetable ); /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if (env < ENV_QUIET && SLOT->connect) *SLOT->connect += op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable); } /* operators used in the rhythm sounds generation process: Envelope Generator: channel operator register number Bass High Snare Tom Top / slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal 6 / 0 12 50 70 90 f0 + 6 / 1 15 53 73 93 f3 + 7 / 0 13 51 71 91 f1 + 7 / 1 16 54 74 94 f4 + 8 / 0 14 52 72 92 f2 + 8 / 1 17 55 75 95 f5 + Phase Generator: channel operator register number Bass High Snare Tom Top / slot number MULTIPLE Drum Hat Drum Tom Cymbal 6 / 0 12 30 + 6 / 1 15 33 + 7 / 0 13 31 + + + 7 / 1 16 34 ----- n o t u s e d ----- 8 / 0 14 32 + 8 / 1 17 35 + + channel operator register number Bass High Snare Tom Top number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal 6 12,15 B6 A6 + 7 13,16 B7 A7 + + + 8 14,17 B8 A8 + + + */ /* calculate rhythm */ static inline void chan_calc_rhythm( OPL3 *chip, OPL3_CH *CH, unsigned int noise ) { OPL3_SLOT *SLOT; signed int *chanout = chip->chanout; signed int out; unsigned int env; /* Bass Drum (verified on real YM3812): - depends on the channel 6 'connect' register: when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out) when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored - output sample always is multiplied by 2 */ chip->phase_modulation = 0; /* SLOT 1 */ SLOT = &CH[6].SLOT[SLOT1]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; if (!SLOT->CON) chip->phase_modulation = SLOT->op1_out[0]; //else ignore output of operator 1 SLOT->op1_out[1] = 0; if( env < ENV_QUIET ) { if (!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); } /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if( env < ENV_QUIET ) chanout[6] += op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable) * 2; /* Phase generation is based on: */ // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) // SD (16) channel 7->slot 1 // TOM (14) channel 8->slot 1 // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) /* Envelope generation based on: */ // HH channel 7->slot1 // SD channel 7->slot2 // TOM channel 8->slot1 // TOP channel 8->slot2 /* The following formulas can be well optimized. I leave them in direct form for now (in case I've missed something). */ /* High Hat (verified on real YM3812) */ env = volume_calc(SLOT7_1); if( env < ENV_QUIET ) { /* high hat phase generation: phase = d0 or 234 (based on frequency only) phase = 34 or 2d0 (based on noise) */ /* base frequency derived from operator 1 in channel 7 */ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; unsigned char res1 = (bit2 ^ bit7) | bit3; /* when res1 = 0 phase = 0x000 | 0xd0; */ /* when res1 = 1 phase = 0x200 | (0xd0>>2); */ uint32_t phase = res1 ? (0x200|(0xd0>>2)) : 0xd0; /* enable gate based on frequency of operator 2 in channel 8 */ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; unsigned char res2 = (bit3e ^ bit5e); /* when res2 = 0 pass the phase from calculation above (res1); */ /* when res2 = 1 phase = 0x200 | (0xd0>>2); */ if (res2) phase = (0x200|(0xd0>>2)); /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */ /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */ if (phase&0x200) { if (noise) phase = 0x200|0xd0; } else /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */ /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */ { if (noise) phase = 0xd0>>2; } chanout[7] += op_calc(phase<wavetable) * 2; } /* Snare Drum (verified on real YM3812) */ env = volume_calc(SLOT7_2); if( env < ENV_QUIET ) { /* base frequency derived from operator 1 in channel 7 */ unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1; /* when bit8 = 0 phase = 0x100; */ /* when bit8 = 1 phase = 0x200; */ uint32_t phase = bit8 ? 0x200 : 0x100; /* Noise bit XOR'es phase by 0x100 */ /* when noisebit = 0 pass the phase from calculation above */ /* when noisebit = 1 phase ^= 0x100; */ /* in other words: phase ^= (noisebit<<8); */ if (noise) phase ^= 0x100; chanout[7] += op_calc(phase<wavetable) * 2; } /* Tom Tom (verified on real YM3812) */ env = volume_calc(SLOT8_1); if( env < ENV_QUIET ) chanout[8] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2; /* Top Cymbal (verified on real YM3812) */ env = volume_calc(SLOT8_2); if( env < ENV_QUIET ) { /* base frequency derived from operator 1 in channel 7 */ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; unsigned char res1 = (bit2 ^ bit7) | bit3; /* when res1 = 0 phase = 0x000 | 0x100; */ /* when res1 = 1 phase = 0x200 | 0x100; */ uint32_t phase = res1 ? 0x300 : 0x100; /* enable gate based on frequency of operator 2 in channel 8 */ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; unsigned char res2 = (bit3e ^ bit5e); /* when res2 = 0 pass the phase from calculation above (res1); */ /* when res2 = 1 phase = 0x200 | 0x100; */ if (res2) phase = 0x300; chanout[8] += op_calc(phase<wavetable) * 2; } } /* generic table initialize */ static int init_tables(void) { signed int i,x; signed int n; double o,m; for (x=0; x>= 4; /* 12 bits here */ if (n&1) /* round to nearest */ n = (n>>1)+1; else n = n>>1; /* 11 bits here (rounded) */ n <<= 1; /* 12 bits here (as in real chip) */ tl_tab[ x*2 + 0 ] = n; tl_tab[ x*2 + 1 ] = ~tl_tab[ x*2 + 0 ]; /* this *is* different from OPL2 (verified on real YMF262) */ for (i=1; i<13; i++) { tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i; tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = ~tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; /* this *is* different from OPL2 (verified on real YMF262) */ } #if 0 logerror("tl %04i", x*2); for (i=0; i<13; i++) logerror(", [%02i] %5i", i*2, tl_tab[ x*2 +0 + i*2*TL_RES_LEN ] ); /* positive */ logerror("\n"); logerror("tl %04i", x*2); for (i=0; i<13; i++) logerror(", [%02i] %5i", i*2, tl_tab[ x*2 +1 + i*2*TL_RES_LEN ] ); /* negative */ logerror("\n"); #endif } for (i=0; i0.0) o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */ else o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */ o = o / (ENV_STEP/4); n = (int)(2.0*o); if (n&1) /* round to nearest */ n = (n>>1)+1; else n = n>>1; sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 ); /*logerror("YMF262.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/ } for (i=0; i>1) ]; /* waveform 3: _ _ _ _ */ /* / |_/ |_/ |_/ |_*/ /* abs(output only first quarter of the sinus waveform) */ if (i & (1<<(SIN_BITS-2)) ) sin_tab[3*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)]; /* waveform 4: */ /* /\ ____/\ ____*/ /* \/ \/ */ /* output whole sinus waveform in half the cycle(step=2) and output 0 on the other half of cycle */ if (i & (1<<(SIN_BITS-1)) ) sin_tab[4*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[4*SIN_LEN+i] = sin_tab[i*2]; /* waveform 5: */ /* /\/\____/\/\____*/ /* */ /* output abs(whole sinus) waveform in half the cycle(step=2) and output 0 on the other half of cycle */ if (i & (1<<(SIN_BITS-1)) ) sin_tab[5*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[5*SIN_LEN+i] = sin_tab[(i*2) & (SIN_MASK>>1) ]; /* waveform 6: ____ ____ */ /* */ /* ____ ____*/ /* output maximum in half the cycle and output minimum on the other half of cycle */ if (i & (1<<(SIN_BITS-1)) ) sin_tab[6*SIN_LEN+i] = 1; /* negative */ else sin_tab[6*SIN_LEN+i] = 0; /* positive */ /* waveform 7: */ /* |\____ |\____ */ /* \| \|*/ /* output sawtooth waveform */ if (i & (1<<(SIN_BITS-1)) ) x = ((SIN_LEN-1)-i)*16 + 1; /* negative: from 8177 to 1 */ else x = i*16; /*positive: from 0 to 8176 */ if (x > TL_TAB_LEN) x = TL_TAB_LEN; /* clip to the allowed range */ sin_tab[7*SIN_LEN+i] = x; //logerror("YMF262.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] ); //logerror("YMF262.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] ); //logerror("YMF262.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] ); //logerror("YMF262.C: sin4[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[4*SIN_LEN+i], tl_tab[sin_tab[4*SIN_LEN+i]] ); //logerror("YMF262.C: sin5[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[5*SIN_LEN+i], tl_tab[sin_tab[5*SIN_LEN+i]] ); //logerror("YMF262.C: sin6[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[6*SIN_LEN+i], tl_tab[sin_tab[6*SIN_LEN+i]] ); //logerror("YMF262.C: sin7[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[7*SIN_LEN+i], tl_tab[sin_tab[7*SIN_LEN+i]] ); } /*logerror("YMF262.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/ #ifdef SAVE_SAMPLE sample[0]=fopen("sampsum.pcm","wb"); #endif return 1; } static void OPLCloseTable( void ) { #ifdef SAVE_SAMPLE fclose(sample[0]); #endif } static void OPL3_initalize(OPL3 *chip) { int i; /* frequency base */ chip->freqbase = (chip->rate) ? ((double)chip->clock / (8.0*36)) / chip->rate : 0; #if 0 chip->rate = (double)chip->clock / (8.0*36); chip->freqbase = 1.0; #endif /* logerror("YMF262: freqbase=%f\n", chip->freqbase); */ /* Timer base time */ //chip->TimerBase = attotime::from_hz(chip->clock) * (8*36); /* make fnumber -> increment counter table */ for( i=0 ; i < 1024 ; i++ ) { /* opn phase increment counter = 20bit */ chip->fn_tab[i] = (uint32_t)( (double)i * 64 * chip->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */ #if 0 logerror("YMF262.C: fn_tab[%4i] = %08x (dec=%8i)\n", i, chip->fn_tab[i]>>6, chip->fn_tab[i]>>6 ); #endif } #if 0 for( i=0 ; i < 16 ; i++ ) { logerror("YMF262.C: sl_tab[%i] = %08x\n", i, sl_tab[i] ); } for( i=0 ; i < 8 ; i++ ) { int j; logerror("YMF262.C: ksl_tab[oct=%2i] =",i); for (j=0; j<16; j++) { logerror("%08x ", static_cast(ksl_tab[i*16+j]) ); } logerror("\n"); } #endif /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */ /* One entry from LFO_AM_TABLE lasts for 64 samples */ chip->lfo_am_inc = (1.0 / 64.0 ) * (1<freqbase; /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */ chip->lfo_pm_inc = (1.0 / 1024.0) * (1<freqbase; /*logerror ("chip->lfo_am_inc = %8x ; chip->lfo_pm_inc = %8x\n", chip->lfo_am_inc, chip->lfo_pm_inc);*/ /* Noise generator: a step takes 1 sample */ chip->noise_f = (1.0 / 1.0) * (1<freqbase; chip->eg_timer_add = (1<freqbase; chip->eg_timer_overflow = ( 1 ) * (1<eg_timer_add, chip->eg_timer_overflow);*/ } static inline void FM_KEYON(OPL3_SLOT *SLOT, uint32_t key_set) { if( !SLOT->key ) { /* restart Phase Generator */ SLOT->Cnt = 0; /* phase -> Attack */ SLOT->state = EG_ATT; } SLOT->key |= key_set; } static inline void FM_KEYOFF(OPL3_SLOT *SLOT, uint32_t key_clr) { if( SLOT->key ) { SLOT->key &= key_clr; if( !SLOT->key ) { /* phase -> Release */ if (SLOT->state>EG_REL) SLOT->state = EG_REL; } } } /* update phase increment counter of operator (also update the EG rates if necessary) */ static inline void CALC_FCSLOT(OPL3_CH *CH,OPL3_SLOT *SLOT) { int ksr; /* (frequency) phase increment counter */ SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if( SLOT->ksr != ksr ) { SLOT->ksr = ksr; /* calculate envelope generator rates */ if ((SLOT->ar + SLOT->ksr) < 16+60) { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_m_ar = (1<eg_sh_ar)-1; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_m_ar = (1<eg_sh_ar)-1; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_m_dr = (1<eg_sh_dr)-1; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_m_rr = (1<eg_sh_rr)-1; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; } } /* set multi,am,vib,EG-TYP,KSR,mul */ static inline void set_mul(OPL3 *chip,int slot,int v) { OPL3_CH *CH = &chip->P_CH[slot/2]; OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->mul = mul_tab[v&0x0f]; SLOT->KSR = (v&0x10) ? 0 : 2; SLOT->eg_type = (v&0x20); SLOT->vib = (v&0x40); SLOT->AMmask = (v&0x80) ? ~0 : 0; if (chip->OPL3_mode & 1) { int chan_no = slot/2; /* in OPL3 mode */ //DO THIS: //if this is one of the slots of 1st channel forming up a 4-op channel //do normal operation //else normal 2 operator function //OR THIS: //if this is one of the slots of 2nd channel forming up a 4-op channel //update it using channel data of 1st channel of a pair //else normal 2 operator function switch(chan_no) { case 0: case 1: case 2: case 9: case 10: case 11: if (CH->extended) { /* normal */ CALC_FCSLOT(CH,SLOT); } else { /* normal */ CALC_FCSLOT(CH,SLOT); } break; case 3: case 4: case 5: case 12: case 13: case 14: if ((CH-3)->extended) { /* update this SLOT using frequency data for 1st channel of a pair */ CALC_FCSLOT(CH-3,SLOT); } else { /* normal */ CALC_FCSLOT(CH,SLOT); } break; default: /* normal */ CALC_FCSLOT(CH,SLOT); break; } } else { /* in OPL2 mode */ CALC_FCSLOT(CH,SLOT); } } /* set ksl & tl */ static inline void set_ksl_tl(OPL3 *chip,int slot,int v) { OPL3_CH *CH = &chip->P_CH[slot/2]; OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->ksl = ksl_shift[v >> 6]; SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */ if (chip->OPL3_mode & 1) { int chan_no = slot/2; /* in OPL3 mode */ //DO THIS: //if this is one of the slots of 1st channel forming up a 4-op channel //do normal operation //else normal 2 operator function //OR THIS: //if this is one of the slots of 2nd channel forming up a 4-op channel //update it using channel data of 1st channel of a pair //else normal 2 operator function switch(chan_no) { case 0: case 1: case 2: case 9: case 10: case 11: if (CH->extended) { /* normal */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } else { /* normal */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } break; case 3: case 4: case 5: case 12: case 13: case 14: if ((CH-3)->extended) { /* update this SLOT using frequency data for 1st channel of a pair */ SLOT->TLL = SLOT->TL + ((CH-3)->ksl_base>>SLOT->ksl); } else { /* normal */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } break; default: /* normal */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); break; } } else { /* in OPL2 mode */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } } /* set attack rate & decay rate */ static inline void set_ar_dr(OPL3 *chip,int slot,int v) { OPL3_CH *CH = &chip->P_CH[slot/2]; OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0; if ((SLOT->ar + SLOT->ksr) < 16+60) /* verified on real YMF262 - all 15 x rates take "zero" time */ { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_m_ar = (1<eg_sh_ar)-1; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_m_ar = (1<eg_sh_ar)-1; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_m_dr = (1<eg_sh_dr)-1; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; } /* set sustain level & release rate */ static inline void set_sl_rr(OPL3 *chip,int slot,int v) { OPL3_CH *CH = &chip->P_CH[slot/2]; OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->sl = sl_tab[ v>>4 ]; SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_m_rr = (1<eg_sh_rr)-1; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; } static void update_channels(OPL3 *chip, OPL3_CH *CH) { /* update channel passed as a parameter and a channel at CH+=3; */ if (CH->extended) { /* we've just switched to combined 4 operator mode */ } else { /* we've just switched to normal 2 operator mode */ } } /* write a value v to register r on OPL chip */ static void OPL3WriteReg(OPL3 *chip, int r, int v) { OPL3_CH *CH; unsigned int ch_offset = 0; int slot; int block_fnum; if(r&0x100) { switch(r) { case 0x101: /* test register */ return; case 0x104: /* 6 channels enable */ { uint8_t prev; CH = &chip->P_CH[0]; /* channel 0 */ prev = CH->extended; CH->extended = (v>>0) & 1; if(prev != CH->extended) update_channels(chip, CH); CH++; /* channel 1 */ prev = CH->extended; CH->extended = (v>>1) & 1; if(prev != CH->extended) update_channels(chip, CH); CH++; /* channel 2 */ prev = CH->extended; CH->extended = (v>>2) & 1; if(prev != CH->extended) update_channels(chip, CH); CH = &chip->P_CH[9]; /* channel 9 */ prev = CH->extended; CH->extended = (v>>3) & 1; if(prev != CH->extended) update_channels(chip, CH); CH++; /* channel 10 */ prev = CH->extended; CH->extended = (v>>4) & 1; if(prev != CH->extended) update_channels(chip, CH); CH++; /* channel 11 */ prev = CH->extended; CH->extended = (v>>5) & 1; if(prev != CH->extended) update_channels(chip, CH); } return; case 0x105: /* OPL3 extensions enable register */ chip->OPL3_mode = v&0x01; /* OPL3 mode when bit0=1 otherwise it is OPL2 mode */ /* following behaviour was tested on real YMF262, switching OPL3/OPL2 modes on the fly: - does not change the waveform previously selected (unless when ....) - does not update CH.A, CH.B, CH.C and CH.D output selectors (registers c0-c8) (unless when ....) - does not disable channels 9-17 on OPL3->OPL2 switch - does not switch 4 operator channels back to 2 operator channels */ return; default: if (r < 0x120) chip->device->logerror("YMF262: write to unknown register (set#2): %03x value=%02x\n",r,v); break; } ch_offset = 9; /* register page #2 starts from channel 9 (counting from 0) */ } /* adjust bus to 8 bits */ r &= 0xff; v &= 0xff; switch(r&0xe0) { case 0x00: /* 00-1f:control */ switch(r&0x1f) { case 0x01: /* test register */ break; case 0x02: /* Timer 1 */ chip->T[0] = (256-v)*4; break; case 0x03: /* Timer 2 */ chip->T[1] = (256-v)*16; break; #if 0 case 0x04: /* IRQ clear / mask and Timer enable */ if(v&0x80) { /* IRQ flags clear */ OPL3_STATUS_RESET(chip,0x60); } else { /* set IRQ mask ,timer enable */ uint8_t st1 = v & 1; uint8_t st2 = (v>>1) & 1; /* IRQRST,T1MSK,t2MSK,x,x,x,ST2,ST1 */ OPL3_STATUS_RESET(chip, v & 0x60); OPL3_STATUSMASK_SET(chip, (~v) & 0x60 ); /* timer 2 */ if(chip->st[1] != st2) { attotime period = st2 ? chip->TimerBase * chip->T[1] : attotime::zero; chip->st[1] = st2; if (chip->timer_handler) (chip->timer_handler)(chip->TimerParam,1,period); } /* timer 1 */ if(chip->st[0] != st1) { attotime period = st1 ? chip->TimerBase * chip->T[0] : attotime::zero; chip->st[0] = st1; if (chip->timer_handler) (chip->timer_handler)(chip->TimerParam,0,period); } } #endif break; case 0x08: /* x,NTS,x,x, x,x,x,x */ chip->nts = v; break; default: chip->device->logerror("YMF262: write to unknown register: %02x value=%02x\n",r,v); break; } break; case 0x20: /* am ON, vib ON, ksr, eg_type, mul */ slot = slot_array[r&0x1f]; if(slot < 0) return; set_mul(chip, slot + ch_offset*2, v); break; case 0x40: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ksl_tl(chip, slot + ch_offset*2, v); break; case 0x60: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ar_dr(chip, slot + ch_offset*2, v); break; case 0x80: slot = slot_array[r&0x1f]; if(slot < 0) return; set_sl_rr(chip, slot + ch_offset*2, v); break; case 0xa0: if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */ { if (ch_offset != 0) /* 0xbd register is present in set #1 only */ return; chip->lfo_am_depth = v & 0x80; chip->lfo_pm_depth_range = (v&0x40) ? 8 : 0; chip->rhythm = v&0x3f; if(chip->rhythm&0x20) { /* BD key on/off */ if(v&0x10) { FM_KEYON (&chip->P_CH[6].SLOT[SLOT1], 2); FM_KEYON (&chip->P_CH[6].SLOT[SLOT2], 2); } else { FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT1],~2); FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT2],~2); } /* HH key on/off */ if(v&0x01) FM_KEYON (&chip->P_CH[7].SLOT[SLOT1], 2); else FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT1],~2); /* SD key on/off */ if(v&0x08) FM_KEYON (&chip->P_CH[7].SLOT[SLOT2], 2); else FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT2],~2); /* TOM key on/off */ if(v&0x04) FM_KEYON (&chip->P_CH[8].SLOT[SLOT1], 2); else FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT1],~2); /* TOP-CY key on/off */ if(v&0x02) FM_KEYON (&chip->P_CH[8].SLOT[SLOT2], 2); else FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT2],~2); } else { /* BD key off */ FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT1],~2); FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT2],~2); /* HH key off */ FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT1],~2); /* SD key off */ FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT2],~2); /* TOM key off */ FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT1],~2); /* TOP-CY off */ FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT2],~2); } return; } /* keyon,block,fnum */ if( (r&0x0f) > 8) return; CH = &chip->P_CH[(r&0x0f) + ch_offset]; if(!(r&0x10)) { /* a0-a8 */ block_fnum = (CH->block_fnum&0x1f00) | v; } else { /* b0-b8 */ block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); if (chip->OPL3_mode & 1) { int chan_no = (r&0x0f) + ch_offset; /* in OPL3 mode */ //DO THIS: //if this is 1st channel forming up a 4-op channel //ALSO keyon/off slots of 2nd channel forming up 4-op channel //else normal 2 operator function keyon/off //OR THIS: //if this is 2nd channel forming up 4-op channel just do nothing //else normal 2 operator function keyon/off switch(chan_no) { case 0: case 1: case 2: case 9: case 10: case 11: if (CH->extended) { //if this is 1st channel forming up a 4-op channel //ALSO keyon/off slots of 2nd channel forming up 4-op channel if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); FM_KEYON (&(CH+3)->SLOT[SLOT1], 1); FM_KEYON (&(CH+3)->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); FM_KEYOFF(&(CH+3)->SLOT[SLOT1],~1); FM_KEYOFF(&(CH+3)->SLOT[SLOT2],~1); } } else { //else normal 2 operator function keyon/off if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); } } break; case 3: case 4: case 5: case 12: case 13: case 14: if ((CH-3)->extended) { //if this is 2nd channel forming up 4-op channel just do nothing } else { //else normal 2 operator function keyon/off if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); } } break; default: if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); } break; } } else { if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); } } } /* update */ if(CH->block_fnum != block_fnum) { uint8_t block = block_fnum >> 10; CH->block_fnum = block_fnum; CH->ksl_base = static_cast(ksl_tab[block_fnum>>6]); CH->fc = chip->fn_tab[block_fnum&0x03ff] >> (7-block); /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */ CH->kcode = (CH->block_fnum&0x1c00)>>9; /* the info below is actually opposite to what is stated in the Manuals (verifed on real YMF262) */ /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */ /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */ if (chip->nts&0x40) CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */ else CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */ if (chip->OPL3_mode & 1) { int chan_no = (r&0x0f) + ch_offset; /* in OPL3 mode */ //DO THIS: //if this is 1st channel forming up a 4-op channel //ALSO update slots of 2nd channel forming up 4-op channel //else normal 2 operator function keyon/off //OR THIS: //if this is 2nd channel forming up 4-op channel just do nothing //else normal 2 operator function keyon/off switch(chan_no) { case 0: case 1: case 2: case 9: case 10: case 11: if (CH->extended) { //if this is 1st channel forming up a 4-op channel //ALSO update slots of 2nd channel forming up 4-op channel /* refresh Total Level in FOUR SLOTs of this channel and channel+3 using data from THIS channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); (CH+3)->SLOT[SLOT1].TLL = (CH+3)->SLOT[SLOT1].TL + (CH->ksl_base>>(CH+3)->SLOT[SLOT1].ksl); (CH+3)->SLOT[SLOT2].TLL = (CH+3)->SLOT[SLOT2].TL + (CH->ksl_base>>(CH+3)->SLOT[SLOT2].ksl); /* refresh frequency counter in FOUR SLOTs of this channel and channel+3 using data from THIS channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); CALC_FCSLOT(CH,&(CH+3)->SLOT[SLOT1]); CALC_FCSLOT(CH,&(CH+3)->SLOT[SLOT2]); } else { //else normal 2 operator function /* refresh Total Level in both SLOTs of this channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); /* refresh frequency counter in both SLOTs of this channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } break; case 3: case 4: case 5: case 12: case 13: case 14: if ((CH-3)->extended) { //if this is 2nd channel forming up 4-op channel just do nothing } else { //else normal 2 operator function /* refresh Total Level in both SLOTs of this channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); /* refresh frequency counter in both SLOTs of this channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } break; default: /* refresh Total Level in both SLOTs of this channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); /* refresh frequency counter in both SLOTs of this channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); break; } } else { /* in OPL2 mode */ /* refresh Total Level in both SLOTs of this channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); /* refresh frequency counter in both SLOTs of this channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } } break; case 0xc0: /* CH.D, CH.C, CH.B, CH.A, FB(3bits), C */ if( (r&0xf) > 8) return; CH = &chip->P_CH[(r&0xf) + ch_offset]; if( chip->OPL3_mode & 1 ) { int base = ((r&0xf) + ch_offset) * 4; /* OPL3 mode */ chip->pan[ base ] = (v & 0x10) ? ~0 : 0; /* ch.A */ chip->pan[ base +1 ] = (v & 0x20) ? ~0 : 0; /* ch.B */ chip->pan[ base +2 ] = (v & 0x40) ? ~0 : 0; /* ch.C */ chip->pan[ base +3 ] = (v & 0x80) ? ~0 : 0; /* ch.D */ } else { int base = ((r&0xf) + ch_offset) * 4; /* OPL2 mode - always enabled */ chip->pan[ base ] = ~0; /* ch.A */ chip->pan[ base +1 ] = ~0; /* ch.B */ chip->pan[ base +2 ] = ~0; /* ch.C */ chip->pan[ base +3 ] = ~0; /* ch.D */ } chip->pan_ctrl_value[ (r&0xf) + ch_offset ] = v; /* store control value for OPL3/OPL2 mode switching on the fly */ CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0; CH->SLOT[SLOT1].CON = v&1; if( chip->OPL3_mode & 1 ) { int chan_no = (r&0x0f) + ch_offset; switch(chan_no) { case 0: case 1: case 2: case 9: case 10: case 11: if (CH->extended) { uint8_t conn = (CH->SLOT[SLOT1].CON<<1) | ((CH+3)->SLOT[SLOT1].CON<<0); switch(conn) { case 0: /* 1 -> 2 -> 3 -> 4 - out */ CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2; (CH+3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; (CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3; break; case 1: /* 1 -> 2 -\ 3 -> 4 -+- out */ CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no; (CH+3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; (CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3; break; case 2: /* 1 -----------\ 2 -> 3 -> 4 -+- out */ CH->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no; CH->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2; (CH+3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; (CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3; break; case 3: /* 1 ------\ 2 -> 3 -+- out 4 ------/ */ CH->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no; CH->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2; (CH+3)->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no + 3; (CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3; break; } OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]); OPL3_SLOT_CONNECT(chip, &(CH+3)->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &(CH+3)->SLOT[SLOT2]); } else { /* 2 operators mode */ CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset; OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]); } break; case 3: case 4: case 5: case 12: case 13: case 14: if ((CH-3)->extended) { uint8_t conn = ((CH-3)->SLOT[SLOT1].CON<<1) | (CH->SLOT[SLOT1].CON<<0); switch(conn) { case 0: /* 1 -> 2 -> 3 -> 4 - out */ (CH-3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; (CH-3)->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2; CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no; break; case 1: /* 1 -> 2 -\ 3 -> 4 -+- out */ (CH-3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; (CH-3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no - 3; CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no; break; case 2: /* 1 -----------\ 2 -> 3 -> 4 -+- out */ (CH-3)->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no - 3; (CH-3)->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2; CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no; break; case 3: /* 1 ------\ 2 -> 3 -+- out 4 ------/ */ (CH-3)->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no - 3; (CH-3)->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2; CH->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no; break; } OPL3_SLOT_CONNECT(chip, &(CH-3)->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &(CH-3)->SLOT[SLOT2]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]); } else { /* 2 operators mode */ CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset; OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]); } break; default: /* 2 operators mode */ CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset; OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]); break; } } else { /* OPL2 mode - always 2 operators mode */ CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD; CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset; OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]); OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]); } break; case 0xe0: /* waveform select */ slot = slot_array[r&0x1f]; if(slot < 0) return; slot += ch_offset*2; CH = &chip->P_CH[slot/2]; /* store 3-bit value written regardless of current OPL2 or OPL3 mode... (verified on real YMF262) */ v &= 7; CH->SLOT[slot&1].waveform_number = v; /* ... but select only waveforms 0-3 in OPL2 mode */ if( !(chip->OPL3_mode & 1) ) { v &= 3; /* we're in OPL2 mode */ } CH->SLOT[slot&1].wavetable = v * SIN_LEN; break; } } /* lock/unlock for common table */ static int OPL3_LockTable(device_t *device) { num_lock++; if(num_lock>1) return 0; /* first time */ if( !init_tables() ) { num_lock--; return -1; } return 0; } static void OPL3_UnLockTable(void) { if(num_lock) num_lock--; if(num_lock) return; /* last time */ OPLCloseTable(); } static void OPL3ResetChip(OPL3 *chip) { int c,s; chip->eg_timer = 0; chip->eg_cnt = 0; chip->noise_rng = 1; /* noise shift register */ chip->nts = 0; /* note split */ OPL3_STATUS_RESET(chip,0x60); /* reset with register write */ OPL3WriteReg(chip,0x01,0); /* test register */ OPL3WriteReg(chip,0x02,0); /* Timer1 */ OPL3WriteReg(chip,0x03,0); /* Timer2 */ OPL3WriteReg(chip,0x04,0); /* IRQ mask clear */ //FIX IT registers 101, 104 and 105 //FIX IT (dont change CH.D, CH.C, CH.B and CH.A in C0-C8 registers) for(c = 0xff ; c >= 0x20 ; c-- ) OPL3WriteReg(chip,c,0); //FIX IT (dont change CH.D, CH.C, CH.B and CH.A in C0-C8 registers) for(c = 0x1ff ; c >= 0x120 ; c-- ) OPL3WriteReg(chip,c,0); /* reset operator parameters */ for( c = 0 ; c < 9*2 ; c++ ) { OPL3_CH *CH = &chip->P_CH[c]; for(s = 0 ; s < 2 ; s++ ) { CH->SLOT[s].state = EG_OFF; CH->SLOT[s].volume = MAX_ATT_INDEX; } } } /* Create one of virtual YMF262 */ /* 'clock' is chip clock in Hz */ /* 'rate' is sampling rate */ static OPL3 *OPL3Create(device_t *device, int clock, int rate, int type) { OPL3 *chip; if (OPL3_LockTable(device) == -1) return 0; /* allocate memory block */ chip = auto_alloc_clear(device->machine(), OPL3 ); chip->device = device; chip->type = type; chip->clock = clock; chip->rate = rate; /* init global tables */ OPL3_initalize(chip); /* reset chip */ OPL3ResetChip(chip); return chip; } /* Destroy one of virtual YMF262 */ static void OPL3Destroy(OPL3 *chip) { OPL3_UnLockTable(); auto_free(chip->device->machine(), chip); } /* YMF262 I/O interface */ static int OPL3Write(OPL3 *chip, int a, int v) { /* data bus is 8 bits */ v &= 0xff; switch(a&3) { case 0: /* address port 0 (register set #1) */ chip->address = v; break; case 1: /* data port - ignore A1 */ case 3: /* data port - ignore A1 */ if(chip->UpdateHandler) chip->UpdateHandler(chip->UpdateParam,0); OPL3WriteReg(chip,chip->address,v); break; case 2: /* address port 1 (register set #2) */ /* verified on real YMF262: in OPL3 mode: address line A1 is stored during *address* write and ignored during *data* write. in OPL2 mode: register set#2 writes go to register set#1 (ignoring A1) verified on registers from set#2: 0x01, 0x04, 0x20-0xef The only exception is register 0x05. */ if( chip->OPL3_mode & 1 ) { /* OPL3 mode */ chip->address = v | 0x100; } else { /* in OPL2 mode the only accessible in set #2 is register 0x05 */ if( v==5 ) chip->address = v | 0x100; else chip->address = v; /* verified range: 0x01, 0x04, 0x20-0xef(set #2 becomes set #1 in opl2 mode) */ } break; } return chip->status>>7; } static unsigned char OPL3Read(OPL3 *chip,int a) { if( a==0 ) { /* status port */ return chip->status; } return 0x00; /* verified on real YMF262 */ } static int OPL3TimerOver(OPL3 *chip,int c) { if( c ) { /* Timer B */ OPL3_STATUS_SET(chip,0x20); } else { /* Timer A */ OPL3_STATUS_SET(chip,0x40); } /* reload timer */ // if (chip->timer_handler) (chip->timer_handler)(chip->TimerParam,c,chip->TimerBase * chip->T[c]); return chip->status>>7; } static void OPL3_save_state(OPL3 *chip, device_t *device) { #if 0 for (int ch=0; ch<18; ch++) { OPL3_CH *channel = &chip->P_CH[ch]; device->save_item(NAME(channel->block_fnum), ch); device->save_item(NAME(channel->fc), ch); device->save_item(NAME(channel->ksl_base), ch); device->save_item(NAME(channel->kcode), ch); device->save_item(NAME(channel->extended), ch); for (int sl=0; sl<2; sl++) { OPL3_SLOT *slot = &channel->SLOT[sl]; device->save_item(NAME(slot->ar), ch*2+sl); device->save_item(NAME(slot->dr), ch*2+sl); device->save_item(NAME(slot->rr), ch*2+sl); device->save_item(NAME(slot->KSR), ch*2+sl); device->save_item(NAME(slot->ksl), ch*2+sl); device->save_item(NAME(slot->ksr), ch*2+sl); device->save_item(NAME(slot->mul), ch*2+sl); device->save_item(NAME(slot->Cnt), ch*2+sl); device->save_item(NAME(slot->Incr), ch*2+sl); device->save_item(NAME(slot->FB), ch*2+sl); device->save_item(NAME(slot->conn_enum), ch*2+sl); device->save_item(NAME(slot->op1_out), ch*2+sl); device->save_item(NAME(slot->CON), ch*2+sl); device->save_item(NAME(slot->eg_type), ch*2+sl); device->save_item(NAME(slot->state), ch*2+sl); device->save_item(NAME(slot->TL), ch*2+sl); device->save_item(NAME(slot->TLL), ch*2+sl); device->save_item(NAME(slot->volume), ch*2+sl); device->save_item(NAME(slot->sl), ch*2+sl); device->save_item(NAME(slot->eg_m_ar), ch*2+sl); device->save_item(NAME(slot->eg_sh_ar), ch*2+sl); device->save_item(NAME(slot->eg_sel_ar), ch*2+sl); device->save_item(NAME(slot->eg_m_dr), ch*2+sl); device->save_item(NAME(slot->eg_sh_dr), ch*2+sl); device->save_item(NAME(slot->eg_sel_dr), ch*2+sl); device->save_item(NAME(slot->eg_m_rr), ch*2+sl); device->save_item(NAME(slot->eg_sh_rr), ch*2+sl); device->save_item(NAME(slot->eg_sel_rr), ch*2+sl); device->save_item(NAME(slot->key), ch*2+sl); device->save_item(NAME(slot->AMmask), ch*2+sl); device->save_item(NAME(slot->vib), ch*2+sl); device->save_item(NAME(slot->waveform_number), ch*2+sl); device->save_item(NAME(slot->wavetable), ch*2+sl); } } device->save_item(NAME(chip->pan)); device->save_item(NAME(chip->pan_ctrl_value)); device->save_item(NAME(chip->lfo_am_depth)); device->save_item(NAME(chip->lfo_pm_depth_range)); device->save_item(NAME(chip->OPL3_mode)); device->save_item(NAME(chip->rhythm)); device->save_item(NAME(chip->address)); device->save_item(NAME(chip->status)); device->save_item(NAME(chip->statusmask)); #endif } void * ymf262_init(device_t *device, int clock, int rate) { void *chip = OPL3Create(device,clock,rate,OPL3_TYPE_YMF262); OPL3_save_state((OPL3 *)chip, device); return chip; } void ymf262_post_load(void *chip) { OPL3 *opl3 = (OPL3 *)chip; for (int ch=0; ch<18; ch++) { for (int sl=0; sl<2; sl++) { OPL3_SLOT_CONNECT(opl3, &(opl3->P_CH[ch].SLOT[sl])); } } } void ymf262_shutdown(void *chip) { OPL3Destroy((OPL3 *)chip); } void ymf262_reset_chip(void *chip) { OPL3ResetChip((OPL3 *)chip); } int ymf262_write(void *chip, int a, int v) { return OPL3Write((OPL3 *)chip, a, v); } unsigned char ymf262_read(void *chip, int a) { /* Note on status register: */ /* YM3526(OPL) and YM3812(OPL2) return bit2 and bit1 in HIGH state */ /* YMF262(OPL3) always returns bit2 and bit1 in LOW state */ /* which can be used to identify the chip */ /* YMF278(OPL4) returns bit2 in LOW and bit1 in HIGH state ??? info from manual - not verified */ return OPL3Read((OPL3 *)chip, a); } int ymf262_timer_over(void *chip, int c) { return OPL3TimerOver((OPL3 *)chip, c); } void ymf262_set_timer_handler(void *chip, OPL3_TIMERHANDLER timer_handler, device_t *device) { reinterpret_cast(chip)->SetTimerHandler(timer_handler, device); } void ymf262_set_irq_handler(void *chip, OPL3_IRQHANDLER IRQHandler, device_t *device) { reinterpret_cast(chip)->SetIRQHandler(IRQHandler, device); } void ymf262_set_update_handler(void *chip, OPL3_UPDATEHANDLER UpdateHandler, device_t *device) { reinterpret_cast(chip)->SetUpdateHandler(UpdateHandler, device); } /* ** Generate samples for one of the YMF262's ** ** 'which' is the virtual YMF262 number ** '**buffers' is table of 4 pointers to the buffers: CH.A, CH.B, CH.C and CH.D ** 'length' is the number of samples that should be generated */ void ymf262_update_one(void *_chip, OPL3SAMPLE **buffers, int length) { int i; OPL3 *chip = (OPL3 *)_chip; signed int *chanout = chip->chanout; uint8_t rhythm = chip->rhythm&0x20; OPL3SAMPLE *ch_a = buffers[0]; OPL3SAMPLE *ch_b = buffers[1]; OPL3SAMPLE *ch_c = buffers[2]; OPL3SAMPLE *ch_d = buffers[3]; for( i=0; i < length ; i++ ) { int a,b,c,d; advance_lfo(chip); /* clear channel outputs */ memset(chip->chanout, 0, sizeof(chip->chanout)); #if 1 /* register set #1 */ chan_calc(chip, &chip->P_CH[0]); /* extended 4op ch#0 part 1 or 2op ch#0 */ if (chip->P_CH[0].extended) chan_calc_ext(chip, &chip->P_CH[3]); /* extended 4op ch#0 part 2 */ else chan_calc(chip, &chip->P_CH[3]); /* standard 2op ch#3 */ chan_calc(chip, &chip->P_CH[1]); /* extended 4op ch#1 part 1 or 2op ch#1 */ if (chip->P_CH[1].extended) chan_calc_ext(chip, &chip->P_CH[4]); /* extended 4op ch#1 part 2 */ else chan_calc(chip, &chip->P_CH[4]); /* standard 2op ch#4 */ chan_calc(chip, &chip->P_CH[2]); /* extended 4op ch#2 part 1 or 2op ch#2 */ if (chip->P_CH[2].extended) chan_calc_ext(chip, &chip->P_CH[5]); /* extended 4op ch#2 part 2 */ else chan_calc(chip, &chip->P_CH[5]); /* standard 2op ch#5 */ if(!rhythm) { chan_calc(chip, &chip->P_CH[6]); chan_calc(chip, &chip->P_CH[7]); chan_calc(chip, &chip->P_CH[8]); } else /* Rhythm part */ { chan_calc_rhythm(chip, &chip->P_CH[0], (chip->noise_rng>>0)&1 ); } /* register set #2 */ chan_calc(chip, &chip->P_CH[ 9]); if (chip->P_CH[9].extended) chan_calc_ext(chip, &chip->P_CH[12]); else chan_calc(chip, &chip->P_CH[12]); chan_calc(chip, &chip->P_CH[10]); if (chip->P_CH[10].extended) chan_calc_ext(chip, &chip->P_CH[13]); else chan_calc(chip, &chip->P_CH[13]); chan_calc(chip, &chip->P_CH[11]); if (chip->P_CH[11].extended) chan_calc_ext(chip, &chip->P_CH[14]); else chan_calc(chip, &chip->P_CH[14]); /* channels 15,16,17 are fixed 2-operator channels only */ chan_calc(chip, &chip->P_CH[15]); chan_calc(chip, &chip->P_CH[16]); chan_calc(chip, &chip->P_CH[17]); #endif /* accumulator register set #1 */ a = chanout[0] & chip->pan[0]; b = chanout[0] & chip->pan[1]; c = chanout[0] & chip->pan[2]; d = chanout[0] & chip->pan[3]; #if 1 a += chanout[1] & chip->pan[4]; b += chanout[1] & chip->pan[5]; c += chanout[1] & chip->pan[6]; d += chanout[1] & chip->pan[7]; a += chanout[2] & chip->pan[8]; b += chanout[2] & chip->pan[9]; c += chanout[2] & chip->pan[10]; d += chanout[2] & chip->pan[11]; a += chanout[3] & chip->pan[12]; b += chanout[3] & chip->pan[13]; c += chanout[3] & chip->pan[14]; d += chanout[3] & chip->pan[15]; a += chanout[4] & chip->pan[16]; b += chanout[4] & chip->pan[17]; c += chanout[4] & chip->pan[18]; d += chanout[4] & chip->pan[19]; a += chanout[5] & chip->pan[20]; b += chanout[5] & chip->pan[21]; c += chanout[5] & chip->pan[22]; d += chanout[5] & chip->pan[23]; a += chanout[6] & chip->pan[24]; b += chanout[6] & chip->pan[25]; c += chanout[6] & chip->pan[26]; d += chanout[6] & chip->pan[27]; a += chanout[7] & chip->pan[28]; b += chanout[7] & chip->pan[29]; c += chanout[7] & chip->pan[30]; d += chanout[7] & chip->pan[31]; a += chanout[8] & chip->pan[32]; b += chanout[8] & chip->pan[33]; c += chanout[8] & chip->pan[34]; d += chanout[8] & chip->pan[35]; /* accumulator register set #2 */ a += chanout[9] & chip->pan[36]; b += chanout[9] & chip->pan[37]; c += chanout[9] & chip->pan[38]; d += chanout[9] & chip->pan[39]; a += chanout[10] & chip->pan[40]; b += chanout[10] & chip->pan[41]; c += chanout[10] & chip->pan[42]; d += chanout[10] & chip->pan[43]; a += chanout[11] & chip->pan[44]; b += chanout[11] & chip->pan[45]; c += chanout[11] & chip->pan[46]; d += chanout[11] & chip->pan[47]; a += chanout[12] & chip->pan[48]; b += chanout[12] & chip->pan[49]; c += chanout[12] & chip->pan[50]; d += chanout[12] & chip->pan[51]; a += chanout[13] & chip->pan[52]; b += chanout[13] & chip->pan[53]; c += chanout[13] & chip->pan[54]; d += chanout[13] & chip->pan[55]; a += chanout[14] & chip->pan[56]; b += chanout[14] & chip->pan[57]; c += chanout[14] & chip->pan[58]; d += chanout[14] & chip->pan[59]; a += chanout[15] & chip->pan[60]; b += chanout[15] & chip->pan[61]; c += chanout[15] & chip->pan[62]; d += chanout[15] & chip->pan[63]; a += chanout[16] & chip->pan[64]; b += chanout[16] & chip->pan[65]; c += chanout[16] & chip->pan[66]; d += chanout[16] & chip->pan[67]; a += chanout[17] & chip->pan[68]; b += chanout[17] & chip->pan[69]; c += chanout[17] & chip->pan[70]; d += chanout[17] & chip->pan[71]; #endif a >>= FINAL_SH; b >>= FINAL_SH; c >>= FINAL_SH; d >>= FINAL_SH; /* limit check */ a = limit( a , MAXOUT, MINOUT ); b = limit( b , MAXOUT, MINOUT ); c = limit( c , MAXOUT, MINOUT ); d = limit( d , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE if (which==0) { SAVE_ALL_CHANNELS } #endif /* store to sound buffer */ ch_a[i] = a; ch_b[i] = b; ch_c[i] = c; ch_d[i] = d; advance(chip); } }