dosbox-wii/src/hardware/adlib.cpp
2021-02-06 16:06:31 +01:00

869 lines
22 KiB
C++

/*
* Copyright (C) 2002-2019 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/types.h>
#include "adlib.h"
#include "setup.h"
#include "mapper.h"
#include "mem.h"
#include "dbopl.h"
#include "mame/emu.h"
#include "mame/fmopl.h"
#include "mame/ymf262.h"
#define OPL2_INTERNAL_FREQ 3600000 // The OPL2 operates at 3.6MHz
#define OPL3_INTERNAL_FREQ 14400000 // The OPL3 operates at 14.4MHz
namespace OPL2 {
#include "opl.cpp"
struct Handler : public Adlib::Handler {
virtual void WriteReg( Bit32u reg, Bit8u val ) {
adlib_write(reg,val);
}
virtual Bit32u WriteAddr( Bit32u port, Bit8u val ) {
return val;
}
virtual void Generate( MixerChannel* chan, Bitu samples ) {
Bit16s buf[1024];
while( samples > 0 ) {
Bitu todo = samples > 1024 ? 1024 : samples;
samples -= todo;
adlib_getsample(buf, todo);
chan->AddSamples_m16( todo, buf );
}
}
virtual void Init( Bitu rate ) {
adlib_init(rate);
}
~Handler() {
}
};
}
namespace OPL3 {
#define OPLTYPE_IS_OPL3
#include "opl.cpp"
struct Handler : public Adlib::Handler {
virtual void WriteReg( Bit32u reg, Bit8u val ) {
adlib_write(reg,val);
}
virtual Bit32u WriteAddr( Bit32u port, Bit8u val ) {
adlib_write_index(port, val);
return opl_index;
}
virtual void Generate( MixerChannel* chan, Bitu samples ) {
Bit16s buf[1024*2];
while( samples > 0 ) {
Bitu todo = samples > 1024 ? 1024 : samples;
samples -= todo;
adlib_getsample(buf, todo);
chan->AddSamples_s16( todo, buf );
}
}
virtual void Init( Bitu rate ) {
adlib_init(rate);
}
~Handler() {
}
};
}
namespace MAMEOPL2 {
struct Handler : public Adlib::Handler {
void* chip;
virtual void WriteReg(Bit32u reg, Bit8u val) {
ym3812_write(chip, 0, reg);
ym3812_write(chip, 1, val);
}
virtual Bit32u WriteAddr(Bit32u port, Bit8u val) {
return val;
}
virtual void Generate(MixerChannel* chan, Bitu samples) {
Bit16s buf[1024 * 2];
while (samples > 0) {
Bitu todo = samples > 1024 ? 1024 : samples;
samples -= todo;
ym3812_update_one(chip, buf, todo);
chan->AddSamples_m16(todo, buf);
}
}
virtual void Init(Bitu rate) {
chip = ym3812_init(0, OPL2_INTERNAL_FREQ, rate);
}
~Handler() {
ym3812_shutdown(chip);
}
};
}
namespace MAMEOPL3 {
struct Handler : public Adlib::Handler {
void* chip;
virtual void WriteReg(Bit32u reg, Bit8u val) {
ymf262_write(chip, 0, reg);
ymf262_write(chip, 1, val);
}
virtual Bit32u WriteAddr(Bit32u port, Bit8u val) {
return val;
}
virtual void Generate(MixerChannel* chan, Bitu samples) {
//We generate data for 4 channels, but only the first 2 are connected on a pc
Bit16s buf[4][1024];
Bit16s result[1024][2];
Bit16s* buffers[4] = { buf[0], buf[1], buf[2], buf[3] };
while (samples > 0) {
Bitu todo = samples > 1024 ? 1024 : samples;
samples -= todo;
ymf262_update_one(chip, buffers, todo);
//Interleave the samples before mixing
for (Bitu i = 0; i < todo; i++) {
result[i][0] = buf[0][i];
result[i][1] = buf[1][i];
}
chan->AddSamples_s16(todo, result[0]);
}
}
virtual void Init(Bitu rate) {
chip = ymf262_init(0, OPL3_INTERNAL_FREQ, rate);
}
~Handler() {
ymf262_shutdown(chip);
}
};
}
#define RAW_SIZE 1024
/*
Main Adlib implementation
*/
namespace Adlib {
/* Raw DRO capture stuff */
#ifdef _MSC_VER
#pragma pack (1)
#endif
#define HW_OPL2 0
#define HW_DUALOPL2 1
#define HW_OPL3 2
struct RawHeader {
Bit8u id[8]; /* 0x00, "DBRAWOPL" */
Bit16u versionHigh; /* 0x08, size of the data following the m */
Bit16u versionLow; /* 0x0a, size of the data following the m */
Bit32u commands; /* 0x0c, Bit32u amount of command/data pairs */
Bit32u milliseconds; /* 0x10, Bit32u Total milliseconds of data in this chunk */
Bit8u hardware; /* 0x14, Bit8u Hardware Type 0=opl2,1=dual-opl2,2=opl3 */
Bit8u format; /* 0x15, Bit8u Format 0=cmd/data interleaved, 1 maybe all cdms, followed by all data */
Bit8u compression; /* 0x16, Bit8u Compression Type, 0 = No Compression */
Bit8u delay256; /* 0x17, Bit8u Delay 1-256 msec command */
Bit8u delayShift8; /* 0x18, Bit8u (delay + 1)*256 */
Bit8u conversionTableSize; /* 0x191, Bit8u Raw Conversion Table size */
} GCC_ATTRIBUTE(packed);
#ifdef _MSC_VER
#pragma pack()
#endif
/*
The Raw Tables is < 128 and is used to convert raw commands into a full register index
When the high bit of a raw command is set it indicates the cmd/data pair is to be sent to the 2nd port
After the conversion table the raw data follows immediatly till the end of the chunk
*/
//Table to map the opl register to one <127 for dro saving
class Capture {
//127 entries to go from raw data to registers
Bit8u ToReg[127];
//How many entries in the ToPort are used
Bit8u RawUsed;
//256 entries to go from port index to raw data
Bit8u ToRaw[256];
Bit8u delay256;
Bit8u delayShift8;
RawHeader header;
FILE* handle; //File used for writing
Bit32u startTicks; //Start used to check total raw length on end
Bit32u lastTicks; //Last ticks when last last cmd was added
Bit8u buf[1024]; //16 added for delay commands and what not
Bit32u bufUsed;
Bit8u cmd[2]; //Last cmd's sent to either ports
bool doneOpl3;
bool doneDualOpl2;
RegisterCache* cache;
void MakeEntry( Bit8u reg, Bit8u& raw ) {
ToReg[ raw ] = reg;
ToRaw[ reg ] = raw;
raw++;
}
void MakeTables( void ) {
Bit8u index = 0;
memset( ToReg, 0xff, sizeof ( ToReg ) );
memset( ToRaw, 0xff, sizeof ( ToRaw ) );
//Select the entries that are valid and the index is the mapping to the index entry
MakeEntry( 0x01, index ); //0x01: Waveform select
MakeEntry( 0x04, index ); //104: Four-Operator Enable
MakeEntry( 0x05, index ); //105: OPL3 Mode Enable
MakeEntry( 0x08, index ); //08: CSW / NOTE-SEL
MakeEntry( 0xbd, index ); //BD: Tremolo Depth / Vibrato Depth / Percussion Mode / BD/SD/TT/CY/HH On
//Add the 32 byte range that hold the 18 operators
for ( int i = 0 ; i < 24; i++ ) {
if ( (i & 7) < 6 ) {
MakeEntry(0x20 + i, index ); //20-35: Tremolo / Vibrato / Sustain / KSR / Frequency Multiplication Facto
MakeEntry(0x40 + i, index ); //40-55: Key Scale Level / Output Level
MakeEntry(0x60 + i, index ); //60-75: Attack Rate / Decay Rate
MakeEntry(0x80 + i, index ); //80-95: Sustain Level / Release Rate
MakeEntry(0xe0 + i, index ); //E0-F5: Waveform Select
}
}
//Add the 9 byte range that hold the 9 channels
for ( int i = 0 ; i < 9; i++ ) {
MakeEntry(0xa0 + i, index ); //A0-A8: Frequency Number
MakeEntry(0xb0 + i, index ); //B0-B8: Key On / Block Number / F-Number(hi bits)
MakeEntry(0xc0 + i, index ); //C0-C8: FeedBack Modulation Factor / Synthesis Type
}
//Store the amount of bytes the table contains
RawUsed = index;
// assert( RawUsed <= 127 );
delay256 = RawUsed;
delayShift8 = RawUsed+1;
}
void ClearBuf( void ) {
fwrite( buf, 1, bufUsed, handle );
header.commands += bufUsed / 2;
bufUsed = 0;
}
void AddBuf( Bit8u raw, Bit8u val ) {
buf[bufUsed++] = raw;
buf[bufUsed++] = val;
if ( bufUsed >= sizeof( buf ) ) {
ClearBuf();
}
}
void AddWrite( Bit32u regFull, Bit8u val ) {
Bit8u regMask = regFull & 0xff;
/*
Do some special checks if we're doing opl3 or dualopl2 commands
Although you could pretty much just stick to always doing opl3 on the player side
*/
//Enabling opl3 4op modes will make us go into opl3 mode
if ( header.hardware != HW_OPL3 && regFull == 0x104 && val && (*cache)[0x105] ) {
header.hardware = HW_OPL3;
}
//Writing a keyon to a 2nd address enables dual opl2 otherwise
//Maybe also check for rhythm
if ( header.hardware == HW_OPL2 && regFull >= 0x1b0 && regFull <=0x1b8 && val ) {
header.hardware = HW_DUALOPL2;
}
Bit8u raw = ToRaw[ regMask ];
if ( raw == 0xff )
return;
if ( regFull & 0x100 )
raw |= 128;
AddBuf( raw, val );
}
void WriteCache( void ) {
Bitu i, val;
/* Check the registers to add */
for (i=0;i<256;i++) {
//Skip the note on entries
if (i>=0xb0 && i<=0xb8)
continue;
val = (*cache)[ i ];
if (val) {
AddWrite( i, val );
}
val = (*cache)[ 0x100 + i ];
if (val) {
AddWrite( 0x100 + i, val );
}
}
}
void InitHeader( void ) {
memset( &header, 0, sizeof( header ) );
memcpy( header.id, "DBRAWOPL", 8 );
header.versionLow = 0;
header.versionHigh = 2;
header.delay256 = delay256;
header.delayShift8 = delayShift8;
header.conversionTableSize = RawUsed;
}
void CloseFile( void ) {
if ( handle ) {
ClearBuf();
/* Endianize the header and write it to beginning of the file */
var_write( &header.versionHigh, header.versionHigh );
var_write( &header.versionLow, header.versionLow );
var_write( &header.commands, header.commands );
var_write( &header.milliseconds, header.milliseconds );
fseek( handle, 0, SEEK_SET );
fwrite( &header, 1, sizeof( header ), handle );
fclose( handle );
handle = 0;
}
}
public:
bool DoWrite( Bit32u regFull, Bit8u val ) {
Bit8u regMask = regFull & 0xff;
//Check the raw index for this register if we actually have to save it
if ( handle ) {
/*
Check if we actually care for this to be logged, else just ignore it
*/
Bit8u raw = ToRaw[ regMask ];
if ( raw == 0xff ) {
return true;
}
/* Check if this command will not just replace the same value
in a reg that doesn't do anything with it
*/
if ( (*cache)[ regFull ] == val )
return true;
/* Check how much time has passed */
Bitu passed = PIC_Ticks - lastTicks;
lastTicks = PIC_Ticks;
header.milliseconds += passed;
//if ( passed > 0 ) LOG_MSG( "Delay %d", passed ) ;
// If we passed more than 30 seconds since the last command, we'll restart the the capture
if ( passed > 30000 ) {
CloseFile();
goto skipWrite;
}
while (passed > 0) {
if (passed < 257) { //1-256 millisecond delay
AddBuf( delay256, passed - 1 );
passed = 0;
} else {
Bitu shift = (passed >> 8);
passed -= shift << 8;
AddBuf( delayShift8, shift - 1 );
}
}
AddWrite( regFull, val );
return true;
}
skipWrite:
//Not yet capturing to a file here
//Check for commands that would start capturing, if it's not one of them return
if ( !(
//note on in any channel
( regMask>=0xb0 && regMask<=0xb8 && (val&0x020) ) ||
//Percussion mode enabled and a note on in any percussion instrument
( regMask == 0xbd && ( (val&0x3f) > 0x20 ) )
)) {
return true;
}
handle = OpenCaptureFile("Raw Opl",".dro");
if (!handle)
return false;
InitHeader();
//Prepare space at start of the file for the header
fwrite( &header, 1, sizeof(header), handle );
/* write the Raw To Reg table */
fwrite( &ToReg, 1, RawUsed, handle );
/* Write the cache of last commands */
WriteCache( );
/* Write the command that triggered this */
AddWrite( regFull, val );
//Init the timing information for the next commands
lastTicks = PIC_Ticks;
startTicks = PIC_Ticks;
return true;
}
Capture( RegisterCache* _cache ) {
cache = _cache;
handle = 0;
bufUsed = 0;
MakeTables();
}
~Capture() {
CloseFile();
}
};
/*
Chip
*/
bool Chip::Write( Bit32u reg, Bit8u val ) {
switch ( reg ) {
case 0x02:
timer[0].counter = val;
return true;
case 0x03:
timer[1].counter = val;
return true;
case 0x04:
double time;
time = PIC_FullIndex();
if ( val & 0x80 ) {
timer[0].Reset( time );
timer[1].Reset( time );
} else {
timer[0].Update( time );
timer[1].Update( time );
if ( val & 0x1 ) {
timer[0].Start( time, 80 );
} else {
timer[0].Stop( );
}
timer[0].masked = (val & 0x40) > 0;
if ( timer[0].masked )
timer[0].overflow = false;
if ( val & 0x2 ) {
timer[1].Start( time, 320 );
} else {
timer[1].Stop( );
}
timer[1].masked = (val & 0x20) > 0;
if ( timer[1].masked )
timer[1].overflow = false;
}
return true;
}
return false;
}
Bit8u Chip::Read( ) {
double time( PIC_FullIndex() );
timer[0].Update( time );
timer[1].Update( time );
Bit8u ret = 0;
//Overflow won't be set if a channel is masked
if ( timer[0].overflow ) {
ret |= 0x40;
ret |= 0x80;
}
if ( timer[1].overflow ) {
ret |= 0x20;
ret |= 0x80;
}
return ret;
}
void Module::CacheWrite( Bit32u reg, Bit8u val ) {
//capturing?
if ( capture ) {
capture->DoWrite( reg, val );
}
//Store it into the cache
cache[ reg ] = val;
}
void Module::DualWrite( Bit8u index, Bit8u reg, Bit8u val ) {
//Make sure you don't use opl3 features
//Don't allow write to disable opl3
if ( reg == 5 ) {
return;
}
//Only allow 4 waveforms
if ( reg >= 0xE0 ) {
val &= 3;
}
//Write to the timer?
if ( chip[index].Write( reg, val ) )
return;
//Enabling panning
if ( reg >= 0xc0 && reg <=0xc8 ) {
val &= 0x0f;
val |= index ? 0xA0 : 0x50;
}
Bit32u fullReg = reg + (index ? 0x100 : 0);
handler->WriteReg( fullReg, val );
CacheWrite( fullReg, val );
}
void Module::CtrlWrite( Bit8u val ) {
switch ( ctrl.index ) {
case 0x09: /* Left FM Volume */
ctrl.lvol = val;
goto setvol;
case 0x0a: /* Right FM Volume */
ctrl.rvol = val;
setvol:
if ( ctrl.mixer ) {
//Dune cdrom uses 32 volume steps in an apparent mistake, should be 128
mixerChan->SetVolume( (float)(ctrl.lvol&0x1f)/31.0f, (float)(ctrl.rvol&0x1f)/31.0f );
}
break;
}
}
Bitu Module::CtrlRead( void ) {
switch ( ctrl.index ) {
case 0x00: /* Board Options */
return 0x70; //No options installed
case 0x09: /* Left FM Volume */
return ctrl.lvol;
case 0x0a: /* Right FM Volume */
return ctrl.rvol;
case 0x15: /* Audio Relocation */
return 0x388 >> 3; //Cryo installer detection
}
return 0xff;
}
void Module::PortWrite( Bitu port, Bitu val, Bitu iolen ) {
//Keep track of last write time
lastUsed = PIC_Ticks;
//Maybe only enable with a keyon?
if ( !mixerChan->enabled ) {
mixerChan->Enable(true);
}
if ( port&1 ) {
switch ( mode ) {
case MODE_OPL3GOLD:
if ( port == 0x38b ) {
if ( ctrl.active ) {
CtrlWrite( val );
break;
}
}
//Fall-through if not handled by control chip
case MODE_OPL2:
case MODE_OPL3:
if ( !chip[0].Write( reg.normal, val ) ) {
handler->WriteReg( reg.normal, val );
CacheWrite( reg.normal, val );
}
break;
case MODE_DUALOPL2:
//Not a 0x??8 port, then write to a specific port
if ( !(port & 0x8) ) {
Bit8u index = ( port & 2 ) >> 1;
DualWrite( index, reg.dual[index], val );
} else {
//Write to both ports
DualWrite( 0, reg.dual[0], val );
DualWrite( 1, reg.dual[1], val );
}
break;
}
} else {
//Ask the handler to write the address
//Make sure to clip them in the right range
switch ( mode ) {
case MODE_OPL2:
reg.normal = handler->WriteAddr( port, val ) & 0xff;
break;
case MODE_OPL3GOLD:
if ( port == 0x38a ) {
if ( val == 0xff ) {
ctrl.active = true;
break;
} else if ( val == 0xfe ) {
ctrl.active = false;
break;
} else if ( ctrl.active ) {
ctrl.index = val & 0xff;
break;
}
}
//Fall-through if not handled by control chip
case MODE_OPL3:
reg.normal = handler->WriteAddr( port, val ) & 0x1ff;
break;
case MODE_DUALOPL2:
//Not a 0x?88 port, when write to a specific side
if ( !(port & 0x8) ) {
Bit8u index = ( port & 2 ) >> 1;
reg.dual[index] = val & 0xff;
} else {
reg.dual[0] = val & 0xff;
reg.dual[1] = val & 0xff;
}
break;
}
}
}
Bitu Module::PortRead( Bitu port, Bitu iolen ) {
switch ( mode ) {
case MODE_OPL2:
//We allocated 4 ports, so just return -1 for the higher ones
if ( !(port & 3 ) ) {
//Make sure the low bits are 6 on opl2
return chip[0].Read() | 0x6;
} else {
return 0xff;
}
case MODE_OPL3GOLD:
if ( ctrl.active ) {
if ( port == 0x38a ) {
return 0; //Control status, not busy
} else if ( port == 0x38b ) {
return CtrlRead();
}
}
//Fall-through if not handled by control chip
case MODE_OPL3:
//We allocated 4 ports, so just return -1 for the higher ones
if ( !(port & 3 ) ) {
return chip[0].Read();
} else {
return 0xff;
}
case MODE_DUALOPL2:
//Only return for the lower ports
if ( port & 1 ) {
return 0xff;
}
//Make sure the low bits are 6 on opl2
return chip[ (port >> 1) & 1].Read() | 0x6;
}
return 0;
}
void Module::Init( Mode m ) {
mode = m;
switch ( mode ) {
case MODE_OPL3:
case MODE_OPL3GOLD:
case MODE_OPL2:
break;
case MODE_DUALOPL2:
//Setup opl3 mode in the hander
handler->WriteReg( 0x105, 1 );
//Also set it up in the cache so the capturing will start opl3
CacheWrite( 0x105, 1 );
break;
}
}
}; //namespace
static Adlib::Module* module = 0;
static void OPL_CallBack(Bitu len) {
module->handler->Generate( module->mixerChan, len );
//Disable the sound generation after 30 seconds of silence
if ((PIC_Ticks - module->lastUsed) > 30000) {
Bitu i;
for (i=0xb0;i<0xb9;i++) if (module->cache[i]&0x20||module->cache[i+0x100]&0x20) break;
if (i==0xb9) module->mixerChan->Enable(false);
else module->lastUsed = PIC_Ticks;
}
}
static Bitu OPL_Read(Bitu port,Bitu iolen) {
return module->PortRead( port, iolen );
}
void OPL_Write(Bitu port,Bitu val,Bitu iolen) {
module->PortWrite( port, val, iolen );
}
/*
Save the current state of the operators as instruments in an reality adlib tracker file
*/
static void SaveRad() {
char b[16 * 1024];
int w = 0;
FILE* handle = OpenCaptureFile("RAD Capture",".rad");
if ( !handle )
return;
//Header
fwrite( "RAD by REALiTY!!", 1, 16, handle );
b[w++] = 0x10; //version
b[w++] = 0x06; //default speed and no description
//Write 18 instuments for all operators in the cache
for ( int i = 0; i < 18; i++ ) {
Bit8u* set = module->cache + ( i / 9 ) * 256;
Bitu offset = ((i % 9) / 3) * 8 + (i % 3);
Bit8u* base = set + offset;
b[w++] = 1 + i; //instrument number
b[w++] = base[0x23];
b[w++] = base[0x20];
b[w++] = base[0x43];
b[w++] = base[0x40];
b[w++] = base[0x63];
b[w++] = base[0x60];
b[w++] = base[0x83];
b[w++] = base[0x80];
b[w++] = set[0xc0 + (i % 9)];
b[w++] = base[0xe3];
b[w++] = base[0xe0];
}
b[w++] = 0; //instrument 0, no more instruments following
b[w++] = 1; //1 pattern following
//Zero out the remaing part of the file a bit to make rad happy
for ( int i = 0; i < 64; i++ ) {
b[w++] = 0;
}
fwrite( b, 1, w, handle );
fclose( handle );
};
static void OPL_SaveRawEvent(bool pressed) {
if (!pressed)
return;
// SaveRad();return;
/* Check for previously opened wave file */
if ( module->capture ) {
delete module->capture;
module->capture = 0;
LOG_MSG("Stopped Raw OPL capturing.");
} else {
LOG_MSG("Preparing to capture Raw OPL, will start with first note played.");
module->capture = new Adlib::Capture( &module->cache );
}
}
namespace Adlib {
Module::Module( Section* configuration ) : Module_base(configuration) {
reg.dual[0] = 0;
reg.dual[1] = 0;
reg.normal = 0;
ctrl.active = false;
ctrl.index = 0;
ctrl.lvol = 0xff;
ctrl.rvol = 0xff;
handler = 0;
capture = 0;
Section_prop * section=static_cast<Section_prop *>(configuration);
Bitu base = section->Get_hex("sbbase");
Bitu rate = section->Get_int("oplrate");
//Make sure we can't select lower than 8000 to prevent fixed point issues
if ( rate < 8000 )
rate = 8000;
std::string oplemu( section->Get_string( "oplemu" ) );
ctrl.mixer = section->Get_bool("sbmixer");
mixerChan = mixerObject.Install(OPL_CallBack,rate,"FM");
//Used to be 2.0, which was measured to be too high. Exact value depends on card/clone.
mixerChan->SetScale( 1.5f );
if (oplemu == "fast") {
handler = new DBOPL::Handler();
} else if (oplemu == "compat") {
if ( oplmode == OPL_opl2 ) {
handler = new OPL2::Handler();
} else {
handler = new OPL3::Handler();
}
}
else if (oplemu == "mame") {
if (oplmode == OPL_opl2) {
handler = new MAMEOPL2::Handler();
}
else {
handler = new MAMEOPL3::Handler();
}
} else {
handler = new DBOPL::Handler();
}
handler->Init( rate );
bool single = false;
switch ( oplmode ) {
case OPL_opl2:
single = true;
Init( Adlib::MODE_OPL2 );
break;
case OPL_dualopl2:
Init( Adlib::MODE_DUALOPL2 );
break;
case OPL_opl3:
Init( Adlib::MODE_OPL3 );
break;
case OPL_opl3gold:
Init( Adlib::MODE_OPL3GOLD );
break;
}
//0x388 range
WriteHandler[0].Install(0x388,OPL_Write,IO_MB, 4 );
ReadHandler[0].Install(0x388,OPL_Read,IO_MB, 4 );
//0x220 range
if ( !single ) {
WriteHandler[1].Install(base,OPL_Write,IO_MB, 4 );
ReadHandler[1].Install(base,OPL_Read,IO_MB, 4 );
}
//0x228 range
WriteHandler[2].Install(base+8,OPL_Write,IO_MB, 2);
ReadHandler[2].Install(base+8,OPL_Read,IO_MB, 1);
MAPPER_AddHandler(OPL_SaveRawEvent,MK_f7,MMOD1|MMOD2,"caprawopl","Cap OPL");
}
Module::~Module() {
if ( capture ) {
delete capture;
}
if ( handler ) {
delete handler;
}
}
//Initialize static members
OPL_Mode Module::oplmode=OPL_none;
}; //Adlib Namespace
void OPL_Init(Section* sec,OPL_Mode oplmode) {
Adlib::Module::oplmode = oplmode;
module = new Adlib::Module( sec );
}
void OPL_ShutDown(Section* sec){
delete module;
module = 0;
}