dosbox-wii/src/cpu/core_dynrec/risc_armv4le-thumb-niw.h

1539 lines
56 KiB
C

/*
* Copyright (C) 2002-2019 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* ARMv4 (little endian) backend by M-HT (thumb version with data pool) */
// temporary "lo" registers
#define templo1 HOST_v3
#define templo2 HOST_v4
#define templo3 HOST_v2
// register that holds function return values
#define FC_RETOP HOST_a1
// register used for address calculations,
#define FC_ADDR HOST_v1 // has to be saved across calls, see DRC_PROTECT_ADDR_REG
// register that holds the first parameter
#define FC_OP1 HOST_a1
// register that holds the second parameter
#define FC_OP2 HOST_a2
// special register that holds the third parameter for _R3 calls (byte accessible)
#define FC_OP3 HOST_a4
// register that holds byte-accessible temporary values
#define FC_TMP_BA1 HOST_a1
// register that holds byte-accessible temporary values
#define FC_TMP_BA2 HOST_a2
// temporary register for LEA
#define TEMP_REG_DRC HOST_a4
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
// used to hold the address of "core_dynrec.readdata" - filled in function gen_run_code
#define readdata_addr HOST_v5
// instruction encodings
// move
// mov dst, #imm @ 0 <= imm <= 255
#define MOV_IMM(dst, imm) (0x2000 + ((dst) << 8) + (imm) )
// mov dst, src
#define MOV_REG(dst, src) ADD_IMM3(dst, src, 0)
// mov dst, src
#define MOV_LO_HI(dst, src) (0x4640 + (dst) + (((src) - HOST_r8) << 3) )
// mov dst, src
#define MOV_HI_LO(dst, src) (0x4680 + ((dst) - HOST_r8) + ((src) << 3) )
// arithmetic
// add dst, src, #imm @ 0 <= imm <= 7
#define ADD_IMM3(dst, src, imm) (0x1c00 + (dst) + ((src) << 3) + ((imm) << 6) )
// add dst, #imm @ 0 <= imm <= 255
#define ADD_IMM8(dst, imm) (0x3000 + ((dst) << 8) + (imm) )
// add dst, src1, src2
#define ADD_REG(dst, src1, src2) (0x1800 + (dst) + ((src1) << 3) + ((src2) << 6) )
// add dst, pc, #imm @ 0 <= imm < 1024 & imm mod 4 = 0
#define ADD_LO_PC_IMM(dst, imm) (0xa000 + ((dst) << 8) + ((imm) >> 2) )
// sub dst, src1, src2
#define SUB_REG(dst, src1, src2) (0x1a00 + (dst) + ((src1) << 3) + ((src2) << 6) )
// sub dst, src, #imm @ 0 <= imm <= 7
#define SUB_IMM3(dst, src, imm) (0x1e00 + (dst) + ((src) << 3) + ((imm) << 6) )
// sub dst, #imm @ 0 <= imm <= 255
#define SUB_IMM8(dst, imm) (0x3800 + ((dst) << 8) + (imm) )
// neg dst, src
#define NEG(dst, src) (0x4240 + (dst) + ((src) << 3) )
// cmp dst, #imm @ 0 <= imm <= 255
#define CMP_IMM(dst, imm) (0x2800 + ((dst) << 8) + (imm) )
// nop
#define NOP (0x46c0)
// logical
// and dst, src
#define AND(dst, src) (0x4000 + (dst) + ((src) << 3) )
// bic dst, src
#define BIC(dst, src) (0x4380 + (dst) + ((src) << 3) )
// eor dst, src
#define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) )
// orr dst, src
#define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) )
// mvn dst, src
#define MVN(dst, src) (0x43c0 + (dst) + ((src) << 3) )
// shift/rotate
// lsl dst, src, #imm
#define LSL_IMM(dst, src, imm) (0x0000 + (dst) + ((src) << 3) + ((imm) << 6) )
// lsl dst, reg
#define LSL_REG(dst, reg) (0x4080 + (dst) + ((reg) << 3) )
// lsr dst, src, #imm
#define LSR_IMM(dst, src, imm) (0x0800 + (dst) + ((src) << 3) + ((imm) << 6) )
// lsr dst, reg
#define LSR_REG(dst, reg) (0x40c0 + (dst) + ((reg) << 3) )
// asr dst, src, #imm
#define ASR_IMM(dst, src, imm) (0x1000 + (dst) + ((src) << 3) + ((imm) << 6) )
// asr dst, reg
#define ASR_REG(dst, reg) (0x4100 + (dst) + ((reg) << 3) )
// ror dst, reg
#define ROR_REG(dst, reg) (0x41c0 + (dst) + ((reg) << 3) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
#define LDR_IMM(reg, addr, imm) (0x6800 + (reg) + ((addr) << 3) + ((imm) << 4) )
// ldrh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0
#define LDRH_IMM(reg, addr, imm) (0x8800 + (reg) + ((addr) << 3) + ((imm) << 5) )
// ldrb reg, [addr, #imm] @ 0 <= imm < 32
#define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) )
// ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0
#define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) )
// ldr reg, [addr1, addr2]
#define LDR_REG(reg, addr1, addr2) (0x5800 + (reg) + ((addr1) << 3) + ((addr2) << 6) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
#define STR_IMM(reg, addr, imm) (0x6000 + (reg) + ((addr) << 3) + ((imm) << 4) )
// strh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0
#define STRH_IMM(reg, addr, imm) (0x8000 + (reg) + ((addr) << 3) + ((imm) << 5) )
// strb reg, [addr, #imm] @ 0 <= imm < 32
#define STRB_IMM(reg, addr, imm) (0x7000 + (reg) + ((addr) << 3) + ((imm) << 6) )
// branch
// beq pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BEQ_FWD(imm) (0xd000 + ((imm) >> 1) )
// bne pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BNE_FWD(imm) (0xd100 + ((imm) >> 1) )
// bgt pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BGT_FWD(imm) (0xdc00 + ((imm) >> 1) )
// b pc+imm @ 0 <= imm < 2048 & imm mod 2 = 0
#define B_FWD(imm) (0xe000 + ((imm) >> 1) )
// bx reg
#define BX(reg) (0x4700 + ((reg) << 3) )
// arm instructions
// arithmetic
// add dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ARM_ADD_IMM(dst, src, imm, rimm) (0xe2800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 4096
#define ARM_LDR_IMM(reg, addr, imm) (0xe5900000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// store
// str reg, [addr, #-(imm)]! @ 0 <= imm < 4096
#define ARM_STR_IMM_M_W(reg, addr, imm) (0xe5200000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// branch
// bx reg
#define ARM_BX(reg) (0xe12fff10 + (reg) )
// data pool defines
#define CACHE_DATA_JUMP (2)
#define CACHE_DATA_ALIGN (32)
#define CACHE_DATA_MIN (32)
#define CACHE_DATA_MAX (288)
// data pool variables
static Bit8u * cache_datapos = NULL; // position of data pool in the cache block
static Bit32u cache_datasize = 0; // total size of data pool
static Bit32u cache_dataindex = 0; // used size of data pool = index of free data item (in bytes) in data pool
// forwarded function
static void INLINE gen_create_branch_short(void * func);
// function to check distance to data pool
// if too close, then generate jump after data pool
static void cache_checkinstr(Bit32u size) {
if (cache_datasize == 0) {
if (cache_datapos != NULL) {
if (cache.pos + size + CACHE_DATA_JUMP >= cache_datapos) {
cache_datapos = NULL;
}
}
return;
}
if (cache.pos + size + CACHE_DATA_JUMP <= cache_datapos) return;
{
register Bit8u * newcachepos;
newcachepos = cache_datapos + cache_datasize;
gen_create_branch_short(newcachepos);
cache.pos = newcachepos;
}
if (cache.pos + CACHE_DATA_MAX + CACHE_DATA_ALIGN >= cache.block.active->cache.start + cache.block.active->cache.size &&
cache.pos + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) < cache.block.active->cache.start + cache.block.active->cache.size)
{
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + cache.block.active->cache.size - CACHE_DATA_ALIGN) & ~(CACHE_DATA_ALIGN - 1));
} else {
register Bit32u cachemodsize;
cachemodsize = (cache.pos - cache.block.active->cache.start) & (CACHE_MAXSIZE - 1);
if (cachemodsize + CACHE_DATA_MAX + CACHE_DATA_ALIGN <= CACHE_MAXSIZE ||
cachemodsize + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) > CACHE_MAXSIZE)
{
cache_datapos = (Bit8u *) (((Bitu)cache.pos + CACHE_DATA_MAX) & ~(CACHE_DATA_ALIGN - 1));
} else {
cache_datapos = (Bit8u *) (((Bitu)cache.pos + (CACHE_MAXSIZE - CACHE_DATA_ALIGN) - cachemodsize) & ~(CACHE_DATA_ALIGN - 1));
}
}
cache_datasize = 0;
cache_dataindex = 0;
}
// function to reserve item in data pool
// returns address of item
static Bit8u * cache_reservedata(void) {
// if data pool not yet initialized, then initialize data pool
if (GCC_UNLIKELY(cache_datapos == NULL)) {
if (cache.pos + CACHE_DATA_MIN + CACHE_DATA_ALIGN < cache.block.active->cache.start + CACHE_DATA_MAX) {
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + CACHE_DATA_MAX) & ~(CACHE_DATA_ALIGN - 1));
}
}
// if data pool not yet used, then set data pool
if (cache_datasize == 0) {
// set data pool address is too close (or behind) cache.pos then set new data pool size
if (cache.pos + CACHE_DATA_MIN + CACHE_DATA_JUMP /*+ CACHE_DATA_ALIGN*/ > cache_datapos) {
if (cache.pos + CACHE_DATA_MAX + CACHE_DATA_ALIGN >= cache.block.active->cache.start + cache.block.active->cache.size &&
cache.pos + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) < cache.block.active->cache.start + cache.block.active->cache.size)
{
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + cache.block.active->cache.size - CACHE_DATA_ALIGN) & ~(CACHE_DATA_ALIGN - 1));
} else {
register Bit32u cachemodsize;
cachemodsize = (cache.pos - cache.block.active->cache.start) & (CACHE_MAXSIZE - 1);
if (cachemodsize + CACHE_DATA_MAX + CACHE_DATA_ALIGN <= CACHE_MAXSIZE ||
cachemodsize + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) > CACHE_MAXSIZE)
{
cache_datapos = (Bit8u *) (((Bitu)cache.pos + CACHE_DATA_MAX) & ~(CACHE_DATA_ALIGN - 1));
} else {
cache_datapos = (Bit8u *) (((Bitu)cache.pos + (CACHE_MAXSIZE - CACHE_DATA_ALIGN) - cachemodsize) & ~(CACHE_DATA_ALIGN - 1));
}
}
}
// set initial data pool size
cache_datasize = CACHE_DATA_ALIGN;
}
// if data pool is full, then enlarge data pool
if (cache_dataindex == cache_datasize) {
cache_datasize += CACHE_DATA_ALIGN;
}
cache_dataindex += 4;
return (cache_datapos + (cache_dataindex - 4));
}
static void cache_block_before_close(void) {
// if data pool in use, then resize cache block to include the data pool
if (cache_datasize != 0)
{
cache.pos = cache_datapos + cache_dataindex;
}
// clear the values before next use
cache_datapos = NULL;
cache_datasize = 0;
cache_dataindex = 0;
}
// move a full register from reg_src to reg_dst
static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
if(reg_src == reg_dst) return;
cache_checkinstr(2);
cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src
}
// helper function
static bool val_single_shift(Bit32u value, Bit32u *val_shift) {
Bit32u shift;
if (GCC_UNLIKELY(value == 0)) {
*val_shift = 0;
return true;
}
shift = 0;
while ((value & 1) == 0) {
value>>=1;
shift+=1;
}
if ((value >> 8) != 0) return false;
*val_shift = shift;
return true;
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
Bit32u scale;
if (imm < 256) {
cache_checkinstr(2);
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
} else if ((~imm) < 256) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, ~imm) ); // mov dest_reg, #(~imm)
cache_addw( MVN(dest_reg, dest_reg) ); // mvn dest_reg, dest_reg
} else if (val_single_shift(imm, &scale)) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> scale) ); // mov dest_reg, #(imm >> scale)
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #scale
} else {
Bit32u diff;
cache_checkinstr(4);
diff = imm - ((Bit32u)cache.pos+4);
if ((diff < 1024) && ((imm & 0x03) == 0)) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( ADD_LO_PC_IMM(dest_reg, diff >> 2) ); // add dest_reg, pc, #(diff >> 2)
} else {
cache_addw( NOP ); // nop
cache_addw( ADD_LO_PC_IMM(dest_reg, (diff - 2) >> 2) ); // add dest_reg, pc, #((diff - 2) >> 2)
}
} else {
Bit8u *datapos;
datapos = cache_reservedata();
*(Bit32u*)datapos=imm;
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(dest_reg, datapos - (cache.pos + 4)) ); // ldr dest_reg, [pc, datapos]
} else {
cache_addw( LDR_PC_IMM(dest_reg, datapos - (cache.pos + 2)) ); // ldr dest_reg, [pc, datapos]
}
}
}
}
// helper function
static bool gen_mov_memval_to_reg_helper(HostReg dest_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDR_IMM(dest_reg, templo2, data - addr_data) ); // ldr dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRH_IMM(dest_reg, templo2, data - addr_data) ); // ldrh dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRB_IMM(dest_reg, templo2, data - addr_data) ); // ldrb dest_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_to_reg(HostReg dest_reg, void *data, Bitu size) {
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_checkinstr(8);
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
cache_addw( LDRH_IMM(templo1, data_reg, 2) ); // ldrh templo1, [data_reg, #2]
cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
cache_checkinstr(16);
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( ADD_IMM3(templo1, data_reg, 1) ); // add templo1, data_reg, #1
cache_addw( LDRH_IMM(templo1, templo1, 0) ); // ldrh templo1, [templo1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
cache_addw( LDRB_IMM(templo1, data_reg, 3) ); // ldrb templo1, [data_reg, #3]
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
}
} else
#endif
{
cache_checkinstr(2);
cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 1) {
cache_checkinstr(8);
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else
#endif
{
cache_checkinstr(2);
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
}
}
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
if (!gen_mov_memval_to_reg(dest_reg, data, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
}
}
// move a 16bit constant value into dest_reg
// the upper 16bit of the destination register may be destroyed
static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function
static bool gen_mov_memval_from_reg_helper(HostReg src_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STR_IMM(src_reg, templo2, data - addr_data) ); // str src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRH_IMM(src_reg, templo2, data - addr_data) ); // strh src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRB_IMM(src_reg, templo2, data - addr_data) ); // strb src_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_from_reg(HostReg src_reg, void *dest, Bitu size) {
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_checkinstr(8);
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16
cache_addw( STRH_IMM(templo1, data_reg, 2) ); // strh templo1, [data_reg, #2]
} else {
cache_checkinstr(20);
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16
cache_addw( STRB_IMM(templo1, data_reg, 2) ); // strb templo1, [data_reg, #2]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24
cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3]
}
} else
#endif
{
cache_checkinstr(2);
cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 1) {
cache_checkinstr(8);
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
} else
#endif
{
cache_checkinstr(2);
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
}
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
if (!gen_mov_memval_from_reg(src_reg, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
}
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
if (!gen_mov_memval_to_reg(dest_reg, data, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_checkinstr(2);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
}
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_canuseword(HostReg dest_reg,void* data) {
gen_mov_byte_to_reg_low(dest_reg, data);
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low_imm(HostReg dest_reg,Bit8u imm) {
cache_checkinstr(2);
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u imm) {
gen_mov_byte_to_reg_low_imm(dest_reg, imm);
}
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
if (!gen_mov_memval_from_reg(src_reg, dest, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_checkinstr(2);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
}
}
// convert an 8bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_byte(bool sign,HostReg reg) {
cache_checkinstr(4);
cache_addw( LSL_IMM(reg, reg, 24) ); // lsl reg, reg, #24
if (sign) {
cache_addw( ASR_IMM(reg, reg, 24) ); // asr reg, reg, #24
} else {
cache_addw( LSR_IMM(reg, reg, 24) ); // lsr reg, reg, #24
}
}
// convert a 16bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_word(bool sign,HostReg reg) {
cache_checkinstr(4);
cache_addw( LSL_IMM(reg, reg, 16) ); // lsl reg, reg, #16
if (sign) {
cache_addw( ASR_IMM(reg, reg, 16) ); // asr reg, reg, #16
} else {
cache_addw( LSR_IMM(reg, reg, 16) ); // lsr reg, reg, #16
}
}
// add a 32bit value from memory to a full register
static void gen_add(HostReg reg,void* op) {
gen_mov_word_to_reg(templo3, op, 1);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo3) ); // add reg, reg, templo3
}
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
Bit32u imm2, scale;
if(!imm) return;
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_checkinstr(2);
cache_addw( ADD_IMM8(reg, imm) ); // add reg, #imm
} else if (imm2 <= 255) {
cache_checkinstr(2);
cache_addw( SUB_IMM8(reg, imm2) ); // sub reg, #(-imm)
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( SUB_REG(reg, reg, templo1) ); // sub reg, reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
}
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
Bit32u imm2, scale;
imm2 = ~imm;
if(!imm2) return;
if (!imm) {
cache_checkinstr(2);
cache_addw( MOV_IMM(reg, 0) ); // mov reg, #0
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( BIC(reg, templo1) ); // bic reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( AND(reg, templo1) ); // and reg, templo1
}
}
}
// move a 32bit constant value into memory
static void gen_mov_direct_dword(void* dest,Bit32u imm) {
gen_mov_dword_to_reg_imm(templo3, imm);
gen_mov_word_from_reg(templo3, dest, 1);
}
// move an address into memory
static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if (!dword) imm &= 0xffff;
if(!imm) return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_add_imm(templo3, imm);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
gen_add_direct_word(dest, (Bit32s)imm, 1);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
Bit32u imm2, scale;
if (!dword) imm &= 0xffff;
if(!imm) return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_checkinstr(2);
cache_addw( SUB_IMM8(templo3, imm) ); // sub templo3, #imm
} else if (imm2 <= 255) {
cache_checkinstr(2);
cache_addw( ADD_IMM8(templo3, imm2) ); // add templo3, #(-imm)
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
}
}
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
gen_sub_direct_word(dest, (Bit32s)imm, 1);
}
// effective address calculation, destination is dest_reg
// scale_reg is scaled by scale (scale_reg*(2^scale)) and
// added to dest_reg, then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,HostReg scale_reg,Bitu scale,Bits imm) {
if (scale) {
cache_checkinstr(4);
cache_addw( LSL_IMM(templo1, scale_reg, scale) ); // lsl templo1, scale_reg, #(scale)
cache_addw( ADD_REG(dest_reg, dest_reg, templo1) ); // add dest_reg, dest_reg, templo1
} else {
cache_checkinstr(2);
cache_addw( ADD_REG(dest_reg, dest_reg, scale_reg) ); // add dest_reg, dest_reg, scale_reg
}
gen_add_imm(dest_reg, imm);
}
// effective address calculation, destination is dest_reg
// dest_reg is scaled by scale (dest_reg*(2^scale)),
// then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,Bitu scale,Bits imm) {
if (scale) {
cache_checkinstr(2);
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #(scale)
}
gen_add_imm(dest_reg, imm);
}
// helper function for gen_call_function_raw and gen_call_function_setup
static void gen_call_function_helper(void * func) {
Bit8u *datapos;
datapos = cache_reservedata();
*(Bit32u*)datapos=(Bit32u)func;
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 4)) ); // ldr templo1, [pc, datapos]
cache_addw( ADD_LO_PC_IMM(templo2, 4) ); // adr templo2, after_call (add templo2, pc, #4)
cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2
cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state
} else {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 2)) ); // ldr templo1, [pc, datapos]
cache_addw( ADD_LO_PC_IMM(templo2, 4) ); // adr templo2, after_call (add templo2, pc, #4)
cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2
cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state
cache_addw( NOP ); // nop
}
// after_call:
// switch from arm to thumb state
cache_addd(0xe2800000 + (templo1 << 12) + (HOST_pc << 16) + (1)); // add templo1, pc, #1
cache_addd(0xe12fff10 + (templo1)); // bx templo1
// thumb state from now on
}
// generate a call to a parameterless function
static void INLINE gen_call_function_raw(void * func) {
cache_checkinstr(18);
gen_call_function_helper(func);
}
// generate a call to a function with paramcount parameters
// note: the parameters are loaded in the architecture specific way
// using the gen_load_param_ functions below
static Bit32u INLINE gen_call_function_setup(void * func,Bitu paramcount,bool fastcall=false) {
cache_checkinstr(18);
Bit32u proc_addr = (Bit32u)cache.pos;
gen_call_function_helper(func);
return proc_addr;
// if proc_addr is on word boundary ((proc_addr & 0x03) == 0)
// then length of generated code is 16 bytes
// otherwise length of generated code is 18 bytes
}
#if (1)
// max of 4 parameters in a1-a4
// load an immediate value as param'th function parameter
static void INLINE gen_load_param_imm(Bitu imm,Bitu param) {
gen_mov_dword_to_reg_imm(param, imm);
}
// load an address as param'th function parameter
static void INLINE gen_load_param_addr(Bitu addr,Bitu param) {
gen_mov_dword_to_reg_imm(param, addr);
}
// load a host-register as param'th function parameter
static void INLINE gen_load_param_reg(Bitu reg,Bitu param) {
gen_mov_regs(param, reg);
}
// load a value from memory as param'th function parameter
static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
gen_mov_word_to_reg(param, (void *)mem, 1);
}
#else
other arm abis
#endif
// jump to an address pointed at by ptr, offset is in imm
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
gen_mov_word_to_reg(templo3, ptr, 1);
#if !defined(C_UNALIGNED_MEMORY)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
#endif
if ((imm >= 0) && (imm < 128) && ((imm & 3) == 0)) {
cache_checkinstr(6);
cache_addw( LDR_IMM(templo2, templo3, imm) ); // ldr templo2, [templo3, #imm]
} else {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_checkinstr(6);
cache_addw( LDR_REG(templo2, templo3, templo2) ); // ldr templo2, [templo3, templo2]
}
#if !defined(C_UNALIGNED_MEMORY)
} else {
gen_add_imm(templo3, imm);
cache_checkinstr(24);
cache_addw( LDRB_IMM(templo2, templo3, 0) ); // ldrb templo2, [templo3]
cache_addw( LDRB_IMM(templo1, templo3, 1) ); // ldrb templo1, [templo3, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
cache_addw( LDRB_IMM(templo1, templo3, 2) ); // ldrb templo1, [templo3, #2]
cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
cache_addw( LDRB_IMM(templo1, templo3, 3) ); // ldrb templo1, [templo3, #3]
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
}
#endif
// increase jmp address to keep thumb state
cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1
cache_addw( BX(templo2) ); // bx templo2
}
// short conditional jump (+-127 bytes) if register is zero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_zero(HostReg reg,bool dword) {
cache_checkinstr(4);
if (dword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16
}
cache_addw( BEQ_FWD(0) ); // beq j
return ((Bit32u)cache.pos-2);
}
// short conditional jump (+-127 bytes) if register is nonzero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_nonzero(HostReg reg,bool dword) {
cache_checkinstr(4);
if (dword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16
}
cache_addw( BNE_FWD(0) ); // bne j
return ((Bit32u)cache.pos-2);
}
// calculate relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch(DRC_PTR_SIZE_IM data) {
#if C_DEBUG
Bits len=(Bit32u)cache.pos-(data+4);
if (len<0) len=-len;
if (len>252) LOG_MSG("Big jump %d",len);
#endif
*(Bit8u*)data=(Bit8u)( ((Bit32u)cache.pos-(data+4)) >> 1 );
}
// conditional jump if register is nonzero
// for isdword==true the 32bit of the register are tested
// for isdword==false the lowest 8bit of the register are tested
static Bit32u gen_create_branch_long_nonzero(HostReg reg,bool isdword) {
Bit8u *datapos;
cache_checkinstr(8);
datapos = cache_reservedata();
if (isdword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo2, reg, 24) ); // lsl templo2, reg, #24
}
cache_addw( BEQ_FWD(2) ); // beq nobranch (pc+2)
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 4)) ); // ldr templo1, [pc, datapos]
} else {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 2)) ); // ldr templo1, [pc, datapos]
}
cache_addw( BX(templo1) ); // bx templo1
// nobranch:
return ((Bit32u)datapos);
}
// compare 32bit-register against zero and jump if value less/equal than zero
static Bit32u gen_create_branch_long_leqzero(HostReg reg) {
Bit8u *datapos;
cache_checkinstr(8);
datapos = cache_reservedata();
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
cache_addw( BGT_FWD(2) ); // bgt nobranch (pc+2)
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 4)) ); // ldr templo1, [pc, datapos]
} else {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 2)) ); // ldr templo1, [pc, datapos]
}
cache_addw( BX(templo1) ); // bx templo1
// nobranch:
return ((Bit32u)datapos);
}
// calculate long relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch_long(Bit32u data) {
// this is an absolute branch
*(Bit32u*)data=((Bit32u)cache.pos) + 1; // add 1 to keep processor in thumb state
}
static void gen_run_code(void) {
Bit8u *pos1, *pos2, *pos3;
#if (__ARM_EABI__)
// 8-byte stack alignment
cache_addd(0xe92d4ff0); // stmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe92d4df0); // stmfd sp!, {v1-v5,v7,v8,lr}
#endif
cache_addd( ARM_ADD_IMM(HOST_r0, HOST_r0, 1, 0) ); // add r0, r0, #1
pos1 = cache.pos;
cache_addd( 0 );
pos2 = cache.pos;
cache_addd( 0 );
pos3 = cache.pos;
cache_addd( 0 );
cache_addd( ARM_ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd( ARM_STR_IMM_M_W(HOST_lr, HOST_sp, 4) ); // str lr, [sp, #-4]!
cache_addd( ARM_BX(HOST_r0) ); // bx r0
#if (__ARM_EABI__)
cache_addd(0xe8bd4ff0); // ldmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe8bd4df0); // ldmfd sp!, {v1-v5,v7,v8,lr}
#endif
cache_addd( ARM_BX(HOST_lr) ); // bx lr
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
*(Bit32u*)pos1 = ARM_LDR_IMM(FC_SEGS_ADDR, HOST_pc, cache.pos - (pos1 + 8)); // ldr FC_SEGS_ADDR, [pc, #(&Segs)]
cache_addd((Bit32u)&Segs); // address of "Segs"
*(Bit32u*)pos2 = ARM_LDR_IMM(FC_REGS_ADDR, HOST_pc, cache.pos - (pos2 + 8)); // ldr FC_REGS_ADDR, [pc, #(&cpu_regs)]
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
*(Bit32u*)pos3 = ARM_LDR_IMM(readdata_addr, HOST_pc, cache.pos - (pos3 + 8)); // ldr readdata_addr, [pc, #(&core_dynrec.readdata)]
cache_addd((Bit32u)&core_dynrec.readdata); // address of "core_dynrec.readdata"
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
}
// return from a function
static void gen_return_function(void) {
cache_checkinstr(4);
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
}
// short unconditional jump (over data pool)
// must emit at most CACHE_DATA_JUMP bytes
static void INLINE gen_create_branch_short(void * func) {
cache_addw( B_FWD((Bit32u)func - ((Bit32u)cache.pos + 4)) ); // b func
}
#ifdef DRC_FLAGS_INVALIDATION
// called when a call to a function can be replaced by a
// call to a simpler function
static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) {
if ((*(Bit16u*)pos & 0xf000) == 0xe000) {
if ((*(Bit16u*)pos & 0x0fff) >= ((CACHE_DATA_ALIGN / 2) - 1) &&
(*(Bit16u*)pos & 0x0fff) < 0x0800)
{
pos = (Bit8u *) ( ( ( (Bit32u)(*(Bit16u*)pos & 0x0fff) ) << 1 ) + ((Bit32u)pos + 4) );
}
}
#ifdef DRC_FLAGS_INVALIDATION_DCODE
if (((Bit32u)pos & 0x03) == 0)
{
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit16u*)pos=ADD_REG(HOST_a1, HOST_a1, HOST_a2); // add a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit16u*)pos=ORR(HOST_a1, HOST_a2); // orr a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit16u*)pos=AND(HOST_a1, HOST_a2); // and a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit16u*)pos=SUB_REG(HOST_a1, HOST_a1, HOST_a2); // sub a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit16u*)pos=EOR(HOST_a1, HOST_a2); // eor a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit16u*)pos=B_FWD(12); // b after_call (pc+12)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit16u*)pos=ADD_IMM3(HOST_a1, HOST_a1, 1); // add a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit16u*)pos=SUB_IMM3(HOST_a1, HOST_a1, 1); // sub a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit16u*)pos=LSL_REG(HOST_a1, HOST_a2); // lsl a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SHRb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 24); // lsr a1, a1, #24
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SHRw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 16); // lsr a1, a1, #16
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SHRd:
*(Bit16u*)pos=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SARb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 24); // asr a1, a1, #24
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SARw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 16); // asr a1, a1, #16
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SARd:
*(Bit16u*)pos=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_RORb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=NOP; // nop
*(Bit16u*)(pos+8)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_RORw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+8)=B_FWD(4); // b after_call (pc+4)
break;
case t_RORd:
*(Bit16u*)pos=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_ROLb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_ROLw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+14)=NOP; // nop
break;
case t_ROLd:
*(Bit16u*)pos=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+2)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+4)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit16u*)pos=NEG(HOST_a1, HOST_a1); // neg a1, a1
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
default:
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 4) ) = (Bit32u)fct_ptr; // simple_func
break;
}
}
else
{
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit16u*)pos=ADD_REG(HOST_a1, HOST_a1, HOST_a2); // add a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit16u*)pos=ORR(HOST_a1, HOST_a2); // orr a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit16u*)pos=AND(HOST_a1, HOST_a2); // and a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit16u*)pos=SUB_REG(HOST_a1, HOST_a1, HOST_a2); // sub a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit16u*)pos=EOR(HOST_a1, HOST_a2); // eor a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit16u*)pos=B_FWD(14); // b after_call (pc+14)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit16u*)pos=ADD_IMM3(HOST_a1, HOST_a1, 1); // add a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit16u*)pos=SUB_IMM3(HOST_a1, HOST_a1, 1); // sub a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit16u*)pos=LSL_REG(HOST_a1, HOST_a2); // lsl a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SHRb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 24); // lsr a1, a1, #24
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SHRw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 16); // lsr a1, a1, #16
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SHRd:
*(Bit16u*)pos=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SARb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 24); // asr a1, a1, #24
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SARw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 16); // asr a1, a1, #16
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SARd:
*(Bit16u*)pos=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_RORb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=NOP; // nop
*(Bit16u*)(pos+8)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_RORw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+8)=B_FWD(6); // b after_call (pc+6)
break;
case t_RORd:
*(Bit16u*)pos=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_ROLb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_ROLw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=NOP; // nop
break;
case t_ROLd:
*(Bit16u*)pos=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+2)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+4)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit16u*)pos=NEG(HOST_a1, HOST_a1); // neg a1, a1
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
default:
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 2) ) = (Bit32u)fct_ptr; // simple_func
break;
}
}
#else
if (((Bit32u)pos & 0x03) == 0)
{
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 4) ) = (Bit32u)fct_ptr; // simple_func
}
else
{
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 2) ) = (Bit32u)fct_ptr; // simple_func
}
#endif
}
#endif
#ifdef DRC_USE_SEGS_ADDR
// mov 16bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_seg16_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDRH_IMM(dest_reg, templo1, index) ); // ldrh dest_reg, [templo1, #index]
}
// mov 32bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_mov_seg32_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDR_IMM(dest_reg, templo1, index) ); // ldr dest_reg, [templo1, #index]
}
// add a 32bit value from Segs[index] to a full register using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_add_seg32_to_reg(HostReg reg,Bitu index) {
cache_checkinstr(6);
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDR_IMM(templo2, templo1, index) ); // ldr templo2, [templo1, #index]
cache_addw( ADD_REG(reg, reg, templo2) ); // add reg, reg, templo2
}
#endif
#ifdef DRC_USE_REGS_ADDR
// mov 16bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regval16_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index]
}
// mov 32bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index]
}
// move a 32bit (dword==true) or 16bit (dword==false) value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regword_to_reg(HostReg dest_reg,Bitu index,bool dword) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
if (dword) {
cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index]
} else {
cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index]
}
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_regbyte_to_reg_low(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index]
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_regbyte_to_reg_low_canuseword(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index]
}
// add a 32bit value from cpu_regs[index] to a full register using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_add_regval32_to_reg(HostReg reg,Bitu index) {
cache_checkinstr(6);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDR_IMM(templo1, templo2, index) ); // ldr templo1, [templo2, #index]
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
// move 16bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 2 must be zero)
static void gen_mov_regval16_from_reg(HostReg src_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index]
}
// move 32bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_from_reg(HostReg src_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index]
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into cpu_regs[index] using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
static void gen_mov_regword_from_reg(HostReg src_reg,Bitu index,bool dword) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
if (dword) {
cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index]
} else {
cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index]
}
}
// move the lowest 8bit of a register into cpu_regs[index] using FC_REGS_ADDR
static void gen_mov_regbyte_from_reg_low(HostReg src_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STRB_IMM(src_reg, templo1, index) ); // strb src_reg, [templo1, #index]
}
#endif