dosbox-wii/src/cpu/cpu.cpp
2021-02-06 16:06:31 +01:00

2435 lines
69 KiB
C++

/*
* Copyright (C) 2002-2019 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <assert.h>
#include <sstream>
#include <stddef.h>
#include "dosbox.h"
#include "cpu.h"
#ifdef HW_RVL
#include "string.h"
#else
#include "memory.h"
#endif
#include "debug.h"
#include "mapper.h"
#include "setup.h"
#include "programs.h"
#include "paging.h"
#include "lazyflags.h"
#include "support.h"
Bitu DEBUG_EnableDebugger(void);
extern void GFX_SetTitle(Bit32s cycles ,int frameskip,bool paused);
#if 1
#undef LOG
#if defined (_MSC_VER)
#define LOG(X,Y)
#else
#define LOG(X,Y) CPU_LOG
#define CPU_LOG(...)
#endif
#endif
CPU_Regs cpu_regs;
CPUBlock cpu;
Segments Segs;
Bit32s CPU_Cycles = 0;
Bit32s CPU_CycleLeft = 3000;
Bit32s CPU_CycleMax = 3000;
Bit32s CPU_OldCycleMax = 3000;
Bit32s CPU_CyclePercUsed = 100;
Bit32s CPU_CycleLimit = -1;
Bit32s CPU_CycleUp = 0;
Bit32s CPU_CycleDown = 0;
Bit64s CPU_IODelayRemoved = 0;
CPU_Decoder * cpudecoder;
bool CPU_CycleAutoAdjust = false;
bool CPU_SkipCycleAutoAdjust = false;
Bitu CPU_AutoDetermineMode = 0;
Bitu CPU_ArchitectureType = CPU_ARCHTYPE_MIXED;
Bitu CPU_extflags_toggle=0; // ID and AC flags may be toggled depending on emulated CPU architecture
Bitu CPU_PrefetchQueueSize=0;
void CPU_Core_Full_Init(void);
void CPU_Core_Normal_Init(void);
void CPU_Core_Simple_Init(void);
#if (C_DYNAMIC_X86)
void CPU_Core_Dyn_X86_Init(void);
void CPU_Core_Dyn_X86_Cache_Init(bool enable_cache);
void CPU_Core_Dyn_X86_Cache_Close(void);
void CPU_Core_Dyn_X86_SetFPUMode(bool dh_fpu);
#elif (C_DYNREC)
void CPU_Core_Dynrec_Init(void);
void CPU_Core_Dynrec_Cache_Init(bool enable_cache);
void CPU_Core_Dynrec_Cache_Close(void);
#endif
/* In debug mode exceptions are tested and dosbox exits when
* a unhandled exception state is detected.
* USE CHECK_EXCEPT to raise an exception in that case to see if that exception
* solves the problem.
*
* In non-debug mode dosbox doesn't do detection (and hence doesn't crash at
* that point). (game might crash later due to the unhandled exception) */
#if C_DEBUG
// #define CPU_CHECK_EXCEPT 1
// #define CPU_CHECK_IGNORE 1
/* Use CHECK_EXCEPT when something doesn't work to see if a exception is
* needed that isn't enabled by default.*/
#else
/* NORMAL NO CHECKING => More Speed */
#define CPU_CHECK_IGNORE 1
#endif /* C_DEBUG */
#if defined(CPU_CHECK_IGNORE)
#define CPU_CHECK_COND(cond,msg,exc,sel) { \
if (cond) do {} while (0); \
}
#elif defined(CPU_CHECK_EXCEPT)
#define CPU_CHECK_COND(cond,msg,exc,sel) { \
if (cond) { \
CPU_Exception(exc,sel); \
return; \
} \
}
#else
#define CPU_CHECK_COND(cond,msg,exc,sel) { \
if (cond) E_Exit(msg); \
}
#endif
void Descriptor::Load(PhysPt address) {
cpu.mpl=0;
Bit32u* data = (Bit32u*)&saved;
*data = mem_readd(address);
*(data+1) = mem_readd(address+4);
cpu.mpl=3;
}
void Descriptor:: Save(PhysPt address) {
cpu.mpl=0;
Bit32u* data = (Bit32u*)&saved;
mem_writed(address,*data);
mem_writed(address+4,*(data+1));
cpu.mpl=03;
}
void CPU_Push16(Bitu value) {
Bit32u new_esp=(reg_esp&cpu.stack.notmask)|((reg_esp-2)&cpu.stack.mask);
mem_writew(SegPhys(ss) + (new_esp & cpu.stack.mask) ,value);
reg_esp=new_esp;
}
void CPU_Push32(Bitu value) {
Bit32u new_esp=(reg_esp&cpu.stack.notmask)|((reg_esp-4)&cpu.stack.mask);
mem_writed(SegPhys(ss) + (new_esp & cpu.stack.mask) ,value);
reg_esp=new_esp;
}
Bitu CPU_Pop16(void) {
Bitu val=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask));
reg_esp=(reg_esp&cpu.stack.notmask)|((reg_esp+2)&cpu.stack.mask);
return val;
}
Bitu CPU_Pop32(void) {
Bitu val=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask));
reg_esp=(reg_esp&cpu.stack.notmask)|((reg_esp+4)&cpu.stack.mask);
return val;
}
PhysPt SelBase(Bitu sel) {
if (cpu.cr0 & CR0_PROTECTION) {
Descriptor desc;
cpu.gdt.GetDescriptor(sel,desc);
return desc.GetBase();
} else {
return sel<<4;
}
}
void CPU_SetFlags(Bitu word,Bitu mask) {
mask|=CPU_extflags_toggle; // ID-flag and AC-flag can be toggled on CPUID-supporting CPUs
reg_flags=(reg_flags & ~mask)|(word & mask)|2;
cpu.direction=1-((reg_flags & FLAG_DF) >> 9);
}
bool CPU_PrepareException(Bitu which,Bitu error) {
cpu.exception.which=which;
cpu.exception.error=error;
return true;
}
bool CPU_CLI(void) {
if (cpu.pmode && ((!GETFLAG(VM) && (GETFLAG_IOPL<cpu.cpl)) || (GETFLAG(VM) && (GETFLAG_IOPL<3)))) {
return CPU_PrepareException(EXCEPTION_GP,0);
} else {
SETFLAGBIT(IF,false);
return false;
}
}
bool CPU_STI(void) {
if (cpu.pmode && ((!GETFLAG(VM) && (GETFLAG_IOPL<cpu.cpl)) || (GETFLAG(VM) && (GETFLAG_IOPL<3)))) {
return CPU_PrepareException(EXCEPTION_GP,0);
} else {
SETFLAGBIT(IF,true);
return false;
}
}
bool CPU_POPF(Bitu use32) {
if (cpu.pmode && GETFLAG(VM) && (GETFLAG(IOPL)!=FLAG_IOPL)) {
/* Not enough privileges to execute POPF */
return CPU_PrepareException(EXCEPTION_GP,0);
}
Bitu mask=FMASK_ALL;
/* IOPL field can only be modified when CPL=0 or in real mode: */
if (cpu.pmode && (cpu.cpl>0)) mask &= (~FLAG_IOPL);
if (cpu.pmode && !GETFLAG(VM) && (GETFLAG_IOPL<cpu.cpl)) mask &= (~FLAG_IF);
if (use32)
CPU_SetFlags(CPU_Pop32(),mask);
else CPU_SetFlags(CPU_Pop16(),mask & 0xffff);
DestroyConditionFlags();
return false;
}
bool CPU_PUSHF(Bitu use32) {
if (cpu.pmode && GETFLAG(VM) && (GETFLAG(IOPL)!=FLAG_IOPL)) {
/* Not enough privileges to execute PUSHF */
return CPU_PrepareException(EXCEPTION_GP,0);
}
FillFlags();
if (use32)
CPU_Push32(reg_flags & 0xfcffff);
else CPU_Push16(reg_flags);
return false;
}
void CPU_CheckSegments(void) {
bool needs_invalidation = false;
Descriptor desc;
if (!cpu.gdt.GetDescriptor(SegValue(es),desc)) needs_invalidation = true;
else switch (desc.Type()) {
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (cpu.cpl > desc.DPL()) needs_invalidation = true;
break;
default: break; }
if (needs_invalidation) CPU_SetSegGeneral(es,0);
needs_invalidation = false;
if (!cpu.gdt.GetDescriptor(SegValue(ds),desc)) needs_invalidation = true;
else switch (desc.Type()) {
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (cpu.cpl > desc.DPL()) needs_invalidation = true;
break;
default: break; }
if (needs_invalidation) CPU_SetSegGeneral(ds,0);
needs_invalidation = false;
if (!cpu.gdt.GetDescriptor(SegValue(fs),desc)) needs_invalidation = true;
else switch (desc.Type()) {
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (cpu.cpl > desc.DPL()) needs_invalidation = true;
break;
default: break; }
if (needs_invalidation) CPU_SetSegGeneral(fs,0);
needs_invalidation = false;
if (!cpu.gdt.GetDescriptor(SegValue(gs),desc)) needs_invalidation = true;
else switch (desc.Type()) {
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A: case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A: case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA: case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (cpu.cpl > desc.DPL()) needs_invalidation = true;
break;
default: break; }
if (needs_invalidation) CPU_SetSegGeneral(gs,0);
}
class TaskStateSegment {
public:
TaskStateSegment() {
valid=false;
}
bool IsValid(void) {
return valid;
}
Bitu Get_back(void) {
cpu.mpl=0;
Bit16u backlink=mem_readw(base);
cpu.mpl=3;
return backlink;
}
void SaveSelector(void) {
cpu.gdt.SetDescriptor(selector,desc);
}
void Get_SSx_ESPx(Bitu level,Bitu & _ss,Bitu & _esp) {
cpu.mpl=0;
if (is386) {
PhysPt where=base+offsetof(TSS_32,esp0)+level*8;
_esp=mem_readd(where);
_ss=mem_readw(where+4);
} else {
PhysPt where=base+offsetof(TSS_16,sp0)+level*4;
_esp=mem_readw(where);
_ss=mem_readw(where+2);
}
cpu.mpl=3;
}
bool SetSelector(Bitu new_sel) {
valid=false;
if ((new_sel & 0xfffc)==0) {
selector=0;
base=0;
limit=0;
is386=1;
return true;
}
if (new_sel&4) return false;
if (!cpu.gdt.GetDescriptor(new_sel,desc)) return false;
switch (desc.Type()) {
case DESC_286_TSS_A: case DESC_286_TSS_B:
case DESC_386_TSS_A: case DESC_386_TSS_B:
break;
default:
return false;
}
if (!desc.saved.seg.p) return false;
selector=new_sel;
valid=true;
base=desc.GetBase();
limit=desc.GetLimit();
is386=desc.Is386();
return true;
}
TSS_Descriptor desc;
Bitu selector;
PhysPt base;
Bitu limit;
Bitu is386;
bool valid;
};
TaskStateSegment cpu_tss;
enum TSwitchType {
TSwitch_JMP,TSwitch_CALL_INT,TSwitch_IRET
};
bool CPU_SwitchTask(Bitu new_tss_selector,TSwitchType tstype,Bitu old_eip) {
FillFlags();
TaskStateSegment new_tss;
if (!new_tss.SetSelector(new_tss_selector))
E_Exit("Illegal TSS for switch, selector=%" sBitfs(x) ", switchtype=%x",new_tss_selector,tstype);
if (tstype==TSwitch_IRET) {
if (!new_tss.desc.IsBusy())
E_Exit("TSS not busy for IRET");
} else {
if (new_tss.desc.IsBusy())
E_Exit("TSS busy for JMP/CALL/INT");
}
Bitu new_cr3=0;
Bitu new_eax,new_ebx,new_ecx,new_edx,new_esp,new_ebp,new_esi,new_edi;
Bitu new_es,new_cs,new_ss,new_ds,new_fs,new_gs;
Bitu new_ldt,new_eip,new_eflags;
/* Read new context from new TSS */
if (new_tss.is386) {
new_cr3=mem_readd(new_tss.base+offsetof(TSS_32,cr3));
new_eip=mem_readd(new_tss.base+offsetof(TSS_32,eip));
new_eflags=mem_readd(new_tss.base+offsetof(TSS_32,eflags));
new_eax=mem_readd(new_tss.base+offsetof(TSS_32,eax));
new_ecx=mem_readd(new_tss.base+offsetof(TSS_32,ecx));
new_edx=mem_readd(new_tss.base+offsetof(TSS_32,edx));
new_ebx=mem_readd(new_tss.base+offsetof(TSS_32,ebx));
new_esp=mem_readd(new_tss.base+offsetof(TSS_32,esp));
new_ebp=mem_readd(new_tss.base+offsetof(TSS_32,ebp));
new_edi=mem_readd(new_tss.base+offsetof(TSS_32,edi));
new_esi=mem_readd(new_tss.base+offsetof(TSS_32,esi));
new_es=mem_readw(new_tss.base+offsetof(TSS_32,es));
new_cs=mem_readw(new_tss.base+offsetof(TSS_32,cs));
new_ss=mem_readw(new_tss.base+offsetof(TSS_32,ss));
new_ds=mem_readw(new_tss.base+offsetof(TSS_32,ds));
new_fs=mem_readw(new_tss.base+offsetof(TSS_32,fs));
new_gs=mem_readw(new_tss.base+offsetof(TSS_32,gs));
new_ldt=mem_readw(new_tss.base+offsetof(TSS_32,ldt));
} else {
E_Exit("286 task switch");
new_cr3=0;
new_eip=0;
new_eflags=0;
new_eax=0; new_ecx=0; new_edx=0; new_ebx=0;
new_esp=0; new_ebp=0; new_edi=0; new_esi=0;
new_es=0; new_cs=0; new_ss=0; new_ds=0; new_fs=0; new_gs=0;
new_ldt=0;
}
/* Check if we need to clear busy bit of old TASK */
if (tstype==TSwitch_JMP || tstype==TSwitch_IRET) {
cpu_tss.desc.SetBusy(false);
cpu_tss.SaveSelector();
}
Bit32u old_flags = reg_flags;
if (tstype==TSwitch_IRET) old_flags &= (~FLAG_NT);
/* Save current context in current TSS */
if (cpu_tss.is386) {
mem_writed(cpu_tss.base+offsetof(TSS_32,eflags),old_flags);
mem_writed(cpu_tss.base+offsetof(TSS_32,eip),old_eip);
mem_writed(cpu_tss.base+offsetof(TSS_32,eax),reg_eax);
mem_writed(cpu_tss.base+offsetof(TSS_32,ecx),reg_ecx);
mem_writed(cpu_tss.base+offsetof(TSS_32,edx),reg_edx);
mem_writed(cpu_tss.base+offsetof(TSS_32,ebx),reg_ebx);
mem_writed(cpu_tss.base+offsetof(TSS_32,esp),reg_esp);
mem_writed(cpu_tss.base+offsetof(TSS_32,ebp),reg_ebp);
mem_writed(cpu_tss.base+offsetof(TSS_32,esi),reg_esi);
mem_writed(cpu_tss.base+offsetof(TSS_32,edi),reg_edi);
mem_writed(cpu_tss.base+offsetof(TSS_32,es),SegValue(es));
mem_writed(cpu_tss.base+offsetof(TSS_32,cs),SegValue(cs));
mem_writed(cpu_tss.base+offsetof(TSS_32,ss),SegValue(ss));
mem_writed(cpu_tss.base+offsetof(TSS_32,ds),SegValue(ds));
mem_writed(cpu_tss.base+offsetof(TSS_32,fs),SegValue(fs));
mem_writed(cpu_tss.base+offsetof(TSS_32,gs),SegValue(gs));
} else {
E_Exit("286 task switch");
}
/* Setup a back link to the old TSS in new TSS */
if (tstype==TSwitch_CALL_INT) {
if (new_tss.is386) {
mem_writed(new_tss.base+offsetof(TSS_32,back),cpu_tss.selector);
} else {
mem_writew(new_tss.base+offsetof(TSS_16,back),cpu_tss.selector);
}
/* And make the new task's eflag have the nested task bit */
new_eflags|=FLAG_NT;
}
/* Set the busy bit in the new task */
if (tstype==TSwitch_JMP || tstype==TSwitch_CALL_INT) {
new_tss.desc.SetBusy(true);
new_tss.SaveSelector();
}
// cpu.cr0|=CR0_TASKSWITCHED;
if (new_tss_selector == cpu_tss.selector) {
reg_eip = old_eip;
new_cs = SegValue(cs);
new_ss = SegValue(ss);
new_ds = SegValue(ds);
new_es = SegValue(es);
new_fs = SegValue(fs);
new_gs = SegValue(gs);
} else {
/* Setup the new cr3 */
PAGING_SetDirBase(new_cr3);
/* Load new context */
if (new_tss.is386) {
reg_eip=new_eip;
CPU_SetFlags(new_eflags,FMASK_ALL | FLAG_VM);
reg_eax=new_eax;
reg_ecx=new_ecx;
reg_edx=new_edx;
reg_ebx=new_ebx;
reg_esp=new_esp;
reg_ebp=new_ebp;
reg_edi=new_edi;
reg_esi=new_esi;
// new_cs=mem_readw(new_tss.base+offsetof(TSS_32,cs));
} else {
E_Exit("286 task switch");
}
}
/* Load the new selectors */
if (reg_flags & FLAG_VM) {
SegSet16(cs,new_cs);
cpu.code.big=false;
cpu.cpl=3; //We don't have segment caches so this will do
} else {
/* Protected mode task */
if (new_ldt!=0) CPU_LLDT(new_ldt);
/* Load the new CS*/
Descriptor cs_desc;
cpu.cpl=new_cs & 3;
if (!cpu.gdt.GetDescriptor(new_cs,cs_desc))
E_Exit("Task switch with CS beyond limits");
if (!cs_desc.saved.seg.p)
E_Exit("Task switch with non present code-segment");
switch (cs_desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (cpu.cpl != cs_desc.DPL()) E_Exit("Task CS RPL != DPL");
goto doconforming;
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
if (cpu.cpl < cs_desc.DPL()) E_Exit("Task CS RPL < DPL");
doconforming:
Segs.phys[cs]=cs_desc.GetBase();
cpu.code.big=cs_desc.Big()>0;
Segs.val[cs]=new_cs;
break;
default:
E_Exit("Task switch CS Type %" sBitfs(u),cs_desc.Type());
}
}
CPU_SetSegGeneral(es,new_es);
CPU_SetSegGeneral(ss,new_ss);
CPU_SetSegGeneral(ds,new_ds);
CPU_SetSegGeneral(fs,new_fs);
CPU_SetSegGeneral(gs,new_gs);
if (!cpu_tss.SetSelector(new_tss_selector)) {
LOG(LOG_CPU,LOG_NORMAL)("TaskSwitch: set tss selector %X failed",new_tss_selector);
}
// cpu_tss.desc.SetBusy(true);
// cpu_tss.SaveSelector();
// LOG_MSG("Task CPL %X CS:%X IP:%X SS:%X SP:%X eflags %x",cpu.cpl,SegValue(cs),reg_eip,SegValue(ss),reg_esp,reg_flags);
return true;
}
bool CPU_IO_Exception(Bitu port,Bitu size) {
if (cpu.pmode && ((GETFLAG_IOPL<cpu.cpl) || GETFLAG(VM))) {
cpu.mpl=0;
if (!cpu_tss.is386) goto doexception;
PhysPt bwhere=cpu_tss.base+0x66;
Bitu ofs=mem_readw(bwhere);
if (ofs>cpu_tss.limit) goto doexception;
bwhere=cpu_tss.base+ofs+(port/8);
Bitu map=mem_readw(bwhere);
Bitu mask=(0xffff>>(16-size)) << (port&7);
if (map & mask) goto doexception;
cpu.mpl=3;
}
return false;
doexception:
cpu.mpl=3;
LOG(LOG_CPU,LOG_NORMAL)("IO Exception port %X",port);
return CPU_PrepareException(EXCEPTION_GP,0);
}
void CPU_Exception(Bitu which,Bitu error ) {
// LOG_MSG("Exception %d error %x",which,error);
cpu.exception.error=error;
CPU_Interrupt(which,CPU_INT_EXCEPTION | ((which>=8) ? CPU_INT_HAS_ERROR : 0),reg_eip);
}
Bit8u lastint;
void CPU_Interrupt(Bitu num,Bitu type,Bitu oldeip) {
lastint=num;
FillFlags();
#if C_DEBUG
switch (num) {
case 0xcd:
#if C_HEAVY_DEBUG
LOG(LOG_CPU,LOG_ERROR)("Call to interrupt 0xCD this is BAD");
// DEBUG_HeavyWriteLogInstruction();
// E_Exit("Call to interrupt 0xCD this is BAD");
#endif
break;
case 0x03:
if (DEBUG_Breakpoint()) {
CPU_Cycles=0;
return;
}
};
#endif
if (!cpu.pmode) {
/* Save everything on a 16-bit stack */
CPU_Push16(reg_flags & 0xffff);
CPU_Push16(SegValue(cs));
CPU_Push16(oldeip);
SETFLAGBIT(IF,false);
SETFLAGBIT(TF,false);
/* Get the new CS:IP from vector table */
PhysPt base=cpu.idt.GetBase();
reg_eip=mem_readw(base+(num << 2));
Segs.val[cs]=mem_readw(base+(num << 2)+2);
Segs.phys[cs]=Segs.val[cs]<<4;
cpu.code.big=false;
return;
} else {
/* Protected Mode Interrupt */
if ((reg_flags & FLAG_VM) && (type&CPU_INT_SOFTWARE) && !(type&CPU_INT_NOIOPLCHECK)) {
// LOG_MSG("Software int in v86, AH %X IOPL %x",reg_ah,(reg_flags & FLAG_IOPL) >>12);
if ((reg_flags & FLAG_IOPL)!=FLAG_IOPL) {
CPU_Exception(EXCEPTION_GP,0);
return;
}
}
Descriptor gate;
if (!cpu.idt.GetDescriptor(num<<3,gate)) {
// zone66
CPU_Exception(EXCEPTION_GP,num*8+2+(type&CPU_INT_SOFTWARE)?0:1);
return;
}
if ((type&CPU_INT_SOFTWARE) && (gate.DPL()<cpu.cpl)) {
// zone66, win3.x e
CPU_Exception(EXCEPTION_GP,num*8+2);
return;
}
switch (gate.Type()) {
case DESC_286_INT_GATE: case DESC_386_INT_GATE:
case DESC_286_TRAP_GATE: case DESC_386_TRAP_GATE:
{
CPU_CHECK_COND(!gate.saved.seg.p,
"INT:Gate segment not present",
EXCEPTION_NP,num*8+2+(type&CPU_INT_SOFTWARE)?0:1)
Descriptor cs_desc;
Bitu gate_sel=gate.GetSelector();
Bitu gate_off=gate.GetOffset();
CPU_CHECK_COND((gate_sel & 0xfffc)==0,
"INT:Gate with CS zero selector",
EXCEPTION_GP,(type&CPU_INT_SOFTWARE)?0:1)
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(gate_sel,cs_desc),
"INT:Gate with CS beyond limit",
EXCEPTION_GP,(gate_sel & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
Bitu cs_dpl=cs_desc.DPL();
CPU_CHECK_COND(cs_dpl>cpu.cpl,
"Interrupt to higher privilege",
EXCEPTION_GP,(gate_sel & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
switch (cs_desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (cs_dpl<cpu.cpl) {
/* Prepare for gate to inner level */
CPU_CHECK_COND(!cs_desc.saved.seg.p,
"INT:Inner level:CS segment not present",
EXCEPTION_NP,(gate_sel & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
CPU_CHECK_COND((reg_flags & FLAG_VM) && (cs_dpl!=0),
"V86 interrupt calling codesegment with DPL>0",
EXCEPTION_GP,gate_sel & 0xfffc)
Bitu n_ss,n_esp;
Bitu o_ss,o_esp;
o_ss=SegValue(ss);
o_esp=reg_esp;
cpu_tss.Get_SSx_ESPx(cs_dpl,n_ss,n_esp);
CPU_CHECK_COND((n_ss & 0xfffc)==0,
"INT:Gate with SS zero selector",
EXCEPTION_TS,(type&CPU_INT_SOFTWARE)?0:1)
Descriptor n_ss_desc;
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss,n_ss_desc),
"INT:Gate with SS beyond limit",
EXCEPTION_TS,(n_ss & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
CPU_CHECK_COND(((n_ss & 3)!=cs_dpl) || (n_ss_desc.DPL()!=cs_dpl),
"INT:Inner level with CS_DPL!=SS_DPL and SS_RPL",
EXCEPTION_TS,(n_ss & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
// check if stack segment is a writable data segment
switch (n_ss_desc.Type()) {
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
break;
default:
E_Exit("INT:Inner level:Stack segment not writable."); // or #TS(ss_sel+EXT)
}
CPU_CHECK_COND(!n_ss_desc.saved.seg.p,
"INT:Inner level with nonpresent SS",
EXCEPTION_SS,(n_ss & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
// commit point
Segs.phys[ss]=n_ss_desc.GetBase();
Segs.val[ss]=n_ss;
if (n_ss_desc.Big()) {
cpu.stack.big=true;
cpu.stack.mask=0xffffffff;
cpu.stack.notmask=0;
reg_esp=n_esp;
} else {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
reg_sp=n_esp & 0xffff;
}
cpu.cpl=cs_dpl;
if (gate.Type() & 0x8) { /* 32-bit Gate */
if (reg_flags & FLAG_VM) {
CPU_Push32(SegValue(gs));SegSet16(gs,0x0);
CPU_Push32(SegValue(fs));SegSet16(fs,0x0);
CPU_Push32(SegValue(ds));SegSet16(ds,0x0);
CPU_Push32(SegValue(es));SegSet16(es,0x0);
}
CPU_Push32(o_ss);
CPU_Push32(o_esp);
} else { /* 16-bit Gate */
if (reg_flags & FLAG_VM) E_Exit("V86 to 16-bit gate");
CPU_Push16(o_ss);
CPU_Push16(o_esp);
}
// LOG_MSG("INT:Gate to inner level SS:%X SP:%X",n_ss,n_esp);
goto do_interrupt;
}
if (cs_dpl!=cpu.cpl)
E_Exit("Non-conforming intra privilege INT with DPL!=CPL");
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
/* Prepare stack for gate to same priviledge */
CPU_CHECK_COND(!cs_desc.saved.seg.p,
"INT:Same level:CS segment not present",
EXCEPTION_NP,(gate_sel & 0xfffc)+(type&CPU_INT_SOFTWARE)?0:1)
if ((reg_flags & FLAG_VM) && (cs_dpl<cpu.cpl))
E_Exit("V86 interrupt doesn't change to pl0"); // or #GP(cs_sel)
// commit point
do_interrupt:
if (gate.Type() & 0x8) { /* 32-bit Gate */
CPU_Push32(reg_flags);
CPU_Push32(SegValue(cs));
CPU_Push32(oldeip);
if (type & CPU_INT_HAS_ERROR) CPU_Push32(cpu.exception.error);
} else { /* 16-bit gate */
CPU_Push16(reg_flags & 0xffff);
CPU_Push16(SegValue(cs));
CPU_Push16(oldeip);
if (type & CPU_INT_HAS_ERROR) CPU_Push16(cpu.exception.error);
}
break;
default:
E_Exit("INT:Gate Selector points to illegal descriptor with type %" sBitfs(x),cs_desc.Type());
}
Segs.val[cs]=(gate_sel&0xfffc) | cpu.cpl;
Segs.phys[cs]=cs_desc.GetBase();
cpu.code.big=cs_desc.Big()>0;
reg_eip=gate_off;
if (!(gate.Type()&1)) {
SETFLAGBIT(IF,false);
}
SETFLAGBIT(TF,false);
SETFLAGBIT(NT,false);
SETFLAGBIT(VM,false);
LOG(LOG_CPU,LOG_NORMAL)("INT:Gate to %X:%X big %d %s",gate_sel,gate_off,cs_desc.Big(),gate.Type() & 0x8 ? "386" : "286");
return;
}
case DESC_TASK_GATE:
CPU_CHECK_COND(!gate.saved.seg.p,
"INT:Gate segment not present",
EXCEPTION_NP,num*8+2+(type&CPU_INT_SOFTWARE)?0:1)
CPU_SwitchTask(gate.GetSelector(),TSwitch_CALL_INT,oldeip);
if (type & CPU_INT_HAS_ERROR) {
//TODO Be sure about this, seems somewhat unclear
if (cpu_tss.is386) CPU_Push32(cpu.exception.error);
else CPU_Push16(cpu.exception.error);
}
return;
default:
E_Exit("Illegal descriptor type %" sBitfs(X) " for int %" sBitfs(X),gate.Type(),num);
}
}
assert(1);
return ; // make compiler happy
}
void CPU_IRET(bool use32,Bitu oldeip) {
if (!cpu.pmode) { /* RealMode IRET */
if (use32) {
reg_eip=CPU_Pop32();
SegSet16(cs,CPU_Pop32());
CPU_SetFlags(CPU_Pop32(),FMASK_ALL);
} else {
reg_eip=CPU_Pop16();
SegSet16(cs,CPU_Pop16());
CPU_SetFlags(CPU_Pop16(),FMASK_ALL & 0xffff);
}
cpu.code.big=false;
DestroyConditionFlags();
return;
} else { /* Protected mode IRET */
if (reg_flags & FLAG_VM) {
if ((reg_flags & FLAG_IOPL)!=FLAG_IOPL) {
// win3.x e
CPU_Exception(EXCEPTION_GP,0);
return;
} else {
if (use32) {
Bit32u new_eip=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask));
Bit32u tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+4)&cpu.stack.mask);
Bit32u new_cs=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask));
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask);
Bit32u new_flags=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask));
reg_esp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask);
reg_eip=new_eip;
SegSet16(cs,(Bit16u)(new_cs&0xffff));
/* IOPL can not be modified in v86 mode by IRET */
CPU_SetFlags(new_flags,FMASK_NORMAL|FLAG_NT);
} else {
Bit16u new_eip=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask));
Bit32u tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+2)&cpu.stack.mask);
Bit16u new_cs=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask));
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask);
Bit16u new_flags=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask));
reg_esp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask);
reg_eip=(Bit32u)new_eip;
SegSet16(cs,new_cs);
/* IOPL can not be modified in v86 mode by IRET */
CPU_SetFlags(new_flags,FMASK_NORMAL|FLAG_NT);
}
cpu.code.big=false;
DestroyConditionFlags();
return;
}
}
/* Check if this is task IRET */
if (GETFLAG(NT)) {
if (GETFLAG(VM)) E_Exit("Pmode IRET with VM bit set");
CPU_CHECK_COND(!cpu_tss.IsValid(),
"TASK Iret without valid TSS",
EXCEPTION_TS,cpu_tss.selector & 0xfffc)
if (!cpu_tss.desc.IsBusy()) {
LOG(LOG_CPU,LOG_ERROR)("TASK Iret:TSS not busy");
}
Bitu back_link=cpu_tss.Get_back();
CPU_SwitchTask(back_link,TSwitch_IRET,oldeip);
return;
}
Bitu n_cs_sel,n_eip,n_flags;
Bit32u tempesp;
if (use32) {
n_eip=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask));
tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+4)&cpu.stack.mask);
n_cs_sel=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask)) & 0xffff;
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask);
n_flags=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask));
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask);
if ((n_flags & FLAG_VM) && (cpu.cpl==0)) {
// commit point
reg_esp=tempesp;
reg_eip=n_eip & 0xffff;
Bitu n_ss,n_esp,n_es,n_ds,n_fs,n_gs;
n_esp=CPU_Pop32();
n_ss=CPU_Pop32() & 0xffff;
n_es=CPU_Pop32() & 0xffff;
n_ds=CPU_Pop32() & 0xffff;
n_fs=CPU_Pop32() & 0xffff;
n_gs=CPU_Pop32() & 0xffff;
CPU_SetFlags(n_flags,FMASK_ALL | FLAG_VM);
DestroyConditionFlags();
cpu.cpl=3;
CPU_SetSegGeneral(ss,n_ss);
CPU_SetSegGeneral(es,n_es);
CPU_SetSegGeneral(ds,n_ds);
CPU_SetSegGeneral(fs,n_fs);
CPU_SetSegGeneral(gs,n_gs);
reg_esp=n_esp;
cpu.code.big=false;
SegSet16(cs,n_cs_sel);
LOG(LOG_CPU,LOG_NORMAL)("IRET:Back to V86: CS:%X IP %X SS:%X SP %X FLAGS:%X",SegValue(cs),reg_eip,SegValue(ss),reg_esp,reg_flags);
return;
}
if (n_flags & FLAG_VM) E_Exit("IRET from pmode to v86 with CPL!=0");
} else {
n_eip=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask));
tempesp=(reg_esp&cpu.stack.notmask)|((reg_esp+2)&cpu.stack.mask);
n_cs_sel=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask));
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask);
n_flags=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask));
n_flags|=(reg_flags & 0xffff0000);
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask);
if (n_flags & FLAG_VM) E_Exit("VM Flag in 16-bit iret");
}
CPU_CHECK_COND((n_cs_sel & 0xfffc)==0,
"IRET:CS selector zero",
EXCEPTION_GP,0)
Bitu n_cs_rpl=n_cs_sel & 3;
Descriptor n_cs_desc;
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_cs_sel,n_cs_desc),
"IRET:CS selector beyond limits",
EXCEPTION_GP,n_cs_sel & 0xfffc)
CPU_CHECK_COND(n_cs_rpl<cpu.cpl,
"IRET to lower privilege",
EXCEPTION_GP,n_cs_sel & 0xfffc)
switch (n_cs_desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
CPU_CHECK_COND(n_cs_rpl!=n_cs_desc.DPL(),
"IRET:NC:DPL!=RPL",
EXCEPTION_GP,n_cs_sel & 0xfffc)
break;
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
CPU_CHECK_COND(n_cs_desc.DPL()>n_cs_rpl,
"IRET:C:DPL>RPL",
EXCEPTION_GP,n_cs_sel & 0xfffc)
break;
default:
E_Exit("IRET:Illegal descriptor type %" sBitfs(X), n_cs_desc.Type());
}
CPU_CHECK_COND(!n_cs_desc.saved.seg.p,
"IRET with nonpresent code segment",
EXCEPTION_NP,n_cs_sel & 0xfffc)
if (n_cs_rpl==cpu.cpl) {
/* Return to same level */
// commit point
reg_esp=tempesp;
Segs.phys[cs]=n_cs_desc.GetBase();
cpu.code.big=n_cs_desc.Big()>0;
Segs.val[cs]=n_cs_sel;
reg_eip=n_eip;
Bitu mask=cpu.cpl ? (FMASK_NORMAL | FLAG_NT) : FMASK_ALL;
if (GETFLAG_IOPL<cpu.cpl) mask &= (~FLAG_IF);
CPU_SetFlags(n_flags,mask);
DestroyConditionFlags();
LOG(LOG_CPU,LOG_NORMAL)("IRET:Same level:%X:%X big %d",n_cs_sel,n_eip,cpu.code.big);
} else {
/* Return to outer level */
Bitu n_ss,n_esp;
if (use32) {
n_esp=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask));
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+4)&cpu.stack.mask);
n_ss=mem_readd(SegPhys(ss) + (tempesp & cpu.stack.mask)) & 0xffff;
} else {
n_esp=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask));
tempesp=(tempesp&cpu.stack.notmask)|((tempesp+2)&cpu.stack.mask);
n_ss=mem_readw(SegPhys(ss) + (tempesp & cpu.stack.mask));
}
CPU_CHECK_COND((n_ss & 0xfffc)==0,
"IRET:Outer level:SS selector zero",
EXCEPTION_GP,0)
CPU_CHECK_COND((n_ss & 3)!=n_cs_rpl,
"IRET:Outer level:SS rpl!=CS rpl",
EXCEPTION_GP,n_ss & 0xfffc)
Descriptor n_ss_desc;
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss,n_ss_desc),
"IRET:Outer level:SS beyond limit",
EXCEPTION_GP,n_ss & 0xfffc)
CPU_CHECK_COND(n_ss_desc.DPL()!=n_cs_rpl,
"IRET:Outer level:SS dpl!=CS rpl",
EXCEPTION_GP,n_ss & 0xfffc)
// check if stack segment is a writable data segment
switch (n_ss_desc.Type()) {
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
break;
default:
E_Exit("IRET:Outer level:Stack segment not writable"); // or #GP(ss_sel)
}
CPU_CHECK_COND(!n_ss_desc.saved.seg.p,
"IRET:Outer level:Stack segment not present",
EXCEPTION_NP,n_ss & 0xfffc)
// commit point
Segs.phys[cs]=n_cs_desc.GetBase();
cpu.code.big=n_cs_desc.Big()>0;
Segs.val[cs]=n_cs_sel;
Bitu mask=cpu.cpl ? (FMASK_NORMAL | FLAG_NT) : FMASK_ALL;
if (GETFLAG_IOPL<cpu.cpl) mask &= (~FLAG_IF);
CPU_SetFlags(n_flags,mask);
DestroyConditionFlags();
cpu.cpl=n_cs_rpl;
reg_eip=n_eip;
Segs.val[ss]=n_ss;
Segs.phys[ss]=n_ss_desc.GetBase();
if (n_ss_desc.Big()) {
cpu.stack.big=true;
cpu.stack.mask=0xffffffff;
cpu.stack.notmask=0;
reg_esp=n_esp;
} else {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
reg_sp=n_esp & 0xffff;
}
// borland extender, zrdx
CPU_CheckSegments();
LOG(LOG_CPU,LOG_NORMAL)("IRET:Outer level:%X:%X big %d",n_cs_sel,n_eip,cpu.code.big);
}
return;
}
}
void CPU_JMP(bool use32,Bitu selector,Bitu offset,Bitu oldeip) {
if (!cpu.pmode || (reg_flags & FLAG_VM)) {
if (!use32) {
reg_eip=offset&0xffff;
} else {
reg_eip=offset;
}
SegSet16(cs,selector);
cpu.code.big=false;
return;
} else {
CPU_CHECK_COND((selector & 0xfffc)==0,
"JMP:CS selector zero",
EXCEPTION_GP,0)
Bitu rpl=selector & 3;
Descriptor desc;
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(selector,desc),
"JMP:CS beyond limits",
EXCEPTION_GP,selector & 0xfffc)
switch (desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
CPU_CHECK_COND(rpl>cpu.cpl,
"JMP:NC:RPL>CPL",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(cpu.cpl!=desc.DPL(),
"JMP:NC:RPL != DPL",
EXCEPTION_GP,selector & 0xfffc)
LOG(LOG_CPU,LOG_NORMAL)("JMP:Code:NC to %X:%X big %d",selector,offset,desc.Big());
goto CODE_jmp;
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
LOG(LOG_CPU,LOG_NORMAL)("JMP:Code:C to %X:%X big %d",selector,offset,desc.Big());
CPU_CHECK_COND(cpu.cpl<desc.DPL(),
"JMP:C:CPL < DPL",
EXCEPTION_GP,selector & 0xfffc)
CODE_jmp:
if (!desc.saved.seg.p) {
// win
CPU_Exception(EXCEPTION_NP,selector & 0xfffc);
return;
}
/* Normal jump to another selector:offset */
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=(selector & 0xfffc) | cpu.cpl;
reg_eip=offset;
return;
case DESC_386_TSS_A:
CPU_CHECK_COND(desc.DPL()<cpu.cpl,
"JMP:TSS:dpl<cpl",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(desc.DPL()<rpl,
"JMP:TSS:dpl<rpl",
EXCEPTION_GP,selector & 0xfffc)
LOG(LOG_CPU,LOG_NORMAL)("JMP:TSS to %X",selector);
CPU_SwitchTask(selector,TSwitch_JMP,oldeip);
break;
default:
E_Exit("JMP Illegal descriptor type %" sBitfs(X),desc.Type());
}
}
assert(1);
}
void CPU_CALL(bool use32,Bitu selector,Bitu offset,Bitu oldeip) {
if (!cpu.pmode || (reg_flags & FLAG_VM)) {
if (!use32) {
CPU_Push16(SegValue(cs));
CPU_Push16(oldeip);
reg_eip=offset&0xffff;
} else {
CPU_Push32(SegValue(cs));
CPU_Push32(oldeip);
reg_eip=offset;
}
cpu.code.big=false;
SegSet16(cs,selector);
return;
} else {
CPU_CHECK_COND((selector & 0xfffc)==0,
"CALL:CS selector zero",
EXCEPTION_GP,0)
Bitu rpl=selector & 3;
Descriptor call;
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(selector,call),
"CALL:CS beyond limits",
EXCEPTION_GP,selector & 0xfffc)
/* Check for type of far call */
switch (call.Type()) {
case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA:
CPU_CHECK_COND(rpl>cpu.cpl,
"CALL:CODE:NC:RPL>CPL",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(call.DPL()!=cpu.cpl,
"CALL:CODE:NC:DPL!=CPL",
EXCEPTION_GP,selector & 0xfffc)
LOG(LOG_CPU,LOG_NORMAL)("CALL:CODE:NC to %X:%X",selector,offset);
goto call_code;
case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA:
CPU_CHECK_COND(call.DPL()>cpu.cpl,
"CALL:CODE:C:DPL>CPL",
EXCEPTION_GP,selector & 0xfffc)
LOG(LOG_CPU,LOG_NORMAL)("CALL:CODE:C to %X:%X",selector,offset);
call_code:
if (!call.saved.seg.p) {
// borland extender (RTM)
CPU_Exception(EXCEPTION_NP,selector & 0xfffc);
return;
}
// commit point
if (!use32) {
CPU_Push16(SegValue(cs));
CPU_Push16(oldeip);
reg_eip=offset & 0xffff;
} else {
CPU_Push32(SegValue(cs));
CPU_Push32(oldeip);
reg_eip=offset;
}
Segs.phys[cs]=call.GetBase();
cpu.code.big=call.Big()>0;
Segs.val[cs]=(selector & 0xfffc) | cpu.cpl;
return;
case DESC_386_CALL_GATE:
case DESC_286_CALL_GATE:
{
CPU_CHECK_COND(call.DPL()<cpu.cpl,
"CALL:Gate:Gate DPL<CPL",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(call.DPL()<rpl,
"CALL:Gate:Gate DPL<RPL",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(!call.saved.seg.p,
"CALL:Gate:Segment not present",
EXCEPTION_NP,selector & 0xfffc)
Descriptor n_cs_desc;
Bitu n_cs_sel=call.GetSelector();
CPU_CHECK_COND((n_cs_sel & 0xfffc)==0,
"CALL:Gate:CS selector zero",
EXCEPTION_GP,0)
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_cs_sel,n_cs_desc),
"CALL:Gate:CS beyond limits",
EXCEPTION_GP,n_cs_sel & 0xfffc)
Bitu n_cs_dpl = n_cs_desc.DPL();
CPU_CHECK_COND(n_cs_dpl>cpu.cpl,
"CALL:Gate:CS DPL>CPL",
EXCEPTION_GP,n_cs_sel & 0xfffc)
CPU_CHECK_COND(!n_cs_desc.saved.seg.p,
"CALL:Gate:CS not present",
EXCEPTION_NP,n_cs_sel & 0xfffc)
Bitu n_eip = call.GetOffset();
switch (n_cs_desc.Type()) {
case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA:
/* Check if we goto inner priviledge */
if (n_cs_dpl < cpu.cpl) {
/* Get new SS:ESP out of TSS */
Bitu n_ss_sel,n_esp;
Descriptor n_ss_desc;
cpu_tss.Get_SSx_ESPx(n_cs_dpl,n_ss_sel,n_esp);
CPU_CHECK_COND((n_ss_sel & 0xfffc)==0,
"CALL:Gate:NC:SS selector zero",
EXCEPTION_TS,0)
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss_sel,n_ss_desc),
"CALL:Gate:Invalid SS selector",
EXCEPTION_TS,n_ss_sel & 0xfffc)
CPU_CHECK_COND(((n_ss_sel & 3)!=n_cs_desc.DPL()) || (n_ss_desc.DPL()!=n_cs_desc.DPL()),
"CALL:Gate:Invalid SS selector privileges",
EXCEPTION_TS,n_ss_sel & 0xfffc)
switch (n_ss_desc.Type()) {
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
// writable data segment
break;
default:
E_Exit("Call:Gate:SS no writable data segment"); // or #TS(ss_sel)
}
CPU_CHECK_COND(!n_ss_desc.saved.seg.p,
"CALL:Gate:Stack segment not present",
EXCEPTION_SS,n_ss_sel & 0xfffc)
/* Load the new SS:ESP and save data on it */
Bitu o_esp = reg_esp;
Bitu o_ss = SegValue(ss);
PhysPt o_stack = SegPhys(ss)+(reg_esp & cpu.stack.mask);
// catch pagefaults
if (call.saved.gate.paramcount&31) {
if (call.Type()==DESC_386_CALL_GATE) {
for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--)
mem_readd(o_stack+i*4);
} else {
for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--)
mem_readw(o_stack+i*2);
}
}
// commit point
Segs.val[ss]=n_ss_sel;
Segs.phys[ss]=n_ss_desc.GetBase();
if (n_ss_desc.Big()) {
cpu.stack.big=true;
cpu.stack.mask=0xffffffff;
cpu.stack.notmask=0;
reg_esp=n_esp;
} else {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
reg_sp=n_esp & 0xffff;
}
cpu.cpl = n_cs_desc.DPL();
Bit16u oldcs = SegValue(cs);
/* Switch to new CS:EIP */
Segs.phys[cs] = n_cs_desc.GetBase();
Segs.val[cs] = (n_cs_sel & 0xfffc) | cpu.cpl;
cpu.code.big = n_cs_desc.Big()>0;
reg_eip = n_eip;
if (!use32) reg_eip&=0xffff;
if (call.Type()==DESC_386_CALL_GATE) {
CPU_Push32(o_ss); //save old stack
CPU_Push32(o_esp);
if (call.saved.gate.paramcount&31)
for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--)
CPU_Push32(mem_readd(o_stack+i*4));
CPU_Push32(oldcs);
CPU_Push32(oldeip);
} else {
CPU_Push16(o_ss); //save old stack
CPU_Push16(o_esp);
if (call.saved.gate.paramcount&31)
for (Bits i=(call.saved.gate.paramcount&31)-1;i>=0;i--)
CPU_Push16(mem_readw(o_stack+i*2));
CPU_Push16(oldcs);
CPU_Push16(oldeip);
}
break;
} else if (n_cs_dpl > cpu.cpl)
E_Exit("CALL:GATE:CS DPL>CPL"); // or #GP(sel)
case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA:
// zrdx extender
if (call.Type()==DESC_386_CALL_GATE) {
CPU_Push32(SegValue(cs));
CPU_Push32(oldeip);
} else {
CPU_Push16(SegValue(cs));
CPU_Push16(oldeip);
}
/* Switch to new CS:EIP */
Segs.phys[cs] = n_cs_desc.GetBase();
Segs.val[cs] = (n_cs_sel & 0xfffc) | cpu.cpl;
cpu.code.big = n_cs_desc.Big()>0;
reg_eip = n_eip;
if (!use32) reg_eip&=0xffff;
break;
default:
E_Exit("CALL:GATE:CS no executable segment");
}
} /* Call Gates */
break;
case DESC_386_TSS_A:
CPU_CHECK_COND(call.DPL()<cpu.cpl,
"CALL:TSS:dpl<cpl",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(call.DPL()<rpl,
"CALL:TSS:dpl<rpl",
EXCEPTION_GP,selector & 0xfffc)
CPU_CHECK_COND(!call.saved.seg.p,
"CALL:TSS:Segment not present",
EXCEPTION_NP,selector & 0xfffc)
LOG(LOG_CPU,LOG_NORMAL)("CALL:TSS to %X",selector);
CPU_SwitchTask(selector,TSwitch_CALL_INT,oldeip);
break;
case DESC_DATA_EU_RW_NA: // vbdos
case DESC_INVALID: // used by some installers
CPU_Exception(EXCEPTION_GP,selector & 0xfffc);
return;
default:
E_Exit("CALL:Descriptor type %" sBitfs(x) " unsupported",call.Type());
}
}
assert(1);
}
void CPU_RET(bool use32,Bitu bytes,Bitu oldeip) {
if (!cpu.pmode || (reg_flags & FLAG_VM)) {
Bitu new_ip,new_cs;
if (!use32) {
new_ip=CPU_Pop16();
new_cs=CPU_Pop16();
} else {
new_ip=CPU_Pop32();
new_cs=CPU_Pop32() & 0xffff;
}
reg_esp+=bytes;
SegSet16(cs,new_cs);
reg_eip=new_ip;
cpu.code.big=false;
return;
} else {
Bitu offset,selector;
if (!use32) selector = mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask) + 2);
else selector = mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask) + 4) & 0xffff;
Descriptor desc;
Bitu rpl=selector & 3;
if(rpl < cpu.cpl) {
// win setup
CPU_Exception(EXCEPTION_GP,selector & 0xfffc);
return;
}
CPU_CHECK_COND((selector & 0xfffc)==0,
"RET:CS selector zero",
EXCEPTION_GP,0)
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(selector,desc),
"RET:CS beyond limits",
EXCEPTION_GP,selector & 0xfffc)
if (cpu.cpl==rpl) {
/* Return to same level */
switch (desc.Type()) {
case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA:
CPU_CHECK_COND(cpu.cpl!=desc.DPL(),
"RET to NC segment of other privilege",
EXCEPTION_GP,selector & 0xfffc)
goto RET_same_level;
case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA:
CPU_CHECK_COND(desc.DPL()>cpu.cpl,
"RET to C segment of higher privilege",
EXCEPTION_GP,selector & 0xfffc)
break;
default:
E_Exit("RET from illegal descriptor type %" sBitfs(X),desc.Type());
}
RET_same_level:
if (!desc.saved.seg.p) {
// borland extender (RTM)
CPU_Exception(EXCEPTION_NP,selector & 0xfffc);
return;
}
// commit point
if (!use32) {
offset=CPU_Pop16();
selector=CPU_Pop16();
} else {
offset=CPU_Pop32();
selector=CPU_Pop32() & 0xffff;
}
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=selector;
reg_eip=offset;
if (cpu.stack.big) {
reg_esp+=bytes;
} else {
reg_sp+=bytes;
}
LOG(LOG_CPU,LOG_NORMAL)("RET - Same level to %X:%X RPL %X DPL %X",selector,offset,rpl,desc.DPL());
return;
} else {
/* Return to outer level */
switch (desc.Type()) {
case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA:
CPU_CHECK_COND(desc.DPL()!=rpl,
"RET to outer NC segment with DPL!=RPL",
EXCEPTION_GP,selector & 0xfffc)
break;
case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA:
CPU_CHECK_COND(desc.DPL()>rpl,
"RET to outer C segment with DPL>RPL",
EXCEPTION_GP,selector & 0xfffc)
break;
default:
E_Exit("RET from illegal descriptor type %" sBitfs(X),desc.Type()); // or #GP(selector)
}
CPU_CHECK_COND(!desc.saved.seg.p,
"RET:Outer level:CS not present",
EXCEPTION_NP,selector & 0xfffc)
// commit point
Bitu n_esp,n_ss;
if (use32) {
offset=CPU_Pop32();
selector=CPU_Pop32() & 0xffff;
reg_esp+=bytes;
n_esp = CPU_Pop32();
n_ss = CPU_Pop32() & 0xffff;
} else {
offset=CPU_Pop16();
selector=CPU_Pop16();
reg_esp+=bytes;
n_esp = CPU_Pop16();
n_ss = CPU_Pop16();
}
CPU_CHECK_COND((n_ss & 0xfffc)==0,
"RET to outer level with SS selector zero",
EXCEPTION_GP,0)
Descriptor n_ss_desc;
CPU_CHECK_COND(!cpu.gdt.GetDescriptor(n_ss,n_ss_desc),
"RET:SS beyond limits",
EXCEPTION_GP,n_ss & 0xfffc)
CPU_CHECK_COND(((n_ss & 3)!=rpl) || (n_ss_desc.DPL()!=rpl),
"RET to outer segment with invalid SS privileges",
EXCEPTION_GP,n_ss & 0xfffc)
switch (n_ss_desc.Type()) {
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
break;
default:
E_Exit("RET:SS selector type no writable data segment"); // or #GP(selector)
}
CPU_CHECK_COND(!n_ss_desc.saved.seg.p,
"RET:Stack segment not present",
EXCEPTION_SS,n_ss & 0xfffc)
cpu.cpl = rpl;
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=(selector&0xfffc) | cpu.cpl;
reg_eip=offset;
Segs.val[ss]=n_ss;
Segs.phys[ss]=n_ss_desc.GetBase();
if (n_ss_desc.Big()) {
cpu.stack.big=true;
cpu.stack.mask=0xffffffff;
cpu.stack.notmask=0;
reg_esp=n_esp+bytes;
} else {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
reg_sp=(n_esp & 0xffff)+bytes;
}
CPU_CheckSegments();
// LOG(LOG_MISC,LOG_ERROR)("RET - Higher level to %X:%X RPL %X DPL %X",selector,offset,rpl,desc.DPL());
return;
}
LOG(LOG_CPU,LOG_NORMAL)("Prot ret %X:%X",selector,offset);
return;
}
assert(1);
}
Bitu CPU_SLDT(void) {
return cpu.gdt.SLDT();
}
bool CPU_LLDT(Bitu selector) {
if (!cpu.gdt.LLDT(selector)) {
LOG(LOG_CPU,LOG_ERROR)("LLDT failed, selector=%X",selector);
return true;
}
LOG(LOG_CPU,LOG_NORMAL)("LDT Set to %X",selector);
return false;
}
Bitu CPU_STR(void) {
return cpu_tss.selector;
}
bool CPU_LTR(Bitu selector) {
if ((selector & 0xfffc)==0) {
cpu_tss.SetSelector(selector);
return false;
}
TSS_Descriptor desc;
if ((selector & 4) || (!cpu.gdt.GetDescriptor(selector,desc))) {
LOG(LOG_CPU,LOG_ERROR)("LTR failed, selector=%X",selector);
return CPU_PrepareException(EXCEPTION_GP,selector);
}
if ((desc.Type()==DESC_286_TSS_A) || (desc.Type()==DESC_386_TSS_A)) {
if (!desc.saved.seg.p) {
LOG(LOG_CPU,LOG_ERROR)("LTR failed, selector=%X (not present)",selector);
return CPU_PrepareException(EXCEPTION_NP,selector);
}
if (!cpu_tss.SetSelector(selector)) E_Exit("LTR failed, selector=%" sBitfs(X),selector);
cpu_tss.desc.SetBusy(true);
cpu_tss.SaveSelector();
} else {
/* Descriptor was no available TSS descriptor */
LOG(LOG_CPU,LOG_NORMAL)("LTR failed, selector=%X (type=%X)",selector,desc.Type());
return CPU_PrepareException(EXCEPTION_GP,selector);
}
return false;
}
void CPU_LGDT(Bitu limit,Bitu base) {
LOG(LOG_CPU,LOG_NORMAL)("GDT Set to base:%X limit:%X",base,limit);
cpu.gdt.SetLimit(limit);
cpu.gdt.SetBase(base);
}
void CPU_LIDT(Bitu limit,Bitu base) {
LOG(LOG_CPU,LOG_NORMAL)("IDT Set to base:%X limit:%X",base,limit);
cpu.idt.SetLimit(limit);
cpu.idt.SetBase(base);
}
Bitu CPU_SGDT_base(void) {
return cpu.gdt.GetBase();
}
Bitu CPU_SGDT_limit(void) {
return cpu.gdt.GetLimit();
}
Bitu CPU_SIDT_base(void) {
return cpu.idt.GetBase();
}
Bitu CPU_SIDT_limit(void) {
return cpu.idt.GetLimit();
}
static bool printed_cycles_auto_info = false;
void CPU_SET_CRX(Bitu cr,Bitu value) {
switch (cr) {
case 0:
{
value|=CR0_FPUPRESENT;
Bitu changed=cpu.cr0 ^ value;
if (!changed) return;
cpu.cr0=value;
if (value & CR0_PROTECTION) {
cpu.pmode=true;
LOG(LOG_CPU,LOG_NORMAL)("Protected mode");
PAGING_Enable((value & CR0_PAGING)>0);
if (!(CPU_AutoDetermineMode&CPU_AUTODETERMINE_MASK)) break;
if (CPU_AutoDetermineMode&CPU_AUTODETERMINE_CYCLES) {
CPU_CycleAutoAdjust=true;
CPU_CycleLeft=0;
CPU_Cycles=0;
CPU_OldCycleMax=CPU_CycleMax;
GFX_SetTitle(CPU_CyclePercUsed,-1,false);
if(!printed_cycles_auto_info) {
printed_cycles_auto_info = true;
LOG_MSG("DOSBox has switched to max cycles, because of the setting: cycles=auto.\nIf the game runs too fast, try a fixed cycles amount in DOSBox's options.");
}
} else {
GFX_SetTitle(-1,-1,false);
}
#if (C_DYNAMIC_X86)
if (CPU_AutoDetermineMode&CPU_AUTODETERMINE_CORE) {
CPU_Core_Dyn_X86_Cache_Init(true);
cpudecoder=&CPU_Core_Dyn_X86_Run;
}
#elif (C_DYNREC)
if (CPU_AutoDetermineMode&CPU_AUTODETERMINE_CORE) {
CPU_Core_Dynrec_Cache_Init(true);
cpudecoder=&CPU_Core_Dynrec_Run;
}
#endif
CPU_AutoDetermineMode<<=CPU_AUTODETERMINE_SHIFT;
} else {
cpu.pmode=false;
if (value & CR0_PAGING) LOG_MSG("Paging requested without PE=1");
PAGING_Enable(false);
LOG(LOG_CPU,LOG_NORMAL)("Real mode");
}
break;
}
case 2:
paging.cr2=value;
break;
case 3:
PAGING_SetDirBase(value);
break;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV CR%d,%X",cr,value);
break;
}
}
bool CPU_WRITE_CRX(Bitu cr,Bitu value) {
/* Check if privileged to access control registers */
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
if ((cr==1) || (cr>4)) return CPU_PrepareException(EXCEPTION_UD,0);
if (CPU_ArchitectureType<CPU_ARCHTYPE_486OLDSLOW) {
if (cr==4) return CPU_PrepareException(EXCEPTION_UD,0);
}
CPU_SET_CRX(cr,value);
return false;
}
Bitu CPU_GET_CRX(Bitu cr) {
switch (cr) {
case 0:
if (CPU_ArchitectureType>=CPU_ARCHTYPE_PENTIUMSLOW) return cpu.cr0;
else if (CPU_ArchitectureType>=CPU_ARCHTYPE_486OLDSLOW) return (cpu.cr0 & 0xe005003f);
else return (cpu.cr0 | 0x7ffffff0);
case 2:
return paging.cr2;
case 3:
return PAGING_GetDirBase() & 0xfffff000;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, CR%d",cr);
break;
}
return 0;
}
bool CPU_READ_CRX(Bitu cr,Bit32u & retvalue) {
/* Check if privileged to access control registers */
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
if ((cr==1) || (cr>4)) return CPU_PrepareException(EXCEPTION_UD,0);
retvalue=CPU_GET_CRX(cr);
return false;
}
bool CPU_WRITE_DRX(Bitu dr,Bitu value) {
/* Check if privileged to access control registers */
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
switch (dr) {
case 0:
case 1:
case 2:
case 3:
cpu.drx[dr]=value;
break;
case 4:
case 6:
cpu.drx[6]=(value|0xffff0ff0) & 0xffffefff;
break;
case 5:
case 7:
if (CPU_ArchitectureType<CPU_ARCHTYPE_PENTIUMSLOW) {
cpu.drx[7]=(value|0x400) & 0xffff2fff;
} else {
cpu.drx[7]=(value|0x400);
}
break;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV DR%d,%X",dr,value);
break;
}
return false;
}
bool CPU_READ_DRX(Bitu dr,Bit32u & retvalue) {
/* Check if privileged to access control registers */
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
switch (dr) {
case 0:
case 1:
case 2:
case 3:
case 6:
case 7:
retvalue=cpu.drx[dr];
break;
case 4:
retvalue=cpu.drx[6];
break;
case 5:
retvalue=cpu.drx[7];
break;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, DR%d",dr);
retvalue=0;
break;
}
return false;
}
bool CPU_WRITE_TRX(Bitu tr,Bitu value) {
/* Check if privileged to access control registers */
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
switch (tr) {
// case 3:
case 6:
case 7:
cpu.trx[tr]=value;
return false;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV TR%d,%X",tr,value);
break;
}
return CPU_PrepareException(EXCEPTION_UD,0);
}
bool CPU_READ_TRX(Bitu tr,Bit32u & retvalue) {
/* Check if privileged to access control registers */
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
switch (tr) {
// case 3:
case 6:
case 7:
retvalue=cpu.trx[tr];
return false;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, TR%d",tr);
break;
}
return CPU_PrepareException(EXCEPTION_UD,0);
}
Bitu CPU_SMSW(void) {
return cpu.cr0;
}
bool CPU_LMSW(Bitu word) {
if (cpu.pmode && (cpu.cpl>0)) return CPU_PrepareException(EXCEPTION_GP,0);
word&=0xf;
if (cpu.cr0 & 1) word|=1;
word|=(cpu.cr0&0xfffffff0);
CPU_SET_CRX(0,word);
return false;
}
void CPU_ARPL(Bitu & dest_sel,Bitu src_sel) {
FillFlags();
if ((dest_sel & 3) < (src_sel & 3)) {
dest_sel=(dest_sel & 0xfffc) + (src_sel & 3);
// dest_sel|=0xff3f0000;
SETFLAGBIT(ZF,true);
} else {
SETFLAGBIT(ZF,false);
}
}
void CPU_LAR(Bitu selector,Bitu & ar) {
FillFlags();
if (selector == 0) {
SETFLAGBIT(ZF,false);
return;
}
Descriptor desc;Bitu rpl=selector & 3;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
break;
case DESC_286_INT_GATE: case DESC_286_TRAP_GATE: {
case DESC_386_INT_GATE: case DESC_386_TRAP_GATE:
SETFLAGBIT(ZF,false);
return;
}
case DESC_LDT:
case DESC_TASK_GATE:
case DESC_286_TSS_A: case DESC_286_TSS_B:
case DESC_286_CALL_GATE:
case DESC_386_TSS_A: case DESC_386_TSS_B:
case DESC_386_CALL_GATE:
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
/* Valid descriptor */
ar=desc.saved.fill[1] & 0x00ffff00;
SETFLAGBIT(ZF,true);
}
void CPU_LSL(Bitu selector,Bitu & limit) {
FillFlags();
if (selector == 0) {
SETFLAGBIT(ZF,false);
return;
}
Descriptor desc;Bitu rpl=selector & 3;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
break;
case DESC_LDT:
case DESC_286_TSS_A:
case DESC_286_TSS_B:
case DESC_386_TSS_A:
case DESC_386_TSS_B:
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
limit=desc.GetLimit();
SETFLAGBIT(ZF,true);
}
void CPU_VERR(Bitu selector) {
FillFlags();
if (selector == 0) {
SETFLAGBIT(ZF,false);
return;
}
Descriptor desc;Bitu rpl=selector & 3;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
//Conforming readable code segments can be always read
break;
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
SETFLAGBIT(ZF,true);
}
void CPU_VERW(Bitu selector) {
FillFlags();
if (selector == 0) {
SETFLAGBIT(ZF,false);
return;
}
Descriptor desc;Bitu rpl=selector & 3;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
SETFLAGBIT(ZF,true);
}
bool CPU_SetSegGeneral(SegNames seg,Bitu value) {
value &= 0xffff;
if (!cpu.pmode || (reg_flags & FLAG_VM)) {
Segs.val[seg]=value;
Segs.phys[seg]=value << 4;
if (seg==ss) {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
}
return false;
} else {
if (seg==ss) {
// Stack needs to be non-zero
if ((value & 0xfffc)==0) {
// E_Exit("CPU_SetSegGeneral: Stack segment zero");
return CPU_PrepareException(EXCEPTION_GP,0);
}
Descriptor desc;
if (!cpu.gdt.GetDescriptor(value,desc)) {
// E_Exit("CPU_SetSegGeneral: Stack segment beyond limits");
return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc);
}
if (((value & 3)!=cpu.cpl) || (desc.DPL()!=cpu.cpl)) {
// E_Exit("CPU_SetSegGeneral: Stack segment with invalid privileges");
return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc);
}
switch (desc.Type()) {
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
break;
default:
//Earth Siege 1
return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc);
}
if (!desc.saved.seg.p) {
// E_Exit("CPU_SetSegGeneral: Stack segment not present"); // or #SS(sel)
return CPU_PrepareException(EXCEPTION_SS,value & 0xfffc);
}
Segs.val[seg]=value;
Segs.phys[seg]=desc.GetBase();
if (desc.Big()) {
cpu.stack.big=true;
cpu.stack.mask=0xffffffff;
cpu.stack.notmask=0;
} else {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
}
} else {
if ((value & 0xfffc)==0) {
Segs.val[seg]=value;
Segs.phys[seg]=0; // ??
return false;
}
Descriptor desc;
if (!cpu.gdt.GetDescriptor(value,desc)) {
return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc);
}
switch (desc.Type()) {
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (((value & 3)>desc.DPL()) || (cpu.cpl>desc.DPL())) {
// extreme pinball
return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc);
}
break;
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
break;
default:
// gabriel knight
return CPU_PrepareException(EXCEPTION_GP,value & 0xfffc);
}
if (!desc.saved.seg.p) {
// win
return CPU_PrepareException(EXCEPTION_NP,value & 0xfffc);
}
Segs.val[seg]=value;
Segs.phys[seg]=desc.GetBase();
}
return false;
}
}
bool CPU_PopSeg(SegNames seg,bool use32) {
Bitu val=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask));
Bitu addsp = use32 ? 0x04 : 0x02;
//Calcullate this beforehande since the stack mask might change
Bit32u new_esp = (reg_esp&cpu.stack.notmask) | ((reg_esp + addsp)&cpu.stack.mask);
if (CPU_SetSegGeneral(seg,val)) return true;
reg_esp = new_esp;
return false;
}
bool CPU_CPUID(void) {
if (CPU_ArchitectureType<CPU_ARCHTYPE_486NEWSLOW) return false;
switch (reg_eax) {
case 0: /* Vendor ID String and maximum level? */
reg_eax=1; /* Maximum level */
reg_ebx='G' | ('e' << 8) | ('n' << 16) | ('u'<< 24);
reg_edx='i' | ('n' << 8) | ('e' << 16) | ('I'<< 24);
reg_ecx='n' | ('t' << 8) | ('e' << 16) | ('l'<< 24);
break;
case 1: /* get processor type/family/model/stepping and feature flags */
if ((CPU_ArchitectureType==CPU_ARCHTYPE_486NEWSLOW) ||
(CPU_ArchitectureType==CPU_ARCHTYPE_MIXED)) {
reg_eax=0x402; /* intel 486dx */
reg_ebx=0; /* Not Supported */
reg_ecx=0; /* No features */
reg_edx=0x00000001; /* FPU */
} else if (CPU_ArchitectureType==CPU_ARCHTYPE_PENTIUMSLOW) {
reg_eax=0x513; /* intel pentium */
reg_ebx=0; /* Not Supported */
reg_ecx=0; /* No features */
reg_edx=0x00000011; /* FPU+TimeStamp/RDTSC */
} else {
return false;
}
break;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled CPUID Function %x",reg_eax);
reg_eax=0;
reg_ebx=0;
reg_ecx=0;
reg_edx=0;
break;
}
return true;
}
static Bits HLT_Decode(void) {
/* Once an interrupt occurs, it should change cpu core */
if (reg_eip!=cpu.hlt.eip || SegValue(cs) != cpu.hlt.cs) {
cpudecoder=cpu.hlt.old_decoder;
} else {
CPU_IODelayRemoved += CPU_Cycles;
CPU_Cycles=0;
}
return 0;
}
void CPU_HLT(Bitu oldeip) {
reg_eip=oldeip;
CPU_IODelayRemoved += CPU_Cycles;
CPU_Cycles=0;
cpu.hlt.cs=SegValue(cs);
cpu.hlt.eip=reg_eip;
cpu.hlt.old_decoder=cpudecoder;
cpudecoder=&HLT_Decode;
}
void CPU_ENTER(bool use32,Bitu bytes,Bitu level) {
level&=0x1f;
Bitu sp_index=reg_esp&cpu.stack.mask;
Bitu bp_index=reg_ebp&cpu.stack.mask;
if (!use32) {
sp_index-=2;
mem_writew(SegPhys(ss)+sp_index,reg_bp);
reg_bp=(Bit16u)(reg_esp-2);
if (level) {
for (Bitu i=1;i<level;i++) {
sp_index-=2;bp_index-=2;
mem_writew(SegPhys(ss)+sp_index,mem_readw(SegPhys(ss)+bp_index));
}
sp_index-=2;
mem_writew(SegPhys(ss)+sp_index,reg_bp);
}
} else {
sp_index-=4;
mem_writed(SegPhys(ss)+sp_index,reg_ebp);
reg_ebp=(reg_esp-4);
if (level) {
for (Bitu i=1;i<level;i++) {
sp_index-=4;bp_index-=4;
mem_writed(SegPhys(ss)+sp_index,mem_readd(SegPhys(ss)+bp_index));
}
sp_index-=4;
mem_writed(SegPhys(ss)+sp_index,reg_ebp);
}
}
sp_index-=bytes;
reg_esp=(reg_esp&cpu.stack.notmask)|((sp_index)&cpu.stack.mask);
}
static void CPU_CycleIncrease(bool pressed) {
if (!pressed) return;
if (CPU_CycleAutoAdjust) {
CPU_CyclePercUsed+=5;
if (CPU_CyclePercUsed>105) CPU_CyclePercUsed=105;
LOG_MSG("CPU speed: max %d percent.",CPU_CyclePercUsed);
GFX_SetTitle(CPU_CyclePercUsed,-1,false);
} else {
Bit32s old_cycles=CPU_CycleMax;
if (CPU_CycleUp < 100) {
CPU_CycleMax = (Bit32s)(CPU_CycleMax * (1 + (float)CPU_CycleUp / 100.0));
} else {
CPU_CycleMax = (Bit32s)(CPU_CycleMax + CPU_CycleUp);
}
CPU_CycleLeft=0;CPU_Cycles=0;
if (CPU_CycleMax==old_cycles) CPU_CycleMax++;
if(CPU_CycleMax > 15000 )
LOG_MSG("CPU speed: fixed %d cycles. If you need more than 20000, try core=dynamic in DOSBox's options.",CPU_CycleMax);
else
LOG_MSG("CPU speed: fixed %d cycles.",CPU_CycleMax);
GFX_SetTitle(CPU_CycleMax,-1,false);
}
}
static void CPU_CycleDecrease(bool pressed) {
if (!pressed) return;
if (CPU_CycleAutoAdjust) {
CPU_CyclePercUsed-=5;
if (CPU_CyclePercUsed<=0) CPU_CyclePercUsed=1;
if(CPU_CyclePercUsed <=70)
LOG_MSG("CPU speed: max %d percent. If the game runs too fast, try a fixed cycles amount in DOSBox's options.",CPU_CyclePercUsed);
else
LOG_MSG("CPU speed: max %d percent.",CPU_CyclePercUsed);
GFX_SetTitle(CPU_CyclePercUsed,-1,false);
} else {
if (CPU_CycleDown < 100) {
CPU_CycleMax = (Bit32s)(CPU_CycleMax / (1 + (float)CPU_CycleDown / 100.0));
} else {
CPU_CycleMax = (Bit32s)(CPU_CycleMax - CPU_CycleDown);
}
CPU_CycleLeft=0;CPU_Cycles=0;
if (CPU_CycleMax <= 0) CPU_CycleMax=1;
LOG_MSG("CPU speed: fixed %d cycles.",CPU_CycleMax);
GFX_SetTitle(CPU_CycleMax,-1,false);
}
}
void CPU_Enable_SkipAutoAdjust(void) {
if (CPU_CycleAutoAdjust) {
CPU_CycleMax /= 2;
if (CPU_CycleMax < CPU_CYCLES_LOWER_LIMIT)
CPU_CycleMax = CPU_CYCLES_LOWER_LIMIT;
}
CPU_SkipCycleAutoAdjust=true;
}
void CPU_Disable_SkipAutoAdjust(void) {
CPU_SkipCycleAutoAdjust=false;
}
extern Bit32s ticksDone;
extern Bit32u ticksScheduled;
void CPU_Reset_AutoAdjust(void) {
CPU_IODelayRemoved = 0;
ticksDone = 0;
ticksScheduled = 0;
}
class CPU: public Module_base {
private:
static bool inited;
public:
CPU(Section* configuration):Module_base(configuration) {
if(inited) {
Change_Config(configuration);
return;
}
// Section_prop * section=static_cast<Section_prop *>(configuration);
inited=true;
reg_eax=0;
reg_ebx=0;
reg_ecx=0;
reg_edx=0;
reg_edi=0;
reg_esi=0;
reg_ebp=0;
reg_esp=0;
SegSet16(cs,0);
SegSet16(ds,0);
SegSet16(es,0);
SegSet16(fs,0);
SegSet16(gs,0);
SegSet16(ss,0);
CPU_SetFlags(FLAG_IF,FMASK_ALL); //Enable interrupts
cpu.cr0=0xffffffff;
CPU_SET_CRX(0,0); //Initialize
cpu.code.big=false;
cpu.stack.mask=0xffff;
cpu.stack.notmask=0xffff0000;
cpu.stack.big=false;
cpu.trap_skip=false;
cpu.idt.SetBase(0);
cpu.idt.SetLimit(1023);
for (Bitu i=0; i<7; i++) {
cpu.drx[i]=0;
cpu.trx[i]=0;
}
if (CPU_ArchitectureType==CPU_ARCHTYPE_PENTIUMSLOW) {
cpu.drx[6]=0xffff0ff0;
} else {
cpu.drx[6]=0xffff1ff0;
}
cpu.drx[7]=0x00000400;
/* Init the cpu cores */
CPU_Core_Normal_Init();
CPU_Core_Simple_Init();
CPU_Core_Full_Init();
#if (C_DYNAMIC_X86)
CPU_Core_Dyn_X86_Init();
#elif (C_DYNREC)
CPU_Core_Dynrec_Init();
#endif
MAPPER_AddHandler(CPU_CycleDecrease,MK_f11,MMOD1,"cycledown","Dec Cycles");
MAPPER_AddHandler(CPU_CycleIncrease,MK_f12,MMOD1,"cycleup" ,"Inc Cycles");
Change_Config(configuration);
CPU_JMP(false,0,0,0); //Setup the first cpu core
}
bool Change_Config(Section* newconfig){
Section_prop * section=static_cast<Section_prop *>(newconfig);
CPU_AutoDetermineMode=CPU_AUTODETERMINE_NONE;
//CPU_CycleLeft=0;//needed ?
CPU_Cycles=0;
CPU_SkipCycleAutoAdjust=false;
Prop_multival* p = section->Get_multival("cycles");
std::string type = p->GetSection()->Get_string("type");
std::string str ;
CommandLine cmd(0,p->GetSection()->Get_string("parameters"));
if (type=="max") {
CPU_CycleMax=0;
CPU_CyclePercUsed=100;
CPU_CycleAutoAdjust=true;
CPU_CycleLimit=-1;
for (Bitu cmdnum=1; cmdnum<=cmd.GetCount(); cmdnum++) {
if (cmd.FindCommand(cmdnum,str)) {
if (str.find('%')==str.length()-1) {
str.erase(str.find('%'));
int percval=0;
std::istringstream stream(str);
stream >> percval;
if ((percval>0) && (percval<=105)) CPU_CyclePercUsed=(Bit32s)percval;
} else if (str=="limit") {
cmdnum++;
if (cmd.FindCommand(cmdnum,str)) {
int cyclimit=0;
std::istringstream stream(str);
stream >> cyclimit;
if (cyclimit>0) CPU_CycleLimit=cyclimit;
}
}
}
}
} else {
if (type=="auto") {
CPU_AutoDetermineMode|=CPU_AUTODETERMINE_CYCLES;
CPU_CycleMax=3000;
CPU_OldCycleMax=3000;
CPU_CyclePercUsed=100;
for (Bitu cmdnum=0; cmdnum<=cmd.GetCount(); cmdnum++) {
if (cmd.FindCommand(cmdnum,str)) {
if (str.find('%')==str.length()-1) {
str.erase(str.find('%'));
int percval=0;
std::istringstream stream(str);
stream >> percval;
if ((percval>0) && (percval<=105)) CPU_CyclePercUsed=(Bit32s)percval;
} else if (str=="limit") {
cmdnum++;
if (cmd.FindCommand(cmdnum,str)) {
int cyclimit=0;
std::istringstream stream(str);
stream >> cyclimit;
if (cyclimit>0) CPU_CycleLimit=cyclimit;
}
} else {
int rmdval=0;
std::istringstream stream(str);
stream >> rmdval;
if (rmdval>0) {
CPU_CycleMax=(Bit32s)rmdval;
CPU_OldCycleMax=(Bit32s)rmdval;
}
}
}
}
} else if(type =="fixed") {
cmd.FindCommand(1,str);
int rmdval=0;
std::istringstream stream(str);
stream >> rmdval;
CPU_CycleMax=(Bit32s)rmdval;
} else {
std::istringstream stream(type);
int rmdval=0;
stream >> rmdval;
if(rmdval) CPU_CycleMax=(Bit32s)rmdval;
}
CPU_CycleAutoAdjust=false;
}
CPU_CycleUp=section->Get_int("cycleup");
CPU_CycleDown=section->Get_int("cycledown");
std::string core(section->Get_string("core"));
cpudecoder=&CPU_Core_Normal_Run;
if (core == "normal") {
cpudecoder=&CPU_Core_Normal_Run;
} else if (core =="simple") {
cpudecoder=&CPU_Core_Simple_Run;
} else if (core == "full") {
cpudecoder=&CPU_Core_Full_Run;
} else if (core == "auto") {
cpudecoder=&CPU_Core_Normal_Run;
#if (C_DYNAMIC_X86)
CPU_AutoDetermineMode|=CPU_AUTODETERMINE_CORE;
}
else if (core == "dynamic") {
cpudecoder=&CPU_Core_Dyn_X86_Run;
CPU_Core_Dyn_X86_SetFPUMode(true);
} else if (core == "dynamic_nodhfpu") {
cpudecoder=&CPU_Core_Dyn_X86_Run;
CPU_Core_Dyn_X86_SetFPUMode(false);
#elif (C_DYNREC)
CPU_AutoDetermineMode|=CPU_AUTODETERMINE_CORE;
}
else if (core == "dynamic") {
cpudecoder=&CPU_Core_Dynrec_Run;
#else
#endif
}
#if (C_DYNAMIC_X86)
CPU_Core_Dyn_X86_Cache_Init((core == "dynamic") || (core == "dynamic_nodhfpu"));
#elif (C_DYNREC)
CPU_Core_Dynrec_Cache_Init( core == "dynamic" );
#endif
CPU_ArchitectureType = CPU_ARCHTYPE_MIXED;
std::string cputype(section->Get_string("cputype"));
if (cputype == "auto") {
CPU_ArchitectureType = CPU_ARCHTYPE_MIXED;
} else if (cputype == "386") {
CPU_ArchitectureType = CPU_ARCHTYPE_386FAST;
} else if (cputype == "386_prefetch") {
CPU_ArchitectureType = CPU_ARCHTYPE_386FAST;
if (core == "normal") {
cpudecoder=&CPU_Core_Prefetch_Run;
CPU_PrefetchQueueSize = 16;
} else if (core == "auto") {
cpudecoder=&CPU_Core_Prefetch_Run;
CPU_PrefetchQueueSize = 16;
CPU_AutoDetermineMode&=(~CPU_AUTODETERMINE_CORE);
} else {
E_Exit("prefetch queue emulation requires the normal core setting.");
}
} else if (cputype == "386_slow") {
CPU_ArchitectureType = CPU_ARCHTYPE_386SLOW;
} else if (cputype == "486_slow") {
CPU_ArchitectureType = CPU_ARCHTYPE_486NEWSLOW;
} else if (cputype == "486_prefetch") {
CPU_ArchitectureType = CPU_ARCHTYPE_486NEWSLOW;
if (core == "normal") {
cpudecoder=&CPU_Core_Prefetch_Run;
CPU_PrefetchQueueSize = 32;
} else if (core == "auto") {
cpudecoder=&CPU_Core_Prefetch_Run;
CPU_PrefetchQueueSize = 32;
CPU_AutoDetermineMode&=(~CPU_AUTODETERMINE_CORE);
} else {
E_Exit("prefetch queue emulation requires the normal core setting.");
}
} else if (cputype == "pentium_slow") {
CPU_ArchitectureType = CPU_ARCHTYPE_PENTIUMSLOW;
}
if (CPU_ArchitectureType>=CPU_ARCHTYPE_486NEWSLOW) CPU_extflags_toggle=(FLAG_ID|FLAG_AC);
else if (CPU_ArchitectureType>=CPU_ARCHTYPE_486OLDSLOW) CPU_extflags_toggle=(FLAG_AC);
else CPU_extflags_toggle=0;
if(CPU_CycleMax <= 0) CPU_CycleMax = 3000;
if(CPU_CycleUp <= 0) CPU_CycleUp = 500;
if(CPU_CycleDown <= 0) CPU_CycleDown = 20;
if (CPU_CycleAutoAdjust) GFX_SetTitle(CPU_CyclePercUsed,-1,false);
else GFX_SetTitle(CPU_CycleMax,-1,false);
return true;
}
~CPU(){ /* empty */};
};
static CPU * test;
void CPU_ShutDown(Section* sec) {
#if (C_DYNAMIC_X86)
CPU_Core_Dyn_X86_Cache_Close();
#elif (C_DYNREC)
CPU_Core_Dynrec_Cache_Close();
#endif
delete test;
}
void CPU_Init(Section* sec) {
test = new CPU(sec);
sec->AddDestroyFunction(&CPU_ShutDown,true);
}
//initialize static members
bool CPU::inited=false;