dosbox-wii/src/hardware/mame/ymf262.cpp
2021-02-06 16:06:31 +01:00

2793 lines
76 KiB
C++

// license:GPL-2.0+
// copyright-holders:Jarek Burczynski
/*
**
** File: ymf262.c - software implementation of YMF262
** FM sound generator type OPL3
**
** Copyright Jarek Burczynski
**
** Version 0.2
**
Revision History:
03-03-2003: initial release
- thanks to Olivier Galibert and Chris Hardy for YMF262 and YAC512 chips
- thanks to Stiletto for the datasheets
Features as listed in 4MF262A6 data sheet:
1. Registers are compatible with YM3812 (OPL2) FM sound source.
2. Up to six sounds can be used as four-operator melody sounds for variety.
3. 18 simultaneous melody sounds, or 15 melody sounds with 5 rhythm sounds (with two operators).
4. 6 four-operator melody sounds and 6 two-operator melody sounds, or 6 four-operator melody
sounds, 3 two-operator melody sounds and 5 rhythm sounds (with four operators).
5. 8 selectable waveforms.
6. 4-channel sound output.
7. YMF262 compabile DAC (YAC512) is available.
8. LFO for vibrato and tremolo effedts.
9. 2 programable timers.
10. Shorter register access time compared with YM3812.
11. 5V single supply silicon gate CMOS process.
12. 24 Pin SOP Package (YMF262-M), 48 Pin SQFP Package (YMF262-S).
differences between OPL2 and OPL3 not documented in Yamaha datahasheets:
- sinus table is a little different: the negative part is off by one...
- in order to enable selection of four different waveforms on OPL2
one must set bit 5 in register 0x01(test).
on OPL3 this bit is ignored and 4-waveform select works *always*.
(Don't confuse this with OPL3's 8-waveform select.)
- Envelope Generator: all 15 x rates take zero time on OPL3
(on OPL2 15 0 and 15 1 rates take some time while 15 2 and 15 3 rates
take zero time)
- channel calculations: output of operator 1 is in perfect sync with
output of operator 2 on OPL3; on OPL and OPL2 output of operator 1
is always delayed by one sample compared to output of operator 2
differences between OPL2 and OPL3 shown in datasheets:
- YMF262 does not support CSM mode
*/
#include "emu.h"
#include "ymf262.h"
/* output final shift */
#if (OPL3_SAMPLE_BITS==16)
#define FINAL_SH (0)
#define MAXOUT (+32767)
#define MINOUT (-32768)
#else
#define FINAL_SH (8)
#define MAXOUT (+127)
#define MINOUT (-128)
#endif
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
#define EG_SH 16 /* 16.16 fixed point (EG timing) */
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
#define FREQ_MASK ((1<<FREQ_SH)-1)
/* envelope output entries */
#define ENV_BITS 10
#define ENV_LEN (1<<ENV_BITS)
#define ENV_STEP (128.0/ENV_LEN)
#define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/
#define MIN_ATT_INDEX (0)
/* sinwave entries */
#define SIN_BITS 10
#define SIN_LEN (1<<SIN_BITS)
#define SIN_MASK (SIN_LEN-1)
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* Envelope Generator phases */
#define EG_ATT 4
#define EG_DEC 3
#define EG_SUS 2
#define EG_REL 1
#define EG_OFF 0
/* Routing connections between slots */
#define CONN_NULL 0
#define CONN_CHAN0 1
#define CONN_PHASEMOD 19
#define CONN_PHASEMOD2 20
namespace {
/* save output as raw 16-bit sample */
/*#define SAVE_SAMPLE*/
#ifdef SAVE_SAMPLE
static FILE *sample[1];
#if 1 /*save to MONO file */
#define SAVE_ALL_CHANNELS \
{ signed int pom = a; \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
}
#else /*save to STEREO file */
#define SAVE_ALL_CHANNELS \
{ signed int pom = a; \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
pom = b; \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
}
#endif
#endif
#define OPL3_TYPE_YMF262 (0) /* 36 operators, 8 waveforms */
struct OPL3_SLOT
{
uint32_t ar; /* attack rate: AR<<2 */
uint32_t dr; /* decay rate: DR<<2 */
uint32_t rr; /* release rate:RR<<2 */
uint8_t KSR; /* key scale rate */
uint8_t ksl; /* keyscale level */
uint8_t ksr; /* key scale rate: kcode>>KSR */
uint8_t mul; /* multiple: mul_tab[ML] */
/* Phase Generator */
uint32_t Cnt; /* frequency counter */
uint32_t Incr; /* frequency counter step */
uint8_t FB; /* feedback shift value */
uint8_t conn_enum; /* slot output route */
int32_t *connect; /* slot output pointer */
int32_t op1_out[2]; /* slot1 output for feedback */
uint8_t CON; /* connection (algorithm) type */
/* Envelope Generator */
uint8_t eg_type; /* percussive/non-percussive mode */
uint8_t state; /* phase type */
uint32_t TL; /* total level: TL << 2 */
int32_t TLL; /* adjusted now TL */
int32_t volume; /* envelope counter */
uint32_t sl; /* sustain level: sl_tab[SL] */
uint32_t eg_m_ar; /* (attack state) */
uint8_t eg_sh_ar; /* (attack state) */
uint8_t eg_sel_ar; /* (attack state) */
uint32_t eg_m_dr; /* (decay state) */
uint8_t eg_sh_dr; /* (decay state) */
uint8_t eg_sel_dr; /* (decay state) */
uint32_t eg_m_rr; /* (release state) */
uint8_t eg_sh_rr; /* (release state) */
uint8_t eg_sel_rr; /* (release state) */
uint32_t key; /* 0 = KEY OFF, >0 = KEY ON */
/* LFO */
uint32_t AMmask; /* LFO Amplitude Modulation enable mask */
uint8_t vib; /* LFO Phase Modulation enable flag (active high)*/
/* waveform select */
uint8_t waveform_number;
unsigned int wavetable;
//unsigned char reserved[128-84];//speedup: pump up the struct size to power of 2
unsigned char reserved[128-100];//speedup: pump up the struct size to power of 2
};
struct OPL3_CH
{
OPL3_SLOT SLOT[2];
uint32_t block_fnum; /* block+fnum */
uint32_t fc; /* Freq. Increment base */
uint32_t ksl_base; /* KeyScaleLevel Base step */
uint8_t kcode; /* key code (for key scaling) */
/*
there are 12 2-operator channels which can be combined in pairs
to form six 4-operator channel, they are:
0 and 3,
1 and 4,
2 and 5,
9 and 12,
10 and 13,
11 and 14
*/
uint8_t extended; /* set to 1 if this channel forms up a 4op channel with another channel(only used by first of pair of channels, ie 0,1,2 and 9,10,11) */
unsigned char reserved[512-272];//speedup:pump up the struct size to power of 2
};
/* OPL3 state */
struct OPL3
{
OPL3_CH P_CH[18]; /* OPL3 chips have 18 channels */
uint32_t pan[18*4]; /* channels output masks (0xffffffff = enable); 4 masks per one channel */
uint32_t pan_ctrl_value[18]; /* output control values 1 per one channel (1 value contains 4 masks) */
signed int chanout[18];
signed int phase_modulation; /* phase modulation input (SLOT 2) */
signed int phase_modulation2; /* phase modulation input (SLOT 3 in 4 operator channels) */
uint32_t eg_cnt; /* global envelope generator counter */
uint32_t eg_timer; /* global envelope generator counter works at frequency = chipclock/288 (288=8*36) */
uint32_t eg_timer_add; /* step of eg_timer */
uint32_t eg_timer_overflow; /* envelope generator timer overflows every 1 sample (on real chip) */
uint32_t fn_tab[1024]; /* fnumber->increment counter */
/* LFO */
uint32_t LFO_AM;
int32_t LFO_PM;
uint8_t lfo_am_depth;
uint8_t lfo_pm_depth_range;
uint32_t lfo_am_cnt;
uint32_t lfo_am_inc;
uint32_t lfo_pm_cnt;
uint32_t lfo_pm_inc;
uint32_t noise_rng; /* 23 bit noise shift register */
uint32_t noise_p; /* current noise 'phase' */
uint32_t noise_f; /* current noise period */
uint8_t OPL3_mode; /* OPL3 extension enable flag */
uint8_t rhythm; /* Rhythm mode */
int T[2]; /* timer counters */
uint8_t st[2]; /* timer enable */
uint32_t address; /* address register */
uint8_t status; /* status flag */
uint8_t statusmask; /* status mask */
uint8_t nts; /* NTS (note select) */
/* external event callback handlers */
OPL3_TIMERHANDLER timer_handler;
device_t *TimerParam;
OPL3_IRQHANDLER IRQHandler;
device_t *IRQParam;
OPL3_UPDATEHANDLER UpdateHandler;
device_t *UpdateParam;
uint8_t type; /* chip type */
int clock; /* master clock (Hz) */
int rate; /* sampling rate (Hz) */
double freqbase; /* frequency base */
//attotime TimerBase; /* Timer base time (==sampling time)*/
device_t *device;
/* Optional handlers */
void SetTimerHandler(OPL3_TIMERHANDLER handler, device_t *device)
{
timer_handler = handler;
TimerParam = device;
}
void SetIRQHandler(OPL3_IRQHANDLER handler, device_t *device)
{
IRQHandler = handler;
IRQParam = device;
}
void SetUpdateHandler(OPL3_UPDATEHANDLER handler, device_t *device)
{
UpdateHandler = handler;
UpdateParam = device;
}
};
} // anonymous namespace
/* mapping of register number (offset) to slot number used by the emulator */
static const int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
/* key scale level */
/* table is 3dB/octave , DV converts this into 6dB/octave */
/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
#define DV (0.1875/2.0)
static const double ksl_tab[8*16]=
{
/* OCT 0 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
/* OCT 1 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
/* OCT 2 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
/* OCT 3 */
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
/* OCT 4 */
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
/* OCT 5 */
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
/* OCT 6 */
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
/* OCT 7 */
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV
/* 0 / 3.0 / 1.5 / 6.0 dB/OCT */
static const uint32_t ksl_shift[4] = { 31, 1, 2, 0 };
/* sustain level table (3dB per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (uint32_t) ( db * (2.0/ENV_STEP) )
static const uint32_t sl_tab[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define RATE_STEPS (8)
static const unsigned char eg_inc[15*RATE_STEPS]={
/*cycle:0 1 2 3 4 5 6 7*/
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 for decay */
/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 for attack (zero time) */
/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
};
#define O(a) (a*RATE_STEPS)
/* note that there is no O(13) in this table - it's directly in the code */
static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
/* rates 00-12 */
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
/* rate 13 */
O( 4),O( 5),O( 6),O( 7),
/* rate 14 */
O( 8),O( 9),O(10),O(11),
/* rate 15 */
O(12),O(12),O(12),O(12),
/* 16 dummy rates (same as 15 3) */
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
};
#undef O
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
#define O(a) (a*1)
static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
/* rates 00-12 */
O(12),O(12),O(12),O(12),
O(11),O(11),O(11),O(11),
O(10),O(10),O(10),O(10),
O( 9),O( 9),O( 9),O( 9),
O( 8),O( 8),O( 8),O( 8),
O( 7),O( 7),O( 7),O( 7),
O( 6),O( 6),O( 6),O( 6),
O( 5),O( 5),O( 5),O( 5),
O( 4),O( 4),O( 4),O( 4),
O( 3),O( 3),O( 3),O( 3),
O( 2),O( 2),O( 2),O( 2),
O( 1),O( 1),O( 1),O( 1),
O( 0),O( 0),O( 0),O( 0),
/* rate 13 */
O( 0),O( 0),O( 0),O( 0),
/* rate 14 */
O( 0),O( 0),O( 0),O( 0),
/* rate 15 */
O( 0),O( 0),O( 0),O( 0),
/* 16 dummy rates (same as 15 3) */
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
};
#undef O
/* multiple table */
#define ML 2
static const uint8_t mul_tab[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML,
8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML
};
#undef ML
/* TL_TAB_LEN is calculated as:
* (12+1)=13 - sinus amplitude bits (Y axis)
* additional 1: to compensate for calculations of negative part of waveform
* (if we don't add it then the greatest possible _negative_ value would be -2
* and we really need -1 for waveform #7)
* 2 - sinus sign bit (Y axis)
* TL_RES_LEN - sinus resolution (X axis)
*/
#define TL_TAB_LEN (13*2*TL_RES_LEN)
static signed int tl_tab[TL_TAB_LEN];
#define ENV_QUIET (TL_TAB_LEN>>4)
/* sin waveform table in 'decibel' scale */
/* there are eight waveforms on OPL3 chips */
static unsigned int sin_tab[SIN_LEN * 8];
/* LFO Amplitude Modulation table (verified on real YM3812)
27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
Length: 210 elements.
Each of the elements has to be repeated
exactly 64 times (on 64 consecutive samples).
The whole table takes: 64 * 210 = 13440 samples.
When AM = 1 data is used directly
When AM = 0 data is divided by 4 before being used (losing precision is important)
*/
#define LFO_AM_TAB_ELEMENTS 210
static const uint8_t lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
0,0,0,0,0,0,0,
1,1,1,1,
2,2,2,2,
3,3,3,3,
4,4,4,4,
5,5,5,5,
6,6,6,6,
7,7,7,7,
8,8,8,8,
9,9,9,9,
10,10,10,10,
11,11,11,11,
12,12,12,12,
13,13,13,13,
14,14,14,14,
15,15,15,15,
16,16,16,16,
17,17,17,17,
18,18,18,18,
19,19,19,19,
20,20,20,20,
21,21,21,21,
22,22,22,22,
23,23,23,23,
24,24,24,24,
25,25,25,25,
26,26,26,
25,25,25,25,
24,24,24,24,
23,23,23,23,
22,22,22,22,
21,21,21,21,
20,20,20,20,
19,19,19,19,
18,18,18,18,
17,17,17,17,
16,16,16,16,
15,15,15,15,
14,14,14,14,
13,13,13,13,
12,12,12,12,
11,11,11,11,
10,10,10,10,
9,9,9,9,
8,8,8,8,
7,7,7,7,
6,6,6,6,
5,5,5,5,
4,4,4,4,
3,3,3,3,
2,2,2,2,
1,1,1,1
};
/* LFO Phase Modulation table (verified on real YM3812) */
static const int8_t lfo_pm_table[8*8*2] = {
/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
};
/* lock level of common table */
static int num_lock = 0;
/* work table */
#define SLOT7_1 (&chip->P_CH[7].SLOT[SLOT1])
#define SLOT7_2 (&chip->P_CH[7].SLOT[SLOT2])
#define SLOT8_1 (&chip->P_CH[8].SLOT[SLOT1])
#define SLOT8_2 (&chip->P_CH[8].SLOT[SLOT2])
static inline void OPL3_SLOT_CONNECT(OPL3 *chip, OPL3_SLOT *slot) {
if (slot->conn_enum == CONN_NULL) {
slot->connect = 0;
} else if (slot->conn_enum >= CONN_CHAN0 && slot->conn_enum < CONN_PHASEMOD) {
slot->connect = &chip->chanout[slot->conn_enum];
} else if (slot->conn_enum == CONN_PHASEMOD) {
slot->connect = &chip->phase_modulation;
} else if (slot->conn_enum == CONN_PHASEMOD2) {
slot->connect = &chip->phase_modulation2;
}
}
static inline int limit( int val, int max, int min ) {
if ( val > max )
val = max;
else if ( val < min )
val = min;
return val;
}
/* status set and IRQ handling */
static inline void OPL3_STATUS_SET(OPL3 *chip,int flag)
{
/* set status flag masking out disabled IRQs */
chip->status |= (flag & chip->statusmask);
if(!(chip->status & 0x80))
{
if(chip->status & 0x7f)
{ /* IRQ on */
chip->status |= 0x80;
/* callback user interrupt handler (IRQ is OFF to ON) */
if(chip->IRQHandler) (chip->IRQHandler)(chip->IRQParam,1);
}
}
}
/* status reset and IRQ handling */
static inline void OPL3_STATUS_RESET(OPL3 *chip,int flag)
{
/* reset status flag */
chip->status &= ~flag;
if(chip->status & 0x80)
{
if (!(chip->status & 0x7f))
{
chip->status &= 0x7f;
/* callback user interrupt handler (IRQ is ON to OFF) */
if(chip->IRQHandler) (chip->IRQHandler)(chip->IRQParam,0);
}
}
}
/* IRQ mask set */
static inline void OPL3_STATUSMASK_SET(OPL3 *chip,int flag)
{
chip->statusmask = flag;
/* IRQ handling check */
OPL3_STATUS_SET(chip,0);
OPL3_STATUS_RESET(chip,0);
}
/* advance LFO to next sample */
static inline void advance_lfo(OPL3 *chip)
{
uint8_t tmp;
/* LFO */
chip->lfo_am_cnt += chip->lfo_am_inc;
if (chip->lfo_am_cnt >= ((uint32_t)LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
chip->lfo_am_cnt -= ((uint32_t)LFO_AM_TAB_ELEMENTS<<LFO_SH);
tmp = lfo_am_table[ chip->lfo_am_cnt >> LFO_SH ];
if (chip->lfo_am_depth)
chip->LFO_AM = tmp;
else
chip->LFO_AM = tmp>>2;
chip->lfo_pm_cnt += chip->lfo_pm_inc;
chip->LFO_PM = ((chip->lfo_pm_cnt>>LFO_SH) & 7) | chip->lfo_pm_depth_range;
}
/* advance to next sample */
static inline void advance(OPL3 *chip)
{
OPL3_CH *CH;
OPL3_SLOT *op;
int i;
chip->eg_timer += chip->eg_timer_add;
while (chip->eg_timer >= chip->eg_timer_overflow)
{
chip->eg_timer -= chip->eg_timer_overflow;
chip->eg_cnt++;
for (i=0; i<9*2*2; i++)
{
CH = &chip->P_CH[i/2];
op = &CH->SLOT[i&1];
#if 1
/* Envelope Generator */
switch(op->state)
{
case EG_ATT: /* attack phase */
// if ( !(chip->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
if ( !(chip->eg_cnt & op->eg_m_ar) )
{
op->volume += (~op->volume *
(eg_inc[op->eg_sel_ar + ((chip->eg_cnt>>op->eg_sh_ar)&7)])
) >>3;
if (op->volume <= MIN_ATT_INDEX)
{
op->volume = MIN_ATT_INDEX;
op->state = EG_DEC;
}
}
break;
case EG_DEC: /* decay phase */
// if ( !(chip->eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
if ( !(chip->eg_cnt & op->eg_m_dr) )
{
op->volume += eg_inc[op->eg_sel_dr + ((chip->eg_cnt>>op->eg_sh_dr)&7)];
if ( op->volume >= op->sl )
op->state = EG_SUS;
}
break;
case EG_SUS: /* sustain phase */
/* this is important behaviour:
one can change percusive/non-percussive modes on the fly and
the chip will remain in sustain phase - verified on real YM3812 */
if(op->eg_type) /* non-percussive mode */
{
/* do nothing */
}
else /* percussive mode */
{
/* during sustain phase chip adds Release Rate (in percussive mode) */
// if ( !(chip->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
if ( !(chip->eg_cnt & op->eg_m_rr) )
{
op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)];
if ( op->volume >= MAX_ATT_INDEX )
op->volume = MAX_ATT_INDEX;
}
/* else do nothing in sustain phase */
}
break;
case EG_REL: /* release phase */
// if ( !(chip->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
if ( !(chip->eg_cnt & op->eg_m_rr) )
{
op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)];
if ( op->volume >= MAX_ATT_INDEX )
{
op->volume = MAX_ATT_INDEX;
op->state = EG_OFF;
}
}
break;
default:
break;
}
#endif
}
}
for (i=0; i<9*2*2; i++)
{
CH = &chip->P_CH[i/2];
op = &CH->SLOT[i&1];
/* Phase Generator */
if(op->vib)
{
uint8_t block;
unsigned int block_fnum = CH->block_fnum;
unsigned int fnum_lfo = (block_fnum&0x0380) >> 7;
signed int lfo_fn_table_index_offset = lfo_pm_table[chip->LFO_PM + 16*fnum_lfo ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{
block_fnum += lfo_fn_table_index_offset;
block = (block_fnum&0x1c00) >> 10;
op->Cnt += (chip->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
}
else /* LFO phase modulation = zero */
{
op->Cnt += op->Incr;
}
}
else /* LFO phase modulation disabled for this operator */
{
op->Cnt += op->Incr;
}
}
/* The Noise Generator of the YM3812 is 23-bit shift register.
* Period is equal to 2^23-2 samples.
* Register works at sampling frequency of the chip, so output
* can change on every sample.
*
* Output of the register and input to the bit 22 is:
* bit0 XOR bit14 XOR bit15 XOR bit22
*
* Simply use bit 22 as the noise output.
*/
chip->noise_p += chip->noise_f;
i = chip->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
chip->noise_p &= FREQ_MASK;
while (i)
{
/*
uint32_t j;
j = ( (chip->noise_rng) ^ (chip->noise_rng>>14) ^ (chip->noise_rng>>15) ^ (chip->noise_rng>>22) ) & 1;
chip->noise_rng = (j<<22) | (chip->noise_rng>>1);
*/
/*
Instead of doing all the logic operations above, we
use a trick here (and use bit 0 as the noise output).
The difference is only that the noise bit changes one
step ahead. This doesn't matter since we don't know
what is real state of the noise_rng after the reset.
*/
if (chip->noise_rng & 1) chip->noise_rng ^= 0x800302;
chip->noise_rng >>= 1;
i--;
}
}
static inline signed int op_calc(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
uint32_t p;
p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
static inline signed int op_calc1(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
uint32_t p;
p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm))>>FREQ_SH) & SIN_MASK)];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
#define volume_calc(OP) ((OP)->TLL + ((uint32_t)(OP)->volume) + (chip->LFO_AM & (OP)->AMmask))
/* calculate output of a standard 2 operator channel
(or 1st part of a 4-op channel) */
static inline void chan_calc( OPL3 *chip, OPL3_CH *CH )
{
OPL3_SLOT *SLOT;
unsigned int env;
signed int out;
chip->phase_modulation = 0;
chip->phase_modulation2= 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
SLOT->op1_out[1] = 0;
if (env < ENV_QUIET)
{
if (!SLOT->FB)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
}
if (SLOT->connect) {
*SLOT->connect += SLOT->op1_out[1];
}
//logerror("out0=%5i vol0=%4i ", SLOT->op1_out[1], env );
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if ((env < ENV_QUIET) && SLOT->connect)
*SLOT->connect += op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable);
//logerror("out1=%5i vol1=%4i\n", op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable), env );
}
/* calculate output of a 2nd part of 4-op channel */
static inline void chan_calc_ext( OPL3 *chip, OPL3_CH *CH )
{
OPL3_SLOT *SLOT;
unsigned int env;
chip->phase_modulation = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env = volume_calc(SLOT);
if (env < ENV_QUIET && SLOT->connect)
*SLOT->connect += op_calc(SLOT->Cnt, env, chip->phase_modulation2, SLOT->wavetable );
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if (env < ENV_QUIET && SLOT->connect)
*SLOT->connect += op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable);
}
/*
operators used in the rhythm sounds generation process:
Envelope Generator:
channel operator register number Bass High Snare Tom Top
/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
6 / 0 12 50 70 90 f0 +
6 / 1 15 53 73 93 f3 +
7 / 0 13 51 71 91 f1 +
7 / 1 16 54 74 94 f4 +
8 / 0 14 52 72 92 f2 +
8 / 1 17 55 75 95 f5 +
Phase Generator:
channel operator register number Bass High Snare Tom Top
/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
6 / 0 12 30 +
6 / 1 15 33 +
7 / 0 13 31 + + +
7 / 1 16 34 ----- n o t u s e d -----
8 / 0 14 32 +
8 / 1 17 35 + +
channel operator register number Bass High Snare Tom Top
number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
6 12,15 B6 A6 +
7 13,16 B7 A7 + + +
8 14,17 B8 A8 + + +
*/
/* calculate rhythm */
static inline void chan_calc_rhythm( OPL3 *chip, OPL3_CH *CH, unsigned int noise )
{
OPL3_SLOT *SLOT;
signed int *chanout = chip->chanout;
signed int out;
unsigned int env;
/* Bass Drum (verified on real YM3812):
- depends on the channel 6 'connect' register:
when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
- output sample always is multiplied by 2
*/
chip->phase_modulation = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
if (!SLOT->CON)
chip->phase_modulation = SLOT->op1_out[0];
//else ignore output of operator 1
SLOT->op1_out[1] = 0;
if( env < ENV_QUIET )
{
if (!SLOT->FB)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
}
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if( env < ENV_QUIET )
chanout[6] += op_calc(SLOT->Cnt, env, chip->phase_modulation, SLOT->wavetable) * 2;
/* Phase generation is based on: */
// HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases)
// SD (16) channel 7->slot 1
// TOM (14) channel 8->slot 1
// TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases)
/* Envelope generation based on: */
// HH channel 7->slot1
// SD channel 7->slot2
// TOM channel 8->slot1
// TOP channel 8->slot2
/* The following formulas can be well optimized.
I leave them in direct form for now (in case I've missed something).
*/
/* High Hat (verified on real YM3812) */
env = volume_calc(SLOT7_1);
if( env < ENV_QUIET )
{
/* high hat phase generation:
phase = d0 or 234 (based on frequency only)
phase = 34 or 2d0 (based on noise)
*/
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
unsigned char res1 = (bit2 ^ bit7) | bit3;
/* when res1 = 0 phase = 0x000 | 0xd0; */
/* when res1 = 1 phase = 0x200 | (0xd0>>2); */
uint32_t phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
/* enable gate based on frequency of operator 2 in channel 8 */
unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
unsigned char res2 = (bit3e ^ bit5e);
/* when res2 = 0 pass the phase from calculation above (res1); */
/* when res2 = 1 phase = 0x200 | (0xd0>>2); */
if (res2)
phase = (0x200|(0xd0>>2));
/* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
/* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
if (phase&0x200)
{
if (noise)
phase = 0x200|0xd0;
}
else
/* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
/* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
{
if (noise)
phase = 0xd0>>2;
}
chanout[7] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
}
/* Snare Drum (verified on real YM3812) */
env = volume_calc(SLOT7_2);
if( env < ENV_QUIET )
{
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1;
/* when bit8 = 0 phase = 0x100; */
/* when bit8 = 1 phase = 0x200; */
uint32_t phase = bit8 ? 0x200 : 0x100;
/* Noise bit XOR'es phase by 0x100 */
/* when noisebit = 0 pass the phase from calculation above */
/* when noisebit = 1 phase ^= 0x100; */
/* in other words: phase ^= (noisebit<<8); */
if (noise)
phase ^= 0x100;
chanout[7] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
}
/* Tom Tom (verified on real YM3812) */
env = volume_calc(SLOT8_1);
if( env < ENV_QUIET )
chanout[8] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2;
/* Top Cymbal (verified on real YM3812) */
env = volume_calc(SLOT8_2);
if( env < ENV_QUIET )
{
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
unsigned char res1 = (bit2 ^ bit7) | bit3;
/* when res1 = 0 phase = 0x000 | 0x100; */
/* when res1 = 1 phase = 0x200 | 0x100; */
uint32_t phase = res1 ? 0x300 : 0x100;
/* enable gate based on frequency of operator 2 in channel 8 */
unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
unsigned char res2 = (bit3e ^ bit5e);
/* when res2 = 0 pass the phase from calculation above (res1); */
/* when res2 = 1 phase = 0x200 | 0x100; */
if (res2)
phase = 0x300;
chanout[8] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
}
}
/* generic table initialize */
static int init_tables(void)
{
signed int i,x;
signed int n;
double o,m;
for (x=0; x<TL_RES_LEN; x++)
{
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
m = floor(m);
/* we never reach (1<<16) here due to the (x+1) */
/* result fits within 16 bits at maximum */
n = (int)m; /* 16 bits here */
n >>= 4; /* 12 bits here */
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
/* 11 bits here (rounded) */
n <<= 1; /* 12 bits here (as in real chip) */
tl_tab[ x*2 + 0 ] = n;
tl_tab[ x*2 + 1 ] = ~tl_tab[ x*2 + 0 ]; /* this *is* different from OPL2 (verified on real YMF262) */
for (i=1; i<13; i++)
{
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = ~tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; /* this *is* different from OPL2 (verified on real YMF262) */
}
#if 0
logerror("tl %04i", x*2);
for (i=0; i<13; i++)
logerror(", [%02i] %5i", i*2, tl_tab[ x*2 +0 + i*2*TL_RES_LEN ] ); /* positive */
logerror("\n");
logerror("tl %04i", x*2);
for (i=0; i<13; i++)
logerror(", [%02i] %5i", i*2, tl_tab[ x*2 +1 + i*2*TL_RES_LEN ] ); /* negative */
logerror("\n");
#endif
}
for (i=0; i<SIN_LEN; i++)
{
/* non-standard sinus */
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
/* we never reach zero here due to ((i*2)+1) */
if (m>0.0)
o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
else
o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
o = o / (ENV_STEP/4);
n = (int)(2.0*o);
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
/*logerror("YMF262.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/
}
for (i=0; i<SIN_LEN; i++)
{
/* these 'pictures' represent _two_ cycles */
/* waveform 1: __ __ */
/* / \____/ \____*/
/* output only first half of the sinus waveform (positive one) */
if (i & (1<<(SIN_BITS-1)) )
sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[1*SIN_LEN+i] = sin_tab[i];
/* waveform 2: __ __ __ __ */
/* / \/ \/ \/ \*/
/* abs(sin) */
sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ];
/* waveform 3: _ _ _ _ */
/* / |_/ |_/ |_/ |_*/
/* abs(output only first quarter of the sinus waveform) */
if (i & (1<<(SIN_BITS-2)) )
sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
/* waveform 4: */
/* /\ ____/\ ____*/
/* \/ \/ */
/* output whole sinus waveform in half the cycle(step=2) and output 0 on the other half of cycle */
if (i & (1<<(SIN_BITS-1)) )
sin_tab[4*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[4*SIN_LEN+i] = sin_tab[i*2];
/* waveform 5: */
/* /\/\____/\/\____*/
/* */
/* output abs(whole sinus) waveform in half the cycle(step=2) and output 0 on the other half of cycle */
if (i & (1<<(SIN_BITS-1)) )
sin_tab[5*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[5*SIN_LEN+i] = sin_tab[(i*2) & (SIN_MASK>>1) ];
/* waveform 6: ____ ____ */
/* */
/* ____ ____*/
/* output maximum in half the cycle and output minimum on the other half of cycle */
if (i & (1<<(SIN_BITS-1)) )
sin_tab[6*SIN_LEN+i] = 1; /* negative */
else
sin_tab[6*SIN_LEN+i] = 0; /* positive */
/* waveform 7: */
/* |\____ |\____ */
/* \| \|*/
/* output sawtooth waveform */
if (i & (1<<(SIN_BITS-1)) )
x = ((SIN_LEN-1)-i)*16 + 1; /* negative: from 8177 to 1 */
else
x = i*16; /*positive: from 0 to 8176 */
if (x > TL_TAB_LEN)
x = TL_TAB_LEN; /* clip to the allowed range */
sin_tab[7*SIN_LEN+i] = x;
//logerror("YMF262.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] );
//logerror("YMF262.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] );
//logerror("YMF262.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );
//logerror("YMF262.C: sin4[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[4*SIN_LEN+i], tl_tab[sin_tab[4*SIN_LEN+i]] );
//logerror("YMF262.C: sin5[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[5*SIN_LEN+i], tl_tab[sin_tab[5*SIN_LEN+i]] );
//logerror("YMF262.C: sin6[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[6*SIN_LEN+i], tl_tab[sin_tab[6*SIN_LEN+i]] );
//logerror("YMF262.C: sin7[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[7*SIN_LEN+i], tl_tab[sin_tab[7*SIN_LEN+i]] );
}
/*logerror("YMF262.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/
#ifdef SAVE_SAMPLE
sample[0]=fopen("sampsum.pcm","wb");
#endif
return 1;
}
static void OPLCloseTable( void )
{
#ifdef SAVE_SAMPLE
fclose(sample[0]);
#endif
}
static void OPL3_initalize(OPL3 *chip)
{
int i;
/* frequency base */
chip->freqbase = (chip->rate) ? ((double)chip->clock / (8.0*36)) / chip->rate : 0;
#if 0
chip->rate = (double)chip->clock / (8.0*36);
chip->freqbase = 1.0;
#endif
/* logerror("YMF262: freqbase=%f\n", chip->freqbase); */
/* Timer base time */
//chip->TimerBase = attotime::from_hz(chip->clock) * (8*36);
/* make fnumber -> increment counter table */
for( i=0 ; i < 1024 ; i++ )
{
/* opn phase increment counter = 20bit */
chip->fn_tab[i] = (uint32_t)( (double)i * 64 * chip->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
#if 0
logerror("YMF262.C: fn_tab[%4i] = %08x (dec=%8i)\n",
i, chip->fn_tab[i]>>6, chip->fn_tab[i]>>6 );
#endif
}
#if 0
for( i=0 ; i < 16 ; i++ )
{
logerror("YMF262.C: sl_tab[%i] = %08x\n",
i, sl_tab[i] );
}
for( i=0 ; i < 8 ; i++ )
{
int j;
logerror("YMF262.C: ksl_tab[oct=%2i] =",i);
for (j=0; j<16; j++)
{
logerror("%08x ", static_cast<uint32_t>(ksl_tab[i*16+j]) );
}
logerror("\n");
}
#endif
/* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
/* One entry from LFO_AM_TABLE lasts for 64 samples */
chip->lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * chip->freqbase;
/* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
chip->lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * chip->freqbase;
/*logerror ("chip->lfo_am_inc = %8x ; chip->lfo_pm_inc = %8x\n", chip->lfo_am_inc, chip->lfo_pm_inc);*/
/* Noise generator: a step takes 1 sample */
chip->noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * chip->freqbase;
chip->eg_timer_add = (1<<EG_SH) * chip->freqbase;
chip->eg_timer_overflow = ( 1 ) * (1<<EG_SH);
/*logerror("YMF262init eg_timer_add=%8x eg_timer_overflow=%8x\n", chip->eg_timer_add, chip->eg_timer_overflow);*/
}
static inline void FM_KEYON(OPL3_SLOT *SLOT, uint32_t key_set)
{
if( !SLOT->key )
{
/* restart Phase Generator */
SLOT->Cnt = 0;
/* phase -> Attack */
SLOT->state = EG_ATT;
}
SLOT->key |= key_set;
}
static inline void FM_KEYOFF(OPL3_SLOT *SLOT, uint32_t key_clr)
{
if( SLOT->key )
{
SLOT->key &= key_clr;
if( !SLOT->key )
{
/* phase -> Release */
if (SLOT->state>EG_REL)
SLOT->state = EG_REL;
}
}
}
/* update phase increment counter of operator (also update the EG rates if necessary) */
static inline void CALC_FCSLOT(OPL3_CH *CH,OPL3_SLOT *SLOT)
{
int ksr;
/* (frequency) phase increment counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* calculate envelope generator rates */
if ((SLOT->ar + SLOT->ksr) < 16+60)
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
SLOT->eg_m_dr = (1<<SLOT->eg_sh_dr)-1;
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
SLOT->eg_m_rr = (1<<SLOT->eg_sh_rr)-1;
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
}
}
/* set multi,am,vib,EG-TYP,KSR,mul */
static inline void set_mul(OPL3 *chip,int slot,int v)
{
OPL3_CH *CH = &chip->P_CH[slot/2];
OPL3_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->mul = mul_tab[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_type = (v&0x20);
SLOT->vib = (v&0x40);
SLOT->AMmask = (v&0x80) ? ~0 : 0;
if (chip->OPL3_mode & 1)
{
int chan_no = slot/2;
/* in OPL3 mode */
//DO THIS:
//if this is one of the slots of 1st channel forming up a 4-op channel
//do normal operation
//else normal 2 operator function
//OR THIS:
//if this is one of the slots of 2nd channel forming up a 4-op channel
//update it using channel data of 1st channel of a pair
//else normal 2 operator function
switch(chan_no)
{
case 0: case 1: case 2:
case 9: case 10: case 11:
if (CH->extended)
{
/* normal */
CALC_FCSLOT(CH,SLOT);
}
else
{
/* normal */
CALC_FCSLOT(CH,SLOT);
}
break;
case 3: case 4: case 5:
case 12: case 13: case 14:
if ((CH-3)->extended)
{
/* update this SLOT using frequency data for 1st channel of a pair */
CALC_FCSLOT(CH-3,SLOT);
}
else
{
/* normal */
CALC_FCSLOT(CH,SLOT);
}
break;
default:
/* normal */
CALC_FCSLOT(CH,SLOT);
break;
}
}
else
{
/* in OPL2 mode */
CALC_FCSLOT(CH,SLOT);
}
}
/* set ksl & tl */
static inline void set_ksl_tl(OPL3 *chip,int slot,int v)
{
OPL3_CH *CH = &chip->P_CH[slot/2];
OPL3_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->ksl = ksl_shift[v >> 6];
SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
if (chip->OPL3_mode & 1)
{
int chan_no = slot/2;
/* in OPL3 mode */
//DO THIS:
//if this is one of the slots of 1st channel forming up a 4-op channel
//do normal operation
//else normal 2 operator function
//OR THIS:
//if this is one of the slots of 2nd channel forming up a 4-op channel
//update it using channel data of 1st channel of a pair
//else normal 2 operator function
switch(chan_no)
{
case 0: case 1: case 2:
case 9: case 10: case 11:
if (CH->extended)
{
/* normal */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
else
{
/* normal */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
break;
case 3: case 4: case 5:
case 12: case 13: case 14:
if ((CH-3)->extended)
{
/* update this SLOT using frequency data for 1st channel of a pair */
SLOT->TLL = SLOT->TL + ((CH-3)->ksl_base>>SLOT->ksl);
}
else
{
/* normal */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
break;
default:
/* normal */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
break;
}
}
else
{
/* in OPL2 mode */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
}
/* set attack rate & decay rate */
static inline void set_ar_dr(OPL3 *chip,int slot,int v)
{
OPL3_CH *CH = &chip->P_CH[slot/2];
OPL3_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
if ((SLOT->ar + SLOT->ksr) < 16+60) /* verified on real YMF262 - all 15 x rates take "zero" time */
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
SLOT->eg_m_dr = (1<<SLOT->eg_sh_dr)-1;
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
}
/* set sustain level & release rate */
static inline void set_sl_rr(OPL3 *chip,int slot,int v)
{
OPL3_CH *CH = &chip->P_CH[slot/2];
OPL3_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->sl = sl_tab[ v>>4 ];
SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
SLOT->eg_m_rr = (1<<SLOT->eg_sh_rr)-1;
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
}
static void update_channels(OPL3 *chip, OPL3_CH *CH)
{
/* update channel passed as a parameter and a channel at CH+=3; */
if (CH->extended)
{ /* we've just switched to combined 4 operator mode */
}
else
{ /* we've just switched to normal 2 operator mode */
}
}
/* write a value v to register r on OPL chip */
static void OPL3WriteReg(OPL3 *chip, int r, int v)
{
OPL3_CH *CH;
unsigned int ch_offset = 0;
int slot;
int block_fnum;
if(r&0x100)
{
switch(r)
{
case 0x101: /* test register */
return;
case 0x104: /* 6 channels enable */
{
uint8_t prev;
CH = &chip->P_CH[0]; /* channel 0 */
prev = CH->extended;
CH->extended = (v>>0) & 1;
if(prev != CH->extended)
update_channels(chip, CH);
CH++; /* channel 1 */
prev = CH->extended;
CH->extended = (v>>1) & 1;
if(prev != CH->extended)
update_channels(chip, CH);
CH++; /* channel 2 */
prev = CH->extended;
CH->extended = (v>>2) & 1;
if(prev != CH->extended)
update_channels(chip, CH);
CH = &chip->P_CH[9]; /* channel 9 */
prev = CH->extended;
CH->extended = (v>>3) & 1;
if(prev != CH->extended)
update_channels(chip, CH);
CH++; /* channel 10 */
prev = CH->extended;
CH->extended = (v>>4) & 1;
if(prev != CH->extended)
update_channels(chip, CH);
CH++; /* channel 11 */
prev = CH->extended;
CH->extended = (v>>5) & 1;
if(prev != CH->extended)
update_channels(chip, CH);
}
return;
case 0x105: /* OPL3 extensions enable register */
chip->OPL3_mode = v&0x01; /* OPL3 mode when bit0=1 otherwise it is OPL2 mode */
/* following behaviour was tested on real YMF262,
switching OPL3/OPL2 modes on the fly:
- does not change the waveform previously selected (unless when ....)
- does not update CH.A, CH.B, CH.C and CH.D output selectors (registers c0-c8) (unless when ....)
- does not disable channels 9-17 on OPL3->OPL2 switch
- does not switch 4 operator channels back to 2 operator channels
*/
return;
default:
if (r < 0x120)
chip->device->logerror("YMF262: write to unknown register (set#2): %03x value=%02x\n",r,v);
break;
}
ch_offset = 9; /* register page #2 starts from channel 9 (counting from 0) */
}
/* adjust bus to 8 bits */
r &= 0xff;
v &= 0xff;
switch(r&0xe0)
{
case 0x00: /* 00-1f:control */
switch(r&0x1f)
{
case 0x01: /* test register */
break;
case 0x02: /* Timer 1 */
chip->T[0] = (256-v)*4;
break;
case 0x03: /* Timer 2 */
chip->T[1] = (256-v)*16;
break;
#if 0
case 0x04: /* IRQ clear / mask and Timer enable */
if(v&0x80)
{ /* IRQ flags clear */
OPL3_STATUS_RESET(chip,0x60);
}
else
{ /* set IRQ mask ,timer enable */
uint8_t st1 = v & 1;
uint8_t st2 = (v>>1) & 1;
/* IRQRST,T1MSK,t2MSK,x,x,x,ST2,ST1 */
OPL3_STATUS_RESET(chip, v & 0x60);
OPL3_STATUSMASK_SET(chip, (~v) & 0x60 );
/* timer 2 */
if(chip->st[1] != st2)
{
attotime period = st2 ? chip->TimerBase * chip->T[1] : attotime::zero;
chip->st[1] = st2;
if (chip->timer_handler) (chip->timer_handler)(chip->TimerParam,1,period);
}
/* timer 1 */
if(chip->st[0] != st1)
{
attotime period = st1 ? chip->TimerBase * chip->T[0] : attotime::zero;
chip->st[0] = st1;
if (chip->timer_handler) (chip->timer_handler)(chip->TimerParam,0,period);
}
}
#endif
break;
case 0x08: /* x,NTS,x,x, x,x,x,x */
chip->nts = v;
break;
default:
chip->device->logerror("YMF262: write to unknown register: %02x value=%02x\n",r,v);
break;
}
break;
case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_mul(chip, slot + ch_offset*2, v);
break;
case 0x40:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_ksl_tl(chip, slot + ch_offset*2, v);
break;
case 0x60:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_ar_dr(chip, slot + ch_offset*2, v);
break;
case 0x80:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_sl_rr(chip, slot + ch_offset*2, v);
break;
case 0xa0:
if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */
{
if (ch_offset != 0) /* 0xbd register is present in set #1 only */
return;
chip->lfo_am_depth = v & 0x80;
chip->lfo_pm_depth_range = (v&0x40) ? 8 : 0;
chip->rhythm = v&0x3f;
if(chip->rhythm&0x20)
{
/* BD key on/off */
if(v&0x10)
{
FM_KEYON (&chip->P_CH[6].SLOT[SLOT1], 2);
FM_KEYON (&chip->P_CH[6].SLOT[SLOT2], 2);
}
else
{
FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT1],~2);
FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT2],~2);
}
/* HH key on/off */
if(v&0x01) FM_KEYON (&chip->P_CH[7].SLOT[SLOT1], 2);
else FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT1],~2);
/* SD key on/off */
if(v&0x08) FM_KEYON (&chip->P_CH[7].SLOT[SLOT2], 2);
else FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT2],~2);
/* TOM key on/off */
if(v&0x04) FM_KEYON (&chip->P_CH[8].SLOT[SLOT1], 2);
else FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT1],~2);
/* TOP-CY key on/off */
if(v&0x02) FM_KEYON (&chip->P_CH[8].SLOT[SLOT2], 2);
else FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT2],~2);
}
else
{
/* BD key off */
FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT1],~2);
FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT2],~2);
/* HH key off */
FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT1],~2);
/* SD key off */
FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT2],~2);
/* TOM key off */
FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT1],~2);
/* TOP-CY off */
FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT2],~2);
}
return;
}
/* keyon,block,fnum */
if( (r&0x0f) > 8) return;
CH = &chip->P_CH[(r&0x0f) + ch_offset];
if(!(r&0x10))
{ /* a0-a8 */
block_fnum = (CH->block_fnum&0x1f00) | v;
}
else
{ /* b0-b8 */
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
if (chip->OPL3_mode & 1)
{
int chan_no = (r&0x0f) + ch_offset;
/* in OPL3 mode */
//DO THIS:
//if this is 1st channel forming up a 4-op channel
//ALSO keyon/off slots of 2nd channel forming up 4-op channel
//else normal 2 operator function keyon/off
//OR THIS:
//if this is 2nd channel forming up 4-op channel just do nothing
//else normal 2 operator function keyon/off
switch(chan_no)
{
case 0: case 1: case 2:
case 9: case 10: case 11:
if (CH->extended)
{
//if this is 1st channel forming up a 4-op channel
//ALSO keyon/off slots of 2nd channel forming up 4-op channel
if(v&0x20)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
FM_KEYON (&(CH+3)->SLOT[SLOT1], 1);
FM_KEYON (&(CH+3)->SLOT[SLOT2], 1);
}
else
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
FM_KEYOFF(&(CH+3)->SLOT[SLOT1],~1);
FM_KEYOFF(&(CH+3)->SLOT[SLOT2],~1);
}
}
else
{
//else normal 2 operator function keyon/off
if(v&0x20)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
}
else
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
}
}
break;
case 3: case 4: case 5:
case 12: case 13: case 14:
if ((CH-3)->extended)
{
//if this is 2nd channel forming up 4-op channel just do nothing
}
else
{
//else normal 2 operator function keyon/off
if(v&0x20)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
}
else
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
}
}
break;
default:
if(v&0x20)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
}
else
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
}
break;
}
}
else
{
if(v&0x20)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
}
else
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
}
}
}
/* update */
if(CH->block_fnum != block_fnum)
{
uint8_t block = block_fnum >> 10;
CH->block_fnum = block_fnum;
CH->ksl_base = static_cast<uint32_t>(ksl_tab[block_fnum>>6]);
CH->fc = chip->fn_tab[block_fnum&0x03ff] >> (7-block);
/* BLK 2,1,0 bits -> bits 3,2,1 of kcode */
CH->kcode = (CH->block_fnum&0x1c00)>>9;
/* the info below is actually opposite to what is stated in the Manuals (verifed on real YMF262) */
/* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */
/* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */
if (chip->nts&0x40)
CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */
else
CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */
if (chip->OPL3_mode & 1)
{
int chan_no = (r&0x0f) + ch_offset;
/* in OPL3 mode */
//DO THIS:
//if this is 1st channel forming up a 4-op channel
//ALSO update slots of 2nd channel forming up 4-op channel
//else normal 2 operator function keyon/off
//OR THIS:
//if this is 2nd channel forming up 4-op channel just do nothing
//else normal 2 operator function keyon/off
switch(chan_no)
{
case 0: case 1: case 2:
case 9: case 10: case 11:
if (CH->extended)
{
//if this is 1st channel forming up a 4-op channel
//ALSO update slots of 2nd channel forming up 4-op channel
/* refresh Total Level in FOUR SLOTs of this channel and channel+3 using data from THIS channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
(CH+3)->SLOT[SLOT1].TLL = (CH+3)->SLOT[SLOT1].TL + (CH->ksl_base>>(CH+3)->SLOT[SLOT1].ksl);
(CH+3)->SLOT[SLOT2].TLL = (CH+3)->SLOT[SLOT2].TL + (CH->ksl_base>>(CH+3)->SLOT[SLOT2].ksl);
/* refresh frequency counter in FOUR SLOTs of this channel and channel+3 using data from THIS channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
CALC_FCSLOT(CH,&(CH+3)->SLOT[SLOT1]);
CALC_FCSLOT(CH,&(CH+3)->SLOT[SLOT2]);
}
else
{
//else normal 2 operator function
/* refresh Total Level in both SLOTs of this channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
/* refresh frequency counter in both SLOTs of this channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
break;
case 3: case 4: case 5:
case 12: case 13: case 14:
if ((CH-3)->extended)
{
//if this is 2nd channel forming up 4-op channel just do nothing
}
else
{
//else normal 2 operator function
/* refresh Total Level in both SLOTs of this channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
/* refresh frequency counter in both SLOTs of this channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
break;
default:
/* refresh Total Level in both SLOTs of this channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
/* refresh frequency counter in both SLOTs of this channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
break;
}
}
else
{
/* in OPL2 mode */
/* refresh Total Level in both SLOTs of this channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
/* refresh frequency counter in both SLOTs of this channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
}
break;
case 0xc0:
/* CH.D, CH.C, CH.B, CH.A, FB(3bits), C */
if( (r&0xf) > 8) return;
CH = &chip->P_CH[(r&0xf) + ch_offset];
if( chip->OPL3_mode & 1 )
{
int base = ((r&0xf) + ch_offset) * 4;
/* OPL3 mode */
chip->pan[ base ] = (v & 0x10) ? ~0 : 0; /* ch.A */
chip->pan[ base +1 ] = (v & 0x20) ? ~0 : 0; /* ch.B */
chip->pan[ base +2 ] = (v & 0x40) ? ~0 : 0; /* ch.C */
chip->pan[ base +3 ] = (v & 0x80) ? ~0 : 0; /* ch.D */
}
else
{
int base = ((r&0xf) + ch_offset) * 4;
/* OPL2 mode - always enabled */
chip->pan[ base ] = ~0; /* ch.A */
chip->pan[ base +1 ] = ~0; /* ch.B */
chip->pan[ base +2 ] = ~0; /* ch.C */
chip->pan[ base +3 ] = ~0; /* ch.D */
}
chip->pan_ctrl_value[ (r&0xf) + ch_offset ] = v; /* store control value for OPL3/OPL2 mode switching on the fly */
CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
CH->SLOT[SLOT1].CON = v&1;
if( chip->OPL3_mode & 1 )
{
int chan_no = (r&0x0f) + ch_offset;
switch(chan_no)
{
case 0: case 1: case 2:
case 9: case 10: case 11:
if (CH->extended)
{
uint8_t conn = (CH->SLOT[SLOT1].CON<<1) | ((CH+3)->SLOT[SLOT1].CON<<0);
switch(conn)
{
case 0:
/* 1 -> 2 -> 3 -> 4 - out */
CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2;
(CH+3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
(CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3;
break;
case 1:
/* 1 -> 2 -\
3 -> 4 -+- out */
CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no;
(CH+3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
(CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3;
break;
case 2:
/* 1 -----------\
2 -> 3 -> 4 -+- out */
CH->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no;
CH->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2;
(CH+3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
(CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3;
break;
case 3:
/* 1 ------\
2 -> 3 -+- out
4 ------/ */
CH->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no;
CH->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2;
(CH+3)->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no + 3;
(CH+3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no + 3;
break;
}
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]);
OPL3_SLOT_CONNECT(chip, &(CH+3)->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &(CH+3)->SLOT[SLOT2]);
}
else
{
/* 2 operators mode */
CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset;
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]);
}
break;
case 3: case 4: case 5:
case 12: case 13: case 14:
if ((CH-3)->extended)
{
uint8_t conn = ((CH-3)->SLOT[SLOT1].CON<<1) | (CH->SLOT[SLOT1].CON<<0);
switch(conn)
{
case 0:
/* 1 -> 2 -> 3 -> 4 - out */
(CH-3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
(CH-3)->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2;
CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no;
break;
case 1:
/* 1 -> 2 -\
3 -> 4 -+- out */
(CH-3)->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
(CH-3)->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no - 3;
CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no;
break;
case 2:
/* 1 -----------\
2 -> 3 -> 4 -+- out */
(CH-3)->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no - 3;
(CH-3)->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2;
CH->SLOT[SLOT1].conn_enum = CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no;
break;
case 3:
/* 1 ------\
2 -> 3 -+- out
4 ------/ */
(CH-3)->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no - 3;
(CH-3)->SLOT[SLOT2].conn_enum = CONN_PHASEMOD2;
CH->SLOT[SLOT1].conn_enum = CONN_CHAN0 + chan_no;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + chan_no;
break;
}
OPL3_SLOT_CONNECT(chip, &(CH-3)->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &(CH-3)->SLOT[SLOT2]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]);
}
else
{
/* 2 operators mode */
CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset;
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]);
}
break;
default:
/* 2 operators mode */
CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset;
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]);
break;
}
}
else
{
/* OPL2 mode - always 2 operators mode */
CH->SLOT[SLOT1].conn_enum = CH->SLOT[SLOT1].CON ? CONN_CHAN0 + (r&0xf)+ch_offset : CONN_PHASEMOD;
CH->SLOT[SLOT2].conn_enum = CONN_CHAN0 + (r&0xf)+ch_offset;
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT1]);
OPL3_SLOT_CONNECT(chip, &CH->SLOT[SLOT2]);
}
break;
case 0xe0: /* waveform select */
slot = slot_array[r&0x1f];
if(slot < 0) return;
slot += ch_offset*2;
CH = &chip->P_CH[slot/2];
/* store 3-bit value written regardless of current OPL2 or OPL3 mode... (verified on real YMF262) */
v &= 7;
CH->SLOT[slot&1].waveform_number = v;
/* ... but select only waveforms 0-3 in OPL2 mode */
if( !(chip->OPL3_mode & 1) )
{
v &= 3; /* we're in OPL2 mode */
}
CH->SLOT[slot&1].wavetable = v * SIN_LEN;
break;
}
}
/* lock/unlock for common table */
static int OPL3_LockTable(device_t *device)
{
num_lock++;
if(num_lock>1) return 0;
/* first time */
if( !init_tables() )
{
num_lock--;
return -1;
}
return 0;
}
static void OPL3_UnLockTable(void)
{
if(num_lock) num_lock--;
if(num_lock) return;
/* last time */
OPLCloseTable();
}
static void OPL3ResetChip(OPL3 *chip)
{
int c,s;
chip->eg_timer = 0;
chip->eg_cnt = 0;
chip->noise_rng = 1; /* noise shift register */
chip->nts = 0; /* note split */
OPL3_STATUS_RESET(chip,0x60);
/* reset with register write */
OPL3WriteReg(chip,0x01,0); /* test register */
OPL3WriteReg(chip,0x02,0); /* Timer1 */
OPL3WriteReg(chip,0x03,0); /* Timer2 */
OPL3WriteReg(chip,0x04,0); /* IRQ mask clear */
//FIX IT registers 101, 104 and 105
//FIX IT (dont change CH.D, CH.C, CH.B and CH.A in C0-C8 registers)
for(c = 0xff ; c >= 0x20 ; c-- )
OPL3WriteReg(chip,c,0);
//FIX IT (dont change CH.D, CH.C, CH.B and CH.A in C0-C8 registers)
for(c = 0x1ff ; c >= 0x120 ; c-- )
OPL3WriteReg(chip,c,0);
/* reset operator parameters */
for( c = 0 ; c < 9*2 ; c++ )
{
OPL3_CH *CH = &chip->P_CH[c];
for(s = 0 ; s < 2 ; s++ )
{
CH->SLOT[s].state = EG_OFF;
CH->SLOT[s].volume = MAX_ATT_INDEX;
}
}
}
/* Create one of virtual YMF262 */
/* 'clock' is chip clock in Hz */
/* 'rate' is sampling rate */
static OPL3 *OPL3Create(device_t *device, int clock, int rate, int type)
{
OPL3 *chip;
if (OPL3_LockTable(device) == -1) return 0;
/* allocate memory block */
chip = auto_alloc_clear(device->machine(), OPL3 );
chip->device = device;
chip->type = type;
chip->clock = clock;
chip->rate = rate;
/* init global tables */
OPL3_initalize(chip);
/* reset chip */
OPL3ResetChip(chip);
return chip;
}
/* Destroy one of virtual YMF262 */
static void OPL3Destroy(OPL3 *chip)
{
OPL3_UnLockTable();
auto_free(chip->device->machine(), chip);
}
/* YMF262 I/O interface */
static int OPL3Write(OPL3 *chip, int a, int v)
{
/* data bus is 8 bits */
v &= 0xff;
switch(a&3)
{
case 0: /* address port 0 (register set #1) */
chip->address = v;
break;
case 1: /* data port - ignore A1 */
case 3: /* data port - ignore A1 */
if(chip->UpdateHandler) chip->UpdateHandler(chip->UpdateParam,0);
OPL3WriteReg(chip,chip->address,v);
break;
case 2: /* address port 1 (register set #2) */
/* verified on real YMF262:
in OPL3 mode:
address line A1 is stored during *address* write and ignored during *data* write.
in OPL2 mode:
register set#2 writes go to register set#1 (ignoring A1)
verified on registers from set#2: 0x01, 0x04, 0x20-0xef
The only exception is register 0x05.
*/
if( chip->OPL3_mode & 1 )
{
/* OPL3 mode */
chip->address = v | 0x100;
}
else
{
/* in OPL2 mode the only accessible in set #2 is register 0x05 */
if( v==5 )
chip->address = v | 0x100;
else
chip->address = v; /* verified range: 0x01, 0x04, 0x20-0xef(set #2 becomes set #1 in opl2 mode) */
}
break;
}
return chip->status>>7;
}
static unsigned char OPL3Read(OPL3 *chip,int a)
{
if( a==0 )
{
/* status port */
return chip->status;
}
return 0x00; /* verified on real YMF262 */
}
static int OPL3TimerOver(OPL3 *chip,int c)
{
if( c )
{ /* Timer B */
OPL3_STATUS_SET(chip,0x20);
}
else
{ /* Timer A */
OPL3_STATUS_SET(chip,0x40);
}
/* reload timer */
// if (chip->timer_handler) (chip->timer_handler)(chip->TimerParam,c,chip->TimerBase * chip->T[c]);
return chip->status>>7;
}
static void OPL3_save_state(OPL3 *chip, device_t *device) {
#if 0
for (int ch=0; ch<18; ch++) {
OPL3_CH *channel = &chip->P_CH[ch];
device->save_item(NAME(channel->block_fnum), ch);
device->save_item(NAME(channel->fc), ch);
device->save_item(NAME(channel->ksl_base), ch);
device->save_item(NAME(channel->kcode), ch);
device->save_item(NAME(channel->extended), ch);
for (int sl=0; sl<2; sl++) {
OPL3_SLOT *slot = &channel->SLOT[sl];
device->save_item(NAME(slot->ar), ch*2+sl);
device->save_item(NAME(slot->dr), ch*2+sl);
device->save_item(NAME(slot->rr), ch*2+sl);
device->save_item(NAME(slot->KSR), ch*2+sl);
device->save_item(NAME(slot->ksl), ch*2+sl);
device->save_item(NAME(slot->ksr), ch*2+sl);
device->save_item(NAME(slot->mul), ch*2+sl);
device->save_item(NAME(slot->Cnt), ch*2+sl);
device->save_item(NAME(slot->Incr), ch*2+sl);
device->save_item(NAME(slot->FB), ch*2+sl);
device->save_item(NAME(slot->conn_enum), ch*2+sl);
device->save_item(NAME(slot->op1_out), ch*2+sl);
device->save_item(NAME(slot->CON), ch*2+sl);
device->save_item(NAME(slot->eg_type), ch*2+sl);
device->save_item(NAME(slot->state), ch*2+sl);
device->save_item(NAME(slot->TL), ch*2+sl);
device->save_item(NAME(slot->TLL), ch*2+sl);
device->save_item(NAME(slot->volume), ch*2+sl);
device->save_item(NAME(slot->sl), ch*2+sl);
device->save_item(NAME(slot->eg_m_ar), ch*2+sl);
device->save_item(NAME(slot->eg_sh_ar), ch*2+sl);
device->save_item(NAME(slot->eg_sel_ar), ch*2+sl);
device->save_item(NAME(slot->eg_m_dr), ch*2+sl);
device->save_item(NAME(slot->eg_sh_dr), ch*2+sl);
device->save_item(NAME(slot->eg_sel_dr), ch*2+sl);
device->save_item(NAME(slot->eg_m_rr), ch*2+sl);
device->save_item(NAME(slot->eg_sh_rr), ch*2+sl);
device->save_item(NAME(slot->eg_sel_rr), ch*2+sl);
device->save_item(NAME(slot->key), ch*2+sl);
device->save_item(NAME(slot->AMmask), ch*2+sl);
device->save_item(NAME(slot->vib), ch*2+sl);
device->save_item(NAME(slot->waveform_number), ch*2+sl);
device->save_item(NAME(slot->wavetable), ch*2+sl);
}
}
device->save_item(NAME(chip->pan));
device->save_item(NAME(chip->pan_ctrl_value));
device->save_item(NAME(chip->lfo_am_depth));
device->save_item(NAME(chip->lfo_pm_depth_range));
device->save_item(NAME(chip->OPL3_mode));
device->save_item(NAME(chip->rhythm));
device->save_item(NAME(chip->address));
device->save_item(NAME(chip->status));
device->save_item(NAME(chip->statusmask));
#endif
}
void * ymf262_init(device_t *device, int clock, int rate)
{
void *chip = OPL3Create(device,clock,rate,OPL3_TYPE_YMF262);
OPL3_save_state((OPL3 *)chip, device);
return chip;
}
void ymf262_post_load(void *chip) {
OPL3 *opl3 = (OPL3 *)chip;
for (int ch=0; ch<18; ch++) {
for (int sl=0; sl<2; sl++) {
OPL3_SLOT_CONNECT(opl3, &(opl3->P_CH[ch].SLOT[sl]));
}
}
}
void ymf262_shutdown(void *chip)
{
OPL3Destroy((OPL3 *)chip);
}
void ymf262_reset_chip(void *chip)
{
OPL3ResetChip((OPL3 *)chip);
}
int ymf262_write(void *chip, int a, int v)
{
return OPL3Write((OPL3 *)chip, a, v);
}
unsigned char ymf262_read(void *chip, int a)
{
/* Note on status register: */
/* YM3526(OPL) and YM3812(OPL2) return bit2 and bit1 in HIGH state */
/* YMF262(OPL3) always returns bit2 and bit1 in LOW state */
/* which can be used to identify the chip */
/* YMF278(OPL4) returns bit2 in LOW and bit1 in HIGH state ??? info from manual - not verified */
return OPL3Read((OPL3 *)chip, a);
}
int ymf262_timer_over(void *chip, int c)
{
return OPL3TimerOver((OPL3 *)chip, c);
}
void ymf262_set_timer_handler(void *chip, OPL3_TIMERHANDLER timer_handler, device_t *device)
{
reinterpret_cast<OPL3 *>(chip)->SetTimerHandler(timer_handler, device);
}
void ymf262_set_irq_handler(void *chip, OPL3_IRQHANDLER IRQHandler, device_t *device)
{
reinterpret_cast<OPL3 *>(chip)->SetIRQHandler(IRQHandler, device);
}
void ymf262_set_update_handler(void *chip, OPL3_UPDATEHANDLER UpdateHandler, device_t *device)
{
reinterpret_cast<OPL3 *>(chip)->SetUpdateHandler(UpdateHandler, device);
}
/*
** Generate samples for one of the YMF262's
**
** 'which' is the virtual YMF262 number
** '**buffers' is table of 4 pointers to the buffers: CH.A, CH.B, CH.C and CH.D
** 'length' is the number of samples that should be generated
*/
void ymf262_update_one(void *_chip, OPL3SAMPLE **buffers, int length)
{
int i;
OPL3 *chip = (OPL3 *)_chip;
signed int *chanout = chip->chanout;
uint8_t rhythm = chip->rhythm&0x20;
OPL3SAMPLE *ch_a = buffers[0];
OPL3SAMPLE *ch_b = buffers[1];
OPL3SAMPLE *ch_c = buffers[2];
OPL3SAMPLE *ch_d = buffers[3];
for( i=0; i < length ; i++ )
{
int a,b,c,d;
advance_lfo(chip);
/* clear channel outputs */
memset(chip->chanout, 0, sizeof(chip->chanout));
#if 1
/* register set #1 */
chan_calc(chip, &chip->P_CH[0]); /* extended 4op ch#0 part 1 or 2op ch#0 */
if (chip->P_CH[0].extended)
chan_calc_ext(chip, &chip->P_CH[3]); /* extended 4op ch#0 part 2 */
else
chan_calc(chip, &chip->P_CH[3]); /* standard 2op ch#3 */
chan_calc(chip, &chip->P_CH[1]); /* extended 4op ch#1 part 1 or 2op ch#1 */
if (chip->P_CH[1].extended)
chan_calc_ext(chip, &chip->P_CH[4]); /* extended 4op ch#1 part 2 */
else
chan_calc(chip, &chip->P_CH[4]); /* standard 2op ch#4 */
chan_calc(chip, &chip->P_CH[2]); /* extended 4op ch#2 part 1 or 2op ch#2 */
if (chip->P_CH[2].extended)
chan_calc_ext(chip, &chip->P_CH[5]); /* extended 4op ch#2 part 2 */
else
chan_calc(chip, &chip->P_CH[5]); /* standard 2op ch#5 */
if(!rhythm)
{
chan_calc(chip, &chip->P_CH[6]);
chan_calc(chip, &chip->P_CH[7]);
chan_calc(chip, &chip->P_CH[8]);
}
else /* Rhythm part */
{
chan_calc_rhythm(chip, &chip->P_CH[0], (chip->noise_rng>>0)&1 );
}
/* register set #2 */
chan_calc(chip, &chip->P_CH[ 9]);
if (chip->P_CH[9].extended)
chan_calc_ext(chip, &chip->P_CH[12]);
else
chan_calc(chip, &chip->P_CH[12]);
chan_calc(chip, &chip->P_CH[10]);
if (chip->P_CH[10].extended)
chan_calc_ext(chip, &chip->P_CH[13]);
else
chan_calc(chip, &chip->P_CH[13]);
chan_calc(chip, &chip->P_CH[11]);
if (chip->P_CH[11].extended)
chan_calc_ext(chip, &chip->P_CH[14]);
else
chan_calc(chip, &chip->P_CH[14]);
/* channels 15,16,17 are fixed 2-operator channels only */
chan_calc(chip, &chip->P_CH[15]);
chan_calc(chip, &chip->P_CH[16]);
chan_calc(chip, &chip->P_CH[17]);
#endif
/* accumulator register set #1 */
a = chanout[0] & chip->pan[0];
b = chanout[0] & chip->pan[1];
c = chanout[0] & chip->pan[2];
d = chanout[0] & chip->pan[3];
#if 1
a += chanout[1] & chip->pan[4];
b += chanout[1] & chip->pan[5];
c += chanout[1] & chip->pan[6];
d += chanout[1] & chip->pan[7];
a += chanout[2] & chip->pan[8];
b += chanout[2] & chip->pan[9];
c += chanout[2] & chip->pan[10];
d += chanout[2] & chip->pan[11];
a += chanout[3] & chip->pan[12];
b += chanout[3] & chip->pan[13];
c += chanout[3] & chip->pan[14];
d += chanout[3] & chip->pan[15];
a += chanout[4] & chip->pan[16];
b += chanout[4] & chip->pan[17];
c += chanout[4] & chip->pan[18];
d += chanout[4] & chip->pan[19];
a += chanout[5] & chip->pan[20];
b += chanout[5] & chip->pan[21];
c += chanout[5] & chip->pan[22];
d += chanout[5] & chip->pan[23];
a += chanout[6] & chip->pan[24];
b += chanout[6] & chip->pan[25];
c += chanout[6] & chip->pan[26];
d += chanout[6] & chip->pan[27];
a += chanout[7] & chip->pan[28];
b += chanout[7] & chip->pan[29];
c += chanout[7] & chip->pan[30];
d += chanout[7] & chip->pan[31];
a += chanout[8] & chip->pan[32];
b += chanout[8] & chip->pan[33];
c += chanout[8] & chip->pan[34];
d += chanout[8] & chip->pan[35];
/* accumulator register set #2 */
a += chanout[9] & chip->pan[36];
b += chanout[9] & chip->pan[37];
c += chanout[9] & chip->pan[38];
d += chanout[9] & chip->pan[39];
a += chanout[10] & chip->pan[40];
b += chanout[10] & chip->pan[41];
c += chanout[10] & chip->pan[42];
d += chanout[10] & chip->pan[43];
a += chanout[11] & chip->pan[44];
b += chanout[11] & chip->pan[45];
c += chanout[11] & chip->pan[46];
d += chanout[11] & chip->pan[47];
a += chanout[12] & chip->pan[48];
b += chanout[12] & chip->pan[49];
c += chanout[12] & chip->pan[50];
d += chanout[12] & chip->pan[51];
a += chanout[13] & chip->pan[52];
b += chanout[13] & chip->pan[53];
c += chanout[13] & chip->pan[54];
d += chanout[13] & chip->pan[55];
a += chanout[14] & chip->pan[56];
b += chanout[14] & chip->pan[57];
c += chanout[14] & chip->pan[58];
d += chanout[14] & chip->pan[59];
a += chanout[15] & chip->pan[60];
b += chanout[15] & chip->pan[61];
c += chanout[15] & chip->pan[62];
d += chanout[15] & chip->pan[63];
a += chanout[16] & chip->pan[64];
b += chanout[16] & chip->pan[65];
c += chanout[16] & chip->pan[66];
d += chanout[16] & chip->pan[67];
a += chanout[17] & chip->pan[68];
b += chanout[17] & chip->pan[69];
c += chanout[17] & chip->pan[70];
d += chanout[17] & chip->pan[71];
#endif
a >>= FINAL_SH;
b >>= FINAL_SH;
c >>= FINAL_SH;
d >>= FINAL_SH;
/* limit check */
a = limit( a , MAXOUT, MINOUT );
b = limit( b , MAXOUT, MINOUT );
c = limit( c , MAXOUT, MINOUT );
d = limit( d , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
ch_a[i] = a;
ch_b[i] = b;
ch_c[i] = c;
ch_d[i] = d;
advance(chip);
}
}