fceugx/source/utils/pngu.c

776 lines
19 KiB
C

/****************************************************************************
*
* PNGU
*
* Original author: frontier (http://frontier-dev.net)
* Modified by Tantric, 2009-2010
*
***************************************************************************/
#include <stdio.h>
#include <malloc.h>
#include <string.h>
#include "pngu.h"
#include <png.h>
// Constants
#define PNGU_SOURCE_BUFFER 1
#define PNGU_SOURCE_DEVICE 2
// Return codes
#define PNGU_OK 0
#define PNGU_ODD_WIDTH 1
#define PNGU_ODD_STRIDE 2
#define PNGU_INVALID_WIDTH_OR_HEIGHT 3
#define PNGU_FILE_IS_NOT_PNG 4
#define PNGU_UNSUPPORTED_COLOR_TYPE 5
#define PNGU_NO_FILE_SELECTED 6
#define PNGU_CANT_OPEN_FILE 7
#define PNGU_CANT_READ_FILE 8
#define PNGU_LIB_ERROR 9
// Color types
#define PNGU_COLOR_TYPE_GRAY 1
#define PNGU_COLOR_TYPE_GRAY_ALPHA 2
#define PNGU_COLOR_TYPE_PALETTE 3
#define PNGU_COLOR_TYPE_RGB 4
#define PNGU_COLOR_TYPE_RGB_ALPHA 5
#define PNGU_COLOR_TYPE_UNKNOWN 6
// PNGU Image context struct
struct _IMGCTX
{
int source;
void *buffer;
char *filename;
u32 cursor;
u32 propRead;
PNGUPROP prop;
u32 infoRead;
png_structp png_ptr;
png_infop info_ptr;
FILE *fd;
png_bytep *row_pointers;
png_bytep img_data;
};
// PNGU Implementation
static void pngu_free_info (IMGCTX ctx)
{
if (ctx->infoRead)
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
png_destroy_read_struct (&(ctx->png_ptr), &(ctx->info_ptr), (png_infopp)NULL);
ctx->infoRead = 0;
}
}
// Custom data provider function used for reading from memory buffers.
static void pngu_read_data_from_buffer (png_structp png_ptr, png_bytep data, png_size_t length)
{
IMGCTX ctx = (IMGCTX) png_get_io_ptr (png_ptr);
memcpy (data, ctx->buffer + ctx->cursor, length);
ctx->cursor += length;
}
// Custom data writer function used for writing to memory buffers.
static void pngu_write_data_to_buffer (png_structp png_ptr, png_bytep data, png_size_t length)
{
IMGCTX ctx = (IMGCTX) png_get_io_ptr (png_ptr);
memcpy (ctx->buffer + ctx->cursor, data, length);
ctx->cursor += length;
}
// Custom data flusher function used for writing to memory buffers.
static void pngu_flush_data_to_buffer (png_structp png_ptr)
{
// Nothing to do here
}
static int pngu_info (IMGCTX ctx)
{
png_byte magic[8];
png_uint_32 width;
png_uint_32 height;
png_color_16p background;
png_bytep trans;
png_color_16p trans_values;
int scale, i;
// Check if there is a file selected and if it is a valid .png
if (ctx->source == PNGU_SOURCE_BUFFER)
memcpy (magic, ctx->buffer, 8);
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Load first 8 bytes into magic buffer
if (fread (magic, 1, 8, ctx->fd) != 8)
{
fclose (ctx->fd);
return PNGU_CANT_READ_FILE;
}
}
else
return PNGU_NO_FILE_SELECTED;;
if (png_sig_cmp(magic, 0, 8) != 0)
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_FILE_IS_NOT_PNG;
}
// Allocation of libpng structs
ctx->png_ptr = png_create_read_struct (PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!(ctx->png_ptr))
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
ctx->info_ptr = png_create_info_struct (ctx->png_ptr);
if (!(ctx->info_ptr))
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
png_destroy_read_struct (&(ctx->png_ptr), (png_infopp)NULL, (png_infopp)NULL);
return PNGU_LIB_ERROR;
}
if (ctx->source == PNGU_SOURCE_BUFFER)
{
// Installation of our custom data provider function
ctx->cursor = 0;
png_set_read_fn (ctx->png_ptr, ctx, pngu_read_data_from_buffer);
}
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Default data provider uses function fread, so it needs to use our FILE*
png_init_io (ctx->png_ptr, ctx->fd);
png_set_sig_bytes (ctx->png_ptr, 8); // We have read 8 bytes already to check PNG authenticity
}
// Read png header
png_read_info (ctx->png_ptr, ctx->info_ptr);
// Query image properties if they have not been queried before
if (!ctx->propRead)
{
int ctxNumTrans;
png_get_IHDR(ctx->png_ptr, ctx->info_ptr, &width, &height,
(int *) &(ctx->prop.imgBitDepth),
(int *) &(ctx->prop.imgColorType),
NULL, NULL, NULL);
ctx->prop.imgWidth = width;
ctx->prop.imgHeight = height;
switch (ctx->prop.imgColorType)
{
case PNG_COLOR_TYPE_GRAY:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_GRAY;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_GRAY_ALPHA;
break;
case PNG_COLOR_TYPE_PALETTE:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_PALETTE;
break;
case PNG_COLOR_TYPE_RGB:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_RGB;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_RGB_ALPHA;
break;
default:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_UNKNOWN;
break;
}
// Constant used to scale 16 bit values to 8 bit values
scale = 0;
if (ctx->prop.imgBitDepth == 16)
scale = 8;
// Query background color, if any.
ctx->prop.validBckgrnd = 0;
switch(ctx->prop.imgColorType)
{
case PNGU_COLOR_TYPE_RGB:
case PNGU_COLOR_TYPE_RGB_ALPHA:
{
if(png_get_bKGD (ctx->png_ptr, ctx->info_ptr, &background)){
ctx->prop.validBckgrnd = 1;
ctx->prop.bckgrnd.r = background->red >> scale;
ctx->prop.bckgrnd.g = background->green >> scale;
ctx->prop.bckgrnd.b = background->blue >> scale;
}
// Query list of transparent colors, if any.
ctx->prop.numTrans = 0;
ctx->prop.trans = NULL;
if(png_get_tRNS (ctx->png_ptr, ctx->info_ptr, &trans, (int *) &(ctx->prop.numTrans), &trans_values)){
ctxNumTrans = ctx->prop.numTrans;
if(ctxNumTrans){
ctx->prop.trans = malloc (sizeof (PNGUCOLOR) * ctxNumTrans);
if (ctx->prop.trans)
for (i = 0; i < ctxNumTrans; i++)
{
ctx->prop.trans[i].r = trans_values[i].red >> scale;
ctx->prop.trans[i].g = trans_values[i].green >> scale;
ctx->prop.trans[i].b = trans_values[i].blue >> scale;
}
else
ctx->prop.numTrans = 0;
}
}
}
break;
case PNGU_COLOR_TYPE_GRAY:
case PNGU_COLOR_TYPE_GRAY_ALPHA:
{
if(png_get_bKGD (ctx->png_ptr, ctx->info_ptr, &background)){
ctx->prop.validBckgrnd = 1;
ctx->prop.bckgrnd.r =
ctx->prop.bckgrnd.g =
ctx->prop.bckgrnd.b = background->gray >> scale;
}
// Query list of transparent colors, if any.
ctx->prop.numTrans = 0;
ctx->prop.trans = NULL;
if(png_get_tRNS (ctx->png_ptr, ctx->info_ptr, &trans, (int *) &(ctx->prop.numTrans), &trans_values)){
ctxNumTrans = ctx->prop.numTrans;
if(ctxNumTrans){
ctx->prop.trans = malloc (sizeof (PNGUCOLOR) * ctxNumTrans);
if (ctx->prop.trans)
for (i = 0; i < ctxNumTrans; i++)
ctx->prop.trans[i].r =
ctx->prop.trans[i].g =
ctx->prop.trans[i].b = trans_values[i].gray >> scale;
else
ctx->prop.numTrans = 0;
}
}
}
break;
default:
// It was none of those things,
{
// Query list of transparent colors, if any.
ctx->prop.numTrans = 0;
ctx->prop.trans = NULL;
}
break;
}
ctx->propRead = 1;
}
// Success
ctx->infoRead = 1;
return PNGU_OK;
}
static int pngu_decode (IMGCTX ctx, u32 width, u32 height, u32 stripAlpha)
{
png_uint_32 rowbytes;
png_uint_32 i, propImgHeight;
// Read info if it hasn't been read before
if (!ctx->infoRead)
{
int c = pngu_info (ctx);
if (c != PNGU_OK)
return c;
}
// Check if the user has specified the real width and height of the image
if ( (ctx->prop.imgWidth != width) || (ctx->prop.imgHeight != height) )
return PNGU_INVALID_WIDTH_OR_HEIGHT;
// Check if color type is supported by PNGU
if (ctx->prop.imgColorType == PNGU_COLOR_TYPE_UNKNOWN)
return PNGU_UNSUPPORTED_COLOR_TYPE;
// Scale 16 bit samples to 8 bit
if (ctx->prop.imgBitDepth == 16)
png_set_strip_16 (ctx->png_ptr);
// Remove alpha channel if we don't need it
if (stripAlpha && ((ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA)))
png_set_strip_alpha (ctx->png_ptr);
// Expand 1, 2 and 4 bit samples to 8 bit
if (ctx->prop.imgBitDepth < 8)
png_set_packing (ctx->png_ptr);
// Transform grayscale images to RGB
if ( (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA) )
png_set_gray_to_rgb (ctx->png_ptr);
// Transform palette images to RGB
if (ctx->prop.imgColorType == PNGU_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(ctx->png_ptr);
// Flush transformations
png_read_update_info (ctx->png_ptr, ctx->info_ptr);
// Allocate memory to store the image
rowbytes = png_get_rowbytes (ctx->png_ptr, ctx->info_ptr);
if (rowbytes & 3)
rowbytes = ((rowbytes >> 2) + 1) << 2; // Add extra padding so each row starts in a 4 byte boundary
ctx->img_data = malloc (rowbytes * ctx->prop.imgHeight);
if (!ctx->img_data)
{
pngu_free_info (ctx);
return PNGU_LIB_ERROR;
}
ctx->row_pointers = malloc (sizeof (png_bytep) * ctx->prop.imgHeight);
if (!ctx->row_pointers)
{
free (ctx->img_data);
pngu_free_info (ctx);
return PNGU_LIB_ERROR;
}
propImgHeight = ctx->prop.imgHeight;
for (i = 0; i < propImgHeight; ++i)
ctx->row_pointers[i] = ctx->img_data + (i * rowbytes);
// Transform the image and copy it to our allocated memory
png_read_image (ctx->png_ptr, ctx->row_pointers);
// Free resources
pngu_free_info (ctx);
// Success
return PNGU_OK;
}
static inline u32 coordsRGBA8(u32 x, u32 y, u32 w)
{
return ((((y >> 2) * (w >> 2) + (x >> 2)) << 5) + ((y & 3) << 2) + (x & 3)) << 1;
}
static u8 * PNGU_DecodeTo4x4RGBA8 (IMGCTX ctx, u32 width, u32 height, int * dstWidth, int * dstHeight, u8 *dstPtr, int maxWidth, int maxHeight)
{
u8 default_alpha = 255;
u8 *dst;
int x, y, x2, y2, offset;
int xRatio = 0, yRatio = 0;
png_byte *pixel;
if (pngu_decode (ctx, width, height, 0) != PNGU_OK)
return NULL;
int newWidth = width;
int newHeight = height;
if((maxWidth > 0 && width > maxWidth) || (maxHeight > 0 && height > maxHeight))
{
float ratio = (float)width/(float)height;
newWidth = maxWidth;
newHeight = maxWidth/ratio;
if(newHeight > maxHeight)
{
newWidth = maxHeight*ratio;
newHeight = maxHeight;
}
xRatio = (int)((width<<16)/newWidth)+1;
yRatio = (int)((height<<16)/newHeight)+1;
}
int padWidth = newWidth;
int padHeight = newHeight;
if(padWidth%4) padWidth += (4-padWidth%4);
if(padHeight%4) padHeight += (4-padHeight%4);
int len = (padWidth * padHeight) << 2;
if(len%32) len += (32-len%32);
if(dstPtr)
dst = dstPtr; // use existing allocation
else
dst = memalign (32, len);
if(!dst)
return NULL;
for (y = 0; y < padHeight; y++)
{
for (x = 0; x < padWidth; x++)
{
offset = coordsRGBA8(x, y, padWidth);
if(y >= newHeight || x >= newWidth)
{
dst[offset] = 0;
dst[offset+1] = 255;
dst[offset+32] = 255;
dst[offset+33] = 255;
}
else
{
if(xRatio > 0)
{
x2 = ((x*xRatio)>>16);
y2 = ((y*yRatio)>>16);
}
if (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA ||
ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA)
{
if(xRatio > 0)
pixel = &(ctx->row_pointers[y2][x2*4]);
else
pixel = &(ctx->row_pointers[y][x*4]);
dst[offset] = pixel[3]; // Alpha
dst[offset+1] = pixel[0]; // Red
dst[offset+32] = pixel[1]; // Green
dst[offset+33] = pixel[2]; // Blue
}
else
{
if(xRatio > 0)
pixel = &(ctx->row_pointers[y2][x2*3]);
else
pixel = &(ctx->row_pointers[y][x*3]);
dst[offset] = default_alpha; // Alpha
dst[offset+1] = pixel[0]; // Red
dst[offset+32] = pixel[1]; // Green
dst[offset+33] = pixel[2]; // Blue
}
}
}
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
*dstWidth = padWidth;
*dstHeight = padHeight;
DCFlushRange(dst, len);
return dst;
}
IMGCTX PNGU_SelectImageFromBuffer (const void *buffer)
{
IMGCTX ctx = NULL;
if (!buffer)
return NULL;
ctx = malloc (sizeof (struct _IMGCTX));
if (!ctx)
return NULL;
ctx->buffer = (void *) buffer;
ctx->source = PNGU_SOURCE_BUFFER;
ctx->cursor = 0;
ctx->filename = NULL;
ctx->propRead = 0;
ctx->infoRead = 0;
return ctx;
}
IMGCTX PNGU_SelectImageFromDevice (const char *filename)
{
IMGCTX ctx = NULL;
if (!filename)
return NULL;
ctx = malloc (sizeof (struct _IMGCTX));
if (!ctx)
return NULL;
ctx->buffer = NULL;
ctx->source = PNGU_SOURCE_DEVICE;
ctx->cursor = 0;
ctx->filename = malloc (strlen (filename) + 1);
if (!ctx->filename)
{
free (ctx);
return NULL;
}
strcpy(ctx->filename, filename);
ctx->propRead = 0;
ctx->infoRead = 0;
return ctx;
}
void PNGU_ReleaseImageContext (IMGCTX ctx)
{
if (!ctx)
return;
if (ctx->filename)
free (ctx->filename);
if ((ctx->propRead) && (ctx->prop.trans))
free (ctx->prop.trans);
pngu_free_info (ctx);
free (ctx);
}
int PNGU_GetImageProperties (IMGCTX ctx, PNGUPROP *imgprop)
{
int res;
if (!ctx->propRead)
{
res = pngu_info (ctx);
if (res != PNGU_OK)
return res;
}
*imgprop = ctx->prop;
return PNGU_OK;
}
u8 * DecodePNG(const u8 *src, int * width, int * height, u8 *dstPtr, int maxwidth, int maxheight)
{
PNGUPROP imgProp;
IMGCTX ctx = PNGU_SelectImageFromBuffer(src);
u8 *dst = NULL;
if(!ctx)
return NULL;
if(PNGU_GetImageProperties(ctx, &imgProp) == PNGU_OK)
dst = PNGU_DecodeTo4x4RGBA8 (ctx, imgProp.imgWidth, imgProp.imgHeight, width, height, dstPtr, maxwidth, maxheight);
PNGU_ReleaseImageContext (ctx);
return dst;
}
u8 * DecodePNGFromFile(const char *filepath, int * width, int * height, u8 *dstPtr, int maxwidth, int maxheight)
{
FILE *file = fopen (filepath, "rb");
if (!file)
return NULL;
IMGCTX ctx = PNGU_SelectImageFromDevice(filepath);
if(!ctx)
return NULL;
ctx->fd = file;
PNGUPROP imgProp;
u8 *dst = NULL;
if(PNGU_GetImageProperties(ctx, &imgProp) == PNGU_OK && imgProp.imgWidth <= maxwidth && imgProp.imgHeight <= maxheight)
dst = PNGU_DecodeTo4x4RGBA8 (ctx, imgProp.imgWidth, imgProp.imgHeight, width, height, dstPtr, maxwidth, maxheight);
PNGU_ReleaseImageContext (ctx);
return dst;
}
int PNGU_EncodeFromRGB (IMGCTX ctx, u32 width, u32 height, void *buffer, u32 stride)
{
png_uint_32 rowbytes;
u32 y;
// Erase from the context any readed info
pngu_free_info (ctx);
ctx->propRead = 0;
// Check if the user has selected a file to write the image
if (ctx->source == PNGU_SOURCE_BUFFER);
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Open file
if (!(ctx->fd = fopen (ctx->filename, "wb")))
return PNGU_CANT_OPEN_FILE;
}
else
return PNGU_NO_FILE_SELECTED;
// Allocation of libpng structs
ctx->png_ptr = png_create_write_struct (PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!(ctx->png_ptr))
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
ctx->info_ptr = png_create_info_struct (ctx->png_ptr);
if (!(ctx->info_ptr))
{
png_destroy_write_struct (&(ctx->png_ptr), (png_infopp)NULL);
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
if (ctx->source == PNGU_SOURCE_BUFFER)
{
// Installation of our custom data writer function
ctx->cursor = 0;
png_set_write_fn (ctx->png_ptr, ctx, pngu_write_data_to_buffer, pngu_flush_data_to_buffer);
}
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Default data writer uses function fwrite, so it needs to use our FILE*
png_init_io (ctx->png_ptr, ctx->fd);
}
// Setup output file properties
png_set_IHDR (ctx->png_ptr, ctx->info_ptr, width, height, 8, PNG_COLOR_TYPE_RGB,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
// Allocate memory to store the image in RGB format
rowbytes = width * 3;
if (rowbytes % 4)
rowbytes = ((rowbytes >>2) + 1) <<2; // Add extra padding so each row starts in a 4 byte boundary
ctx->img_data = malloc(rowbytes * height);
if (!ctx->img_data)
{
png_destroy_write_struct (&(ctx->png_ptr), (png_infopp)NULL);
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
memset(ctx->img_data, 0, rowbytes * height);
ctx->row_pointers = malloc (sizeof (png_bytep) * height);
if (!ctx->row_pointers)
{
png_destroy_write_struct (&(ctx->png_ptr), (png_infopp)NULL);
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
memset(ctx->row_pointers, 0, sizeof (png_bytep) * height);
for (y = 0; y < height; ++y)
{
ctx->row_pointers[y] = buffer + (y * rowbytes);
}
// Tell libpng where is our image data
png_set_rows (ctx->png_ptr, ctx->info_ptr, ctx->row_pointers);
// Write file header and image data
png_write_png (ctx->png_ptr, ctx->info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
// Tell libpng we have no more data to write
png_write_end (ctx->png_ptr, (png_infop) NULL);
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
png_destroy_write_struct (&(ctx->png_ptr), &(ctx->info_ptr));
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
// Success
return ctx->cursor;
}
int PNGU_EncodeFromGXTexture (IMGCTX ctx, u32 width, u32 height, void *buffer, u32 stride)
{
int res;
u32 x, y, tmpy1, tmpy2, tmpyWid, tmpxy;
unsigned char * ptr = (unsigned char*)buffer;
unsigned char * tmpbuffer = malloc(width*height*3);
if(!tmpbuffer)
return PNGU_LIB_ERROR;
memset(tmpbuffer, 0, width*height*3);
png_uint_32 offset;
for(y=0; y < height; y++)
{
tmpy1 = y * 640*3;
tmpy2 = y%4 << 2;
tmpyWid = (((y >> 2)<<4)*width);
for(x=0; x < width; x++)
{
offset = tmpyWid + ((x >> 2)<<6) + ((tmpy2+ x%4 ) << 1);
tmpxy = x * 3 + tmpy1;
tmpbuffer[tmpxy ] = ptr[offset+1]; // R
tmpbuffer[tmpxy+1] = ptr[offset+32]; // G
tmpbuffer[tmpxy+2] = ptr[offset+33]; // B
}
}
res = PNGU_EncodeFromRGB (ctx, width, height, tmpbuffer, stride);
free(tmpbuffer);
return res;
}
int PNGU_EncodeFromEFB (IMGCTX ctx, u32 width, u32 height)
{
int res;
u32 x, y, tmpy1, tmpxy;
GXColor color;
unsigned char * tmpbuffer = malloc(width*height*3);
if(!tmpbuffer)
return PNGU_LIB_ERROR;
for(y=0; y < height; y++)
{
tmpy1 = y * width * 3;
for(x=0; x < width; x++)
{
tmpxy = x * 3 + tmpy1;
GX_PeekARGB(x, y, &color);
tmpbuffer[tmpxy ] = color.r; // R
tmpbuffer[tmpxy+1] = color.g; // G
tmpbuffer[tmpxy+2] = color.b; // B
}
}
res = PNGU_EncodeFromRGB (ctx, width, height, tmpbuffer, 0);
free(tmpbuffer);
return res;
}