mirror of
https://github.com/dborth/fceugx.git
synced 2025-01-25 06:51:10 +01:00
2333 lines
60 KiB
C++
2333 lines
60 KiB
C++
/* FCE Ultra - NES/Famicom Emulator
|
|
*
|
|
* Copyright notice for this file:
|
|
* Copyright (C) 1998 BERO
|
|
* Copyright (C) 2003 Xodnizel
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "types.h"
|
|
#include "x6502.h"
|
|
#include "fceu.h"
|
|
#include "ppu.h"
|
|
#include "nsf.h"
|
|
#include "sound.h"
|
|
#include "file.h"
|
|
#include "utils/endian.h"
|
|
#include "utils/memory.h"
|
|
|
|
#include "cart.h"
|
|
#include "palette.h"
|
|
#include "state.h"
|
|
#include "video.h"
|
|
#include "input.h"
|
|
#include "driver.h"
|
|
#include "debug.h"
|
|
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
|
|
#define VBlankON (PPU[0] & 0x80) //Generate VBlank NMI
|
|
#define Sprite16 (PPU[0] & 0x20) //Sprites 8x16/8x8
|
|
#define BGAdrHI (PPU[0] & 0x10) //BG pattern adr $0000/$1000
|
|
#define SpAdrHI (PPU[0] & 0x08) //Sprite pattern adr $0000/$1000
|
|
#define INC32 (PPU[0] & 0x04) //auto increment 1/32
|
|
|
|
#define SpriteON (PPU[1] & 0x10) //Show Sprite
|
|
#define ScreenON (PPU[1] & 0x08) //Show screen
|
|
#define PPUON (PPU[1] & 0x18) //PPU should operate
|
|
#define GRAYSCALE (PPU[1] & 0x01) //Grayscale (AND palette entries with 0x30)
|
|
|
|
#define SpriteLeft8 (PPU[1] & 0x04)
|
|
#define BGLeft8 (PPU[1] & 0x02)
|
|
|
|
#define PPU_status (PPU[2])
|
|
|
|
#define Pal (PALRAM)
|
|
|
|
static void FetchSpriteData(void);
|
|
static void RefreshLine(int lastpixel);
|
|
static void RefreshSprites(void);
|
|
static void CopySprites(uint8 *target);
|
|
|
|
static void Fixit1(void);
|
|
static uint32 ppulut1[256];
|
|
static uint32 ppulut2[256];
|
|
static uint32 ppulut3[128];
|
|
|
|
int test = 0;
|
|
|
|
template<typename T, int BITS>
|
|
struct BITREVLUT {
|
|
T* lut;
|
|
BITREVLUT() {
|
|
int bits = BITS;
|
|
int n = 1 << BITS;
|
|
lut = new T[n];
|
|
|
|
int m = 1;
|
|
int a = n >> 1;
|
|
int j = 2;
|
|
|
|
lut[0] = 0;
|
|
lut[1] = a;
|
|
|
|
while (--bits) {
|
|
m <<= 1;
|
|
a >>= 1;
|
|
for (int i = 0; i < m; i++)
|
|
lut[j++] = lut[i] + a;
|
|
}
|
|
}
|
|
|
|
T operator[](int index) {
|
|
return lut[index];
|
|
}
|
|
};
|
|
BITREVLUT<uint8, 8> bitrevlut;
|
|
|
|
struct PPUSTATUS {
|
|
int32 sl;
|
|
int32 cycle, end_cycle;
|
|
};
|
|
|
|
struct SPRITE_READ {
|
|
int32 num;
|
|
int32 count;
|
|
int32 fetch;
|
|
int32 found;
|
|
int32 found_pos[8];
|
|
int32 ret;
|
|
int32 last;
|
|
int32 mode;
|
|
|
|
void reset() {
|
|
num = count = fetch = found = ret = last = mode = 0;
|
|
found_pos[0] = found_pos[1] = found_pos[2] = found_pos[3] = 0;
|
|
found_pos[4] = found_pos[5] = found_pos[6] = found_pos[7] = 0;
|
|
}
|
|
|
|
void start_scanline() {
|
|
num = 1;
|
|
found = 0;
|
|
fetch = 1;
|
|
count = 0;
|
|
last = 64;
|
|
mode = 0;
|
|
found_pos[0] = found_pos[1] = found_pos[2] = found_pos[3] = 0;
|
|
found_pos[4] = found_pos[5] = found_pos[6] = found_pos[7] = 0;
|
|
}
|
|
};
|
|
|
|
//doesn't need to be savestated as it is just a reflection of the current position in the ppu loop
|
|
PPUPHASE ppuphase;
|
|
|
|
//this needs to be savestated since a game may be trying to read from this across vblanks
|
|
SPRITE_READ spr_read;
|
|
|
|
//definitely needs to be savestated
|
|
uint8 idleSynch = 1;
|
|
|
|
//uses the internal counters concept at http://nesdev.icequake.net/PPU%20addressing.txt
|
|
struct PPUREGS {
|
|
//normal clocked regs. as the game can interfere with these at any time, they need to be savestated
|
|
uint32 fv; //3
|
|
uint32 v; //1
|
|
uint32 h; //1
|
|
uint32 vt; //5
|
|
uint32 ht; //5
|
|
|
|
//temp unlatched regs (need savestating, can be written to at any time)
|
|
uint32 _fv, _v, _h, _vt, _ht;
|
|
|
|
//other regs that need savestating
|
|
uint32 fh; //3 (horz scroll)
|
|
uint32 s; //1 ($2000 bit 4: "Background pattern table address (0: $0000; 1: $1000)")
|
|
|
|
//other regs that don't need saving
|
|
uint32 par; //8 (sort of a hack, just stored in here, but not managed by this system)
|
|
|
|
//cached state data. these are always reset at the beginning of a frame and don't need saving
|
|
//but just to be safe, we're gonna save it
|
|
PPUSTATUS status;
|
|
|
|
void reset() {
|
|
fv = v = h = vt = ht = 0;
|
|
fh = par = s = 0;
|
|
_fv = _v = _h = _vt = _ht = 0;
|
|
status.cycle = 0;
|
|
status.end_cycle = 341;
|
|
status.sl = 241;
|
|
}
|
|
|
|
void install_latches() {
|
|
fv = _fv;
|
|
v = _v;
|
|
h = _h;
|
|
vt = _vt;
|
|
ht = _ht;
|
|
}
|
|
|
|
void install_h_latches() {
|
|
ht = _ht;
|
|
h = _h;
|
|
}
|
|
|
|
void clear_latches() {
|
|
_fv = _v = _h = _vt = _ht = 0;
|
|
fh = 0;
|
|
}
|
|
|
|
void increment_hsc() {
|
|
//The first one, the horizontal scroll counter, consists of 6 bits, and is
|
|
//made up by daisy-chaining the HT counter to the H counter. The HT counter is
|
|
//then clocked every 8 pixel dot clocks (or every 8/3 CPU clock cycles).
|
|
ht++;
|
|
h += (ht >> 5);
|
|
ht &= 31;
|
|
h &= 1;
|
|
}
|
|
|
|
void increment_vs() {
|
|
fv++;
|
|
int fv_overflow = (fv >> 3);
|
|
vt += fv_overflow;
|
|
vt &= 31; //fixed tecmo super bowl
|
|
if (vt == 30 && fv_overflow == 1) { //caution here (only do it at the exact instant of overflow) fixes p'radikus conflict
|
|
v++;
|
|
vt = 0;
|
|
}
|
|
fv &= 7;
|
|
v &= 1;
|
|
}
|
|
|
|
uint32 get_ntread() {
|
|
return 0x2000 | (v << 0xB) | (h << 0xA) | (vt << 5) | ht;
|
|
}
|
|
|
|
uint32 get_2007access() {
|
|
return ((fv & 3) << 0xC) | (v << 0xB) | (h << 0xA) | (vt << 5) | ht;
|
|
}
|
|
|
|
//The PPU has an internal 4-position, 2-bit shifter, which it uses for
|
|
//obtaining the 2-bit palette select data during an attribute table byte
|
|
//fetch. To represent how this data is shifted in the diagram, letters a..c
|
|
//are used in the diagram to represent the right-shift position amount to
|
|
//apply to the data read from the attribute data (a is always 0). This is why
|
|
//you only see bits 0 and 1 used off the read attribute data in the diagram.
|
|
uint32 get_atread() {
|
|
return 0x2000 | (v << 0xB) | (h << 0xA) | 0x3C0 | ((vt & 0x1C) << 1) | ((ht & 0x1C) >> 2);
|
|
}
|
|
|
|
//address line 3 relates to the pattern table fetch occuring (the PPU always makes them in pairs).
|
|
uint32 get_ptread() {
|
|
return (s << 0xC) | (par << 0x4) | fv;
|
|
}
|
|
|
|
void increment2007(bool rendering, bool by32) {
|
|
|
|
if (rendering)
|
|
{
|
|
//don't do this:
|
|
//if (by32) increment_vs();
|
|
//else increment_hsc();
|
|
//do this instead:
|
|
increment_vs(); //yes, even if we're moving by 32
|
|
return;
|
|
}
|
|
|
|
//If the VRAM address increment bit (2000.2) is clear (inc. amt. = 1), all the
|
|
//scroll counters are daisy-chained (in the order of HT, VT, H, V, FV) so that
|
|
//the carry out of each counter controls the next counter's clock rate. The
|
|
//result is that all 5 counters function as a single 15-bit one. Any access to
|
|
//2007 clocks the HT counter here.
|
|
//
|
|
//If the VRAM address increment bit is set (inc. amt. = 32), the only
|
|
//difference is that the HT counter is no longer being clocked, and the VT
|
|
//counter is now being clocked by access to 2007.
|
|
if (by32) {
|
|
vt++;
|
|
} else {
|
|
ht++;
|
|
vt += (ht >> 5) & 1;
|
|
}
|
|
h += (vt >> 5);
|
|
v += (h >> 1);
|
|
fv += (v >> 1);
|
|
ht &= 31;
|
|
vt &= 31;
|
|
h &= 1;
|
|
v &= 1;
|
|
fv &= 7;
|
|
}
|
|
} ppur;
|
|
|
|
static void makeppulut(void) {
|
|
int x;
|
|
int y;
|
|
int cc, xo, pixel;
|
|
|
|
|
|
for (x = 0; x < 256; x++) {
|
|
ppulut1[x] = 0;
|
|
for (y = 0; y < 8; y++)
|
|
ppulut1[x] |= ((x >> (7 - y)) & 1) << (y * 4);
|
|
ppulut2[x] = ppulut1[x] << 1;
|
|
}
|
|
|
|
for (cc = 0; cc < 16; cc++) {
|
|
for (xo = 0; xo < 8; xo++) {
|
|
ppulut3[xo | (cc << 3)] = 0;
|
|
for (pixel = 0; pixel < 8; pixel++) {
|
|
int shiftr;
|
|
shiftr = (pixel + xo) / 8;
|
|
shiftr *= 2;
|
|
ppulut3[xo | (cc << 3)] |= ((cc >> shiftr) & 3) << (2 + pixel * 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ppudead = 1;
|
|
static int kook = 0;
|
|
int fceuindbg = 0;
|
|
|
|
//mbg 6/23/08
|
|
//make the no-bg fill color configurable
|
|
//0xFF shall indicate to use palette[0]
|
|
uint8 gNoBGFillColor = 0xFF;
|
|
|
|
int MMC5Hack = 0, PEC586Hack = 0;;
|
|
uint32 MMC5HackVROMMask = 0;
|
|
uint8 *MMC5HackExNTARAMPtr = 0;
|
|
uint8 *MMC5HackVROMPTR = 0;
|
|
uint8 MMC5HackCHRMode = 0;
|
|
uint8 MMC5HackSPMode = 0;
|
|
uint8 MMC50x5130 = 0;
|
|
uint8 MMC5HackSPScroll = 0;
|
|
uint8 MMC5HackSPPage = 0;
|
|
|
|
uint8 VRAMBuffer = 0, PPUGenLatch = 0;
|
|
uint8 *vnapage[4];
|
|
uint8 PPUNTARAM = 0;
|
|
uint8 PPUCHRRAM = 0;
|
|
|
|
//Color deemphasis emulation. Joy...
|
|
static uint8 deemp = 0;
|
|
static int deempcnt[8];
|
|
|
|
void (*GameHBIRQHook)(void), (*GameHBIRQHook2)(void);
|
|
void (*PPU_hook)(uint32 A);
|
|
|
|
uint8 vtoggle = 0;
|
|
uint8 XOffset = 0;
|
|
uint8 SpriteDMA = 0; // $4014 / Writing $xx copies 256 bytes by reading from $xx00-$xxFF and writing to $2004 (OAM data)
|
|
|
|
uint32 TempAddr = 0, RefreshAddr = 0, DummyRead = 0;
|
|
|
|
static int maxsprites = 8;
|
|
|
|
//scanline is equal to the current visible scanline we're on.
|
|
int scanline;
|
|
int g_rasterpos;
|
|
static uint32 scanlines_per_frame;
|
|
|
|
uint8 PPU[4];
|
|
uint8 PPUSPL;
|
|
uint8 NTARAM[0x800], PALRAM[0x20], SPRAM[0x100], SPRBUF[0x100];
|
|
uint8 UPALRAM[0x03];//for 0x4/0x8/0xC addresses in palette, the ones in
|
|
//0x20 are 0 to not break fceu rendering.
|
|
|
|
#define MMC5SPRVRAMADR(V) &MMC5SPRVPage[(V) >> 10][(V)]
|
|
#define VRAMADR(V) &VPage[(V) >> 10][(V)]
|
|
|
|
//mbg 8/6/08 - fix a bug relating to
|
|
//"When in 8x8 sprite mode, only one set is used for both BG and sprites."
|
|
//in mmc5 docs
|
|
uint8 * MMC5BGVRAMADR(uint32 V) {
|
|
if (!Sprite16) {
|
|
extern uint8 mmc5ABMode; /* A=0, B=1 */
|
|
if (mmc5ABMode == 0)
|
|
return MMC5SPRVRAMADR(V);
|
|
else
|
|
return &MMC5BGVPage[(V) >> 10][(V)];
|
|
} else return &MMC5BGVPage[(V) >> 10][(V)];
|
|
}
|
|
|
|
//this duplicates logic which is embedded in the ppu rendering code
|
|
//which figures out where to get CHR data from depending on various hack modes
|
|
//mostly involving mmc5.
|
|
//this might be incomplete.
|
|
uint8* FCEUPPU_GetCHR(uint32 vadr, uint32 refreshaddr) {
|
|
if (MMC5Hack) {
|
|
if (MMC5HackCHRMode == 1) {
|
|
uint8 *C = MMC5HackVROMPTR;
|
|
C += (((MMC5HackExNTARAMPtr[refreshaddr & 0x3ff]) & 0x3f & MMC5HackVROMMask) << 12) + (vadr & 0xfff);
|
|
C += (MMC50x5130 & 0x3) << 18; //11-jun-2009 for kuja_killer
|
|
return C;
|
|
} else {
|
|
return MMC5BGVRAMADR(vadr);
|
|
}
|
|
} else return VRAMADR(vadr);
|
|
}
|
|
|
|
//likewise for ATTR
|
|
int FCEUPPU_GetAttr(int ntnum, int xt, int yt) {
|
|
int attraddr = 0x3C0 + ((yt >> 2) << 3) + (xt >> 2);
|
|
int temp = (((yt & 2) << 1) + (xt & 2));
|
|
int refreshaddr = xt + yt * 32;
|
|
if (MMC5Hack && MMC5HackCHRMode == 1)
|
|
return (MMC5HackExNTARAMPtr[refreshaddr & 0x3ff] & 0xC0) >> 6;
|
|
else
|
|
return (vnapage[ntnum][attraddr] & (3 << temp)) >> temp;
|
|
}
|
|
|
|
//new ppu-----
|
|
inline void FFCEUX_PPUWrite_Default(uint32 A, uint8 V) {
|
|
uint32 tmp = A;
|
|
|
|
if (PPU_hook) PPU_hook(A);
|
|
|
|
if (tmp < 0x2000) {
|
|
if (PPUCHRRAM & (1 << (tmp >> 10)))
|
|
VPage[tmp >> 10][tmp] = V;
|
|
} else if (tmp < 0x3F00) {
|
|
if (PPUNTARAM & (1 << ((tmp & 0xF00) >> 10)))
|
|
vnapage[((tmp & 0xF00) >> 10)][tmp & 0x3FF] = V;
|
|
} else {
|
|
if (!(tmp & 3)) {
|
|
if (!(tmp & 0xC))
|
|
PALRAM[0x00] = PALRAM[0x04] = PALRAM[0x08] = PALRAM[0x0C] = V & 0x3F;
|
|
else
|
|
UPALRAM[((tmp & 0xC) >> 2) - 1] = V & 0x3F;
|
|
} else
|
|
PALRAM[tmp & 0x1F] = V & 0x3F;
|
|
}
|
|
}
|
|
|
|
volatile int rendercount, vromreadcount, undefinedvromcount, LogAddress = -1;
|
|
unsigned char *cdloggervdata;
|
|
unsigned int cdloggerVideoDataSize = 0;
|
|
|
|
int GetCHRAddress(int A) {
|
|
if (cdloggerVideoDataSize) {
|
|
int result = &VPage[A >> 10][A] - CHRptr[0];
|
|
if ((result >= 0) && (result < (int)cdloggerVideoDataSize))
|
|
return result;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#define RENDER_LOG(tmp) { \
|
|
if (debug_loggingCD) \
|
|
{ \
|
|
int addr = GetCHRAddress(tmp); \
|
|
if (addr != -1) \
|
|
{ \
|
|
if (!(cdloggervdata[addr] & 1)) \
|
|
{ \
|
|
cdloggervdata[addr] |= 1; \
|
|
if (!(cdloggervdata[addr] & 2)) undefinedvromcount--; \
|
|
rendercount++; \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
uint8 FASTCALL FFCEUX_PPURead_Default(uint32 A) {
|
|
uint32 tmp = A;
|
|
|
|
if (PPU_hook) PPU_hook(A);
|
|
|
|
if (tmp < 0x2000) {
|
|
return VPage[tmp >> 10][tmp];
|
|
} else if (tmp < 0x3F00) {
|
|
return vnapage[(tmp >> 10) & 0x3][tmp & 0x3FF];
|
|
} else {
|
|
uint8 ret;
|
|
if (!(tmp & 3)) {
|
|
if (!(tmp & 0xC))
|
|
ret = PALRAM[0x00];
|
|
else
|
|
ret = UPALRAM[((tmp & 0xC) >> 2) - 1];
|
|
} else
|
|
ret = PALRAM[tmp & 0x1F];
|
|
|
|
if (GRAYSCALE)
|
|
ret &= 0x30;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
uint8 (FASTCALL *FFCEUX_PPURead)(uint32 A) = 0;
|
|
void (*FFCEUX_PPUWrite)(uint32 A, uint8 V) = 0;
|
|
|
|
#define CALL_PPUREAD(A) (FFCEUX_PPURead(A))
|
|
|
|
#define CALL_PPUWRITE(A, V) (FFCEUX_PPUWrite ? FFCEUX_PPUWrite(A, V) : FFCEUX_PPUWrite_Default(A, V))
|
|
|
|
//whether to use the new ppu (new PPU doesn't handle MMC5 extra nametables at all
|
|
int newppu = 0;
|
|
|
|
void ppu_getScroll(int &xpos, int &ypos) {
|
|
if (newppu) {
|
|
ypos = ppur._vt * 8 + ppur._fv + ppur._v * 256;
|
|
xpos = ppur._ht * 8 + ppur.fh + ppur._h * 256;
|
|
} else {
|
|
xpos = ((RefreshAddr & 0x400) >> 2) | ((RefreshAddr & 0x1F) << 3) | XOffset;
|
|
|
|
ypos = ((RefreshAddr & 0x3E0) >> 2) | ((RefreshAddr & 0x7000) >> 12);
|
|
if (RefreshAddr & 0x800) ypos += 240;
|
|
}
|
|
}
|
|
//---------------
|
|
|
|
static DECLFR(A2002) {
|
|
if (newppu) {
|
|
//once we thought we clear latches here, but that caused midframe glitches.
|
|
//i think we should only reset the state machine for 2005/2006
|
|
//ppur.clear_latches();
|
|
}
|
|
|
|
uint8 ret;
|
|
|
|
FCEUPPU_LineUpdate();
|
|
ret = PPU_status;
|
|
ret |= PPUGenLatch & 0x1F;
|
|
|
|
#ifdef FCEUDEF_DEBUGGER
|
|
if (!fceuindbg)
|
|
#endif
|
|
{
|
|
vtoggle = 0;
|
|
PPU_status &= 0x7F;
|
|
PPUGenLatch = ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DECLFR(A2004) {
|
|
if (newppu) {
|
|
if ((ppur.status.sl < 241) && PPUON) {
|
|
// from cycles 0 to 63, the
|
|
// 32 byte OAM buffer gets init
|
|
// to 0xFF
|
|
if (ppur.status.cycle < 64)
|
|
return spr_read.ret = 0xFF;
|
|
else {
|
|
for (int i = spr_read.last;
|
|
i != ppur.status.cycle; ++i) {
|
|
if (i < 256) {
|
|
switch (spr_read.mode) {
|
|
case 0:
|
|
if (spr_read.count < 2)
|
|
spr_read.ret = (PPU[3] & 0xF8) + (spr_read.count << 2);
|
|
else
|
|
spr_read.ret = spr_read.count << 2;
|
|
|
|
spr_read.found_pos[spr_read.found] = spr_read.ret;
|
|
spr_read.ret = SPRAM[spr_read.ret];
|
|
|
|
if (i & 1) {
|
|
//odd cycle
|
|
//see if in range
|
|
if (!((ppur.status.sl - 1 - spr_read.ret) & ~(Sprite16 ? 0xF : 0x7))) {
|
|
++spr_read.found;
|
|
spr_read.fetch = 1;
|
|
spr_read.mode = 1;
|
|
} else {
|
|
if (++spr_read.count == 64) {
|
|
spr_read.mode = 4;
|
|
spr_read.count = 0;
|
|
} else if (spr_read.found == 8) {
|
|
spr_read.fetch = 0;
|
|
spr_read.mode = 2;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 1: //sprite is in range fetch next 3 bytes
|
|
if (i & 1) {
|
|
++spr_read.fetch;
|
|
if (spr_read.fetch == 4) {
|
|
spr_read.fetch = 1;
|
|
if (++spr_read.count == 64) {
|
|
spr_read.count = 0;
|
|
spr_read.mode = 4;
|
|
} else if (spr_read.found == 8) {
|
|
spr_read.fetch = 0;
|
|
spr_read.mode = 2;
|
|
} else
|
|
spr_read.mode = 0;
|
|
}
|
|
}
|
|
|
|
if (spr_read.count < 2)
|
|
spr_read.ret = (PPU[3] & 0xF8) + (spr_read.count << 2);
|
|
else
|
|
spr_read.ret = spr_read.count << 2;
|
|
|
|
spr_read.ret = SPRAM[spr_read.ret | spr_read.fetch];
|
|
break;
|
|
case 2: //8th sprite fetched
|
|
spr_read.ret = SPRAM[(spr_read.count << 2) | spr_read.fetch];
|
|
if (i & 1) {
|
|
if (!((ppur.status.sl - 1 - SPRAM[((spr_read.count << 2) | spr_read.fetch)]) & ~((Sprite16) ? 0xF : 0x7))) {
|
|
spr_read.fetch = 1;
|
|
spr_read.mode = 3;
|
|
} else {
|
|
if (++spr_read.count == 64) {
|
|
spr_read.count = 0;
|
|
spr_read.mode = 4;
|
|
}
|
|
spr_read.fetch =
|
|
(spr_read.fetch + 1) & 3;
|
|
}
|
|
}
|
|
spr_read.ret = spr_read.count;
|
|
break;
|
|
case 3: //9th sprite overflow detected
|
|
spr_read.ret = SPRAM[spr_read.count | spr_read.fetch];
|
|
if (i & 1) {
|
|
if (++spr_read.fetch == 4) {
|
|
spr_read.count = (spr_read.count + 1) & 63;
|
|
spr_read.mode = 4;
|
|
}
|
|
}
|
|
break;
|
|
case 4: //read OAM[n][0] until hblank
|
|
if (i & 1)
|
|
spr_read.count = (spr_read.count + 1) & 63;
|
|
spr_read.fetch = 0;
|
|
spr_read.ret = SPRAM[spr_read.count << 2];
|
|
break;
|
|
}
|
|
} else if (i < 320) {
|
|
spr_read.ret = (i & 0x38) >> 3;
|
|
if (spr_read.found < (spr_read.ret + 1)) {
|
|
if (spr_read.num) {
|
|
spr_read.ret = SPRAM[252];
|
|
spr_read.num = 0;
|
|
} else
|
|
spr_read.ret = 0xFF;
|
|
} else if ((i & 7) < 4) {
|
|
spr_read.ret =
|
|
SPRAM[spr_read.found_pos[spr_read.ret] | spr_read.fetch++];
|
|
if (spr_read.fetch == 4)
|
|
spr_read.fetch = 0;
|
|
} else
|
|
spr_read.ret = SPRAM[spr_read.found_pos [spr_read.ret | 3]];
|
|
} else {
|
|
if (!spr_read.found)
|
|
spr_read.ret = SPRAM[252];
|
|
else
|
|
spr_read.ret = SPRAM[spr_read.found_pos[0]];
|
|
break;
|
|
}
|
|
}
|
|
spr_read.last = ppur.status.cycle;
|
|
return spr_read.ret;
|
|
}
|
|
} else
|
|
return SPRAM[PPU[3]];
|
|
} else {
|
|
FCEUPPU_LineUpdate();
|
|
return PPUGenLatch;
|
|
}
|
|
}
|
|
|
|
static DECLFR(A200x) { /* Not correct for $2004 reads. */
|
|
FCEUPPU_LineUpdate();
|
|
return PPUGenLatch;
|
|
}
|
|
|
|
static DECLFR(A2007) {
|
|
uint8 ret;
|
|
uint32 tmp = RefreshAddr & 0x3FFF;
|
|
|
|
if (debug_loggingCD) {
|
|
if (!DummyRead && (LogAddress != -1)) {
|
|
if (!(cdloggervdata[LogAddress] & 2)) {
|
|
cdloggervdata[LogAddress] |= 2;
|
|
if (!(cdloggervdata[LogAddress] & 1)) undefinedvromcount--;
|
|
vromreadcount++;
|
|
}
|
|
} else
|
|
DummyRead = 0;
|
|
}
|
|
|
|
if (newppu) {
|
|
ret = VRAMBuffer;
|
|
RefreshAddr = ppur.get_2007access() & 0x3FFF;
|
|
if ((RefreshAddr & 0x3F00) == 0x3F00) {
|
|
//if it is in the palette range bypass the
|
|
//delayed read, and what gets filled in the temp
|
|
//buffer is the address - 0x1000, also
|
|
//if grayscale is set then the return is AND with 0x30
|
|
//to get a gray color reading
|
|
if (!(tmp & 3)) {
|
|
if (!(tmp & 0xC))
|
|
ret = PALRAM[0x00];
|
|
else
|
|
ret = UPALRAM[((tmp & 0xC) >> 2) - 1];
|
|
} else
|
|
ret = PALRAM[tmp & 0x1F];
|
|
if (GRAYSCALE)
|
|
ret &= 0x30;
|
|
VRAMBuffer = CALL_PPUREAD(RefreshAddr - 0x1000);
|
|
} else {
|
|
if (debug_loggingCD && (RefreshAddr < 0x2000))
|
|
LogAddress = GetCHRAddress(RefreshAddr);
|
|
VRAMBuffer = CALL_PPUREAD(RefreshAddr);
|
|
}
|
|
ppur.increment2007(ppur.status.sl >= 0 && ppur.status.sl < 241 && PPUON, INC32 != 0);
|
|
RefreshAddr = ppur.get_2007access();
|
|
return ret;
|
|
} else {
|
|
FCEUPPU_LineUpdate();
|
|
|
|
if (tmp >= 0x3F00) { // Palette RAM tied directly to the output data, without VRAM buffer
|
|
if (!(tmp & 3)) {
|
|
if (!(tmp & 0xC))
|
|
ret = PALRAM[0x00];
|
|
else
|
|
ret = UPALRAM[((tmp & 0xC) >> 2) - 1];
|
|
} else
|
|
ret = PALRAM[tmp & 0x1F];
|
|
if (GRAYSCALE)
|
|
ret &= 0x30;
|
|
#ifdef FCEUDEF_DEBUGGER
|
|
if (!fceuindbg)
|
|
#endif
|
|
{
|
|
if ((tmp - 0x1000) < 0x2000)
|
|
VRAMBuffer = VPage[(tmp - 0x1000) >> 10][tmp - 0x1000];
|
|
else
|
|
VRAMBuffer = vnapage[((tmp - 0x1000) >> 10) & 0x3][(tmp - 0x1000) & 0x3FF];
|
|
if (PPU_hook) PPU_hook(tmp);
|
|
}
|
|
} else {
|
|
ret = VRAMBuffer;
|
|
#ifdef FCEUDEF_DEBUGGER
|
|
if (!fceuindbg)
|
|
#endif
|
|
{
|
|
if (PPU_hook) PPU_hook(tmp);
|
|
PPUGenLatch = VRAMBuffer;
|
|
if (tmp < 0x2000) {
|
|
if (debug_loggingCD)
|
|
LogAddress = GetCHRAddress(tmp);
|
|
VRAMBuffer = VPage[tmp >> 10][tmp];
|
|
} else if (tmp < 0x3F00)
|
|
VRAMBuffer = vnapage[(tmp >> 10) & 0x3][tmp & 0x3FF];
|
|
}
|
|
}
|
|
|
|
#ifdef FCEUDEF_DEBUGGER
|
|
if (!fceuindbg)
|
|
#endif
|
|
{
|
|
if ((ScreenON || SpriteON) && (scanline < 240)) {
|
|
uint32 rad = RefreshAddr;
|
|
if ((rad & 0x7000) == 0x7000) {
|
|
rad ^= 0x7000;
|
|
if ((rad & 0x3E0) == 0x3A0)
|
|
rad ^= 0xBA0;
|
|
else if ((rad & 0x3E0) == 0x3e0)
|
|
rad ^= 0x3e0;
|
|
else
|
|
rad += 0x20;
|
|
} else
|
|
rad += 0x1000;
|
|
RefreshAddr = rad;
|
|
} else {
|
|
if (INC32)
|
|
RefreshAddr += 32;
|
|
else
|
|
RefreshAddr++;
|
|
}
|
|
if (PPU_hook) PPU_hook(RefreshAddr & 0x3fff);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
static DECLFW(B2000) {
|
|
FCEUPPU_LineUpdate();
|
|
PPUGenLatch = V;
|
|
|
|
if (!(PPU[0] & 0x80) && (V & 0x80) && (PPU_status & 0x80))
|
|
TriggerNMI2();
|
|
|
|
PPU[0] = V;
|
|
TempAddr &= 0xF3FF;
|
|
TempAddr |= (V & 3) << 10;
|
|
|
|
ppur._h = V & 1;
|
|
ppur._v = (V >> 1) & 1;
|
|
ppur.s = (V >> 4) & 1;
|
|
}
|
|
|
|
static DECLFW(B2001) {
|
|
FCEUPPU_LineUpdate();
|
|
PPUGenLatch = V;
|
|
PPU[1] = V;
|
|
if (V & 0xE0)
|
|
deemp = V >> 5;
|
|
}
|
|
|
|
static DECLFW(B2002) {
|
|
PPUGenLatch = V;
|
|
}
|
|
|
|
static DECLFW(B2003) {
|
|
PPUGenLatch = V;
|
|
PPU[3] = V;
|
|
PPUSPL = V & 0x7;
|
|
}
|
|
|
|
static DECLFW(B2004) {
|
|
PPUGenLatch = V;
|
|
if (newppu) {
|
|
//the attribute upper bits are not connected
|
|
//so AND them out on write, since reading them
|
|
//should return 0 in those bits.
|
|
if ((PPU[3] & 3) == 2)
|
|
V &= 0xE3;
|
|
SPRAM[PPU[3]] = V;
|
|
PPU[3] = (PPU[3] + 1) & 0xFF;
|
|
} else {
|
|
if (PPUSPL >= 8) {
|
|
if (PPU[3] >= 8)
|
|
SPRAM[PPU[3]] = V;
|
|
} else {
|
|
SPRAM[PPUSPL] = V;
|
|
}
|
|
PPU[3]++;
|
|
PPUSPL++;
|
|
}
|
|
}
|
|
|
|
static DECLFW(B2005) {
|
|
uint32 tmp = TempAddr;
|
|
FCEUPPU_LineUpdate();
|
|
PPUGenLatch = V;
|
|
if (!vtoggle) {
|
|
tmp &= 0xFFE0;
|
|
tmp |= V >> 3;
|
|
XOffset = V & 7;
|
|
ppur._ht = V >> 3;
|
|
ppur.fh = V & 7;
|
|
} else {
|
|
tmp &= 0x8C1F;
|
|
tmp |= ((V & ~0x7) << 2);
|
|
tmp |= (V & 7) << 12;
|
|
ppur._vt = V >> 3;
|
|
ppur._fv = V & 7;
|
|
}
|
|
TempAddr = tmp;
|
|
vtoggle ^= 1;
|
|
}
|
|
|
|
|
|
static DECLFW(B2006) {
|
|
FCEUPPU_LineUpdate();
|
|
|
|
PPUGenLatch = V;
|
|
if (!vtoggle) {
|
|
TempAddr &= 0x00FF;
|
|
TempAddr |= (V & 0x3f) << 8;
|
|
|
|
ppur._vt &= 0x07;
|
|
ppur._vt |= (V & 0x3) << 3;
|
|
ppur._h = (V >> 2) & 1;
|
|
ppur._v = (V >> 3) & 1;
|
|
ppur._fv = (V >> 4) & 3;
|
|
} else {
|
|
TempAddr &= 0xFF00;
|
|
TempAddr |= V;
|
|
|
|
RefreshAddr = TempAddr;
|
|
DummyRead = 1;
|
|
if (PPU_hook)
|
|
PPU_hook(RefreshAddr);
|
|
|
|
ppur._vt &= 0x18;
|
|
ppur._vt |= (V >> 5);
|
|
ppur._ht = V & 31;
|
|
|
|
ppur.install_latches();
|
|
}
|
|
|
|
vtoggle ^= 1;
|
|
}
|
|
|
|
static DECLFW(B2007) {
|
|
uint32 tmp = RefreshAddr & 0x3FFF;
|
|
|
|
if (newppu) {
|
|
PPUGenLatch = V;
|
|
RefreshAddr = ppur.get_2007access() & 0x3FFF;
|
|
CALL_PPUWRITE(RefreshAddr, V);
|
|
ppur.increment2007(ppur.status.sl >= 0 && ppur.status.sl < 241 && PPUON, INC32 != 0);
|
|
RefreshAddr = ppur.get_2007access();
|
|
} else {
|
|
PPUGenLatch = V;
|
|
if (tmp < 0x2000) {
|
|
if (PPUCHRRAM & (1 << (tmp >> 10)))
|
|
VPage[tmp >> 10][tmp] = V;
|
|
} else if (tmp < 0x3F00) {
|
|
if (PPUNTARAM & (1 << ((tmp & 0xF00) >> 10)))
|
|
vnapage[((tmp & 0xF00) >> 10)][tmp & 0x3FF] = V;
|
|
} else {
|
|
if (!(tmp & 3)) {
|
|
if (!(tmp & 0xC))
|
|
PALRAM[0x00] = PALRAM[0x04] = PALRAM[0x08] = PALRAM[0x0C] = V & 0x3F;
|
|
else
|
|
UPALRAM[((tmp & 0xC) >> 2) - 1] = V & 0x3F;
|
|
} else
|
|
PALRAM[tmp & 0x1F] = V & 0x3F;
|
|
}
|
|
if (INC32)
|
|
RefreshAddr += 32;
|
|
else
|
|
RefreshAddr++;
|
|
if (PPU_hook)
|
|
PPU_hook(RefreshAddr & 0x3fff);
|
|
}
|
|
}
|
|
|
|
static DECLFW(B4014) {
|
|
uint32 t = V << 8;
|
|
int x;
|
|
|
|
for (x = 0; x < 256; x++)
|
|
X6502_DMW(0x2004, X6502_DMR(t + x));
|
|
SpriteDMA = V;
|
|
}
|
|
|
|
#define PAL(c) ((c) + cc)
|
|
|
|
#define GETLASTPIXEL (PAL ? ((timestamp * 48 - linestartts) / 15) : ((timestamp * 48 - linestartts) >> 4))
|
|
|
|
static uint8 *Pline, *Plinef;
|
|
static int firsttile;
|
|
int linestartts; //no longer static so the debugger can see it
|
|
static int tofix = 0;
|
|
|
|
static void ResetRL(uint8 *target) {
|
|
memset(target, 0xFF, 256);
|
|
InputScanlineHook(0, 0, 0, 0);
|
|
Plinef = target;
|
|
Pline = target;
|
|
firsttile = 0;
|
|
linestartts = timestamp * 48 + X.count;
|
|
tofix = 0;
|
|
FCEUPPU_LineUpdate();
|
|
tofix = 1;
|
|
}
|
|
|
|
static uint8 sprlinebuf[256 + 8];
|
|
|
|
void FCEUPPU_LineUpdate(void) {
|
|
if (newppu)
|
|
return;
|
|
|
|
#ifdef FCEUDEF_DEBUGGER
|
|
if (!fceuindbg)
|
|
#endif
|
|
if (Pline) {
|
|
int l = GETLASTPIXEL;
|
|
RefreshLine(l);
|
|
}
|
|
}
|
|
|
|
static bool rendersprites = true, renderbg = true;
|
|
|
|
void FCEUI_SetRenderPlanes(bool sprites, bool bg) {
|
|
rendersprites = sprites;
|
|
renderbg = bg;
|
|
}
|
|
|
|
void FCEUI_GetRenderPlanes(bool& sprites, bool& bg) {
|
|
sprites = rendersprites;
|
|
bg = renderbg;
|
|
}
|
|
|
|
static void CheckSpriteHit(int p);
|
|
|
|
static void EndRL(void) {
|
|
RefreshLine(272);
|
|
if (tofix)
|
|
Fixit1();
|
|
CheckSpriteHit(272);
|
|
Pline = 0;
|
|
}
|
|
|
|
static int32 sphitx;
|
|
static uint8 sphitdata;
|
|
|
|
static void CheckSpriteHit(int p) {
|
|
int l = p - 16;
|
|
int x;
|
|
|
|
if (sphitx == 0x100) return;
|
|
|
|
for (x = sphitx; x < (sphitx + 8) && x < l; x++) {
|
|
if ((sphitdata & (0x80 >> (x - sphitx))) && !(Plinef[x] & 64) && x < 255) {
|
|
PPU_status |= 0x40;
|
|
sphitx = 0x100;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//spork the world. Any sprites on this line? Then this will be set to 1.
|
|
//Needed for zapper emulation and *gasp* sprite emulation.
|
|
static int spork = 0;
|
|
|
|
// lasttile is really "second to last tile."
|
|
static void RefreshLine(int lastpixel) {
|
|
static uint32 pshift[2];
|
|
static uint32 atlatch;
|
|
uint32 smorkus = RefreshAddr;
|
|
|
|
#define RefreshAddr smorkus
|
|
uint32 vofs;
|
|
int X1;
|
|
|
|
register uint8 *P = Pline;
|
|
int lasttile = lastpixel >> 3;
|
|
int numtiles;
|
|
static int norecurse = 0; // Yeah, recursion would be bad.
|
|
// PPU_hook() functions can call
|
|
// mirroring/chr bank switching functions,
|
|
// which call FCEUPPU_LineUpdate, which call this
|
|
// function.
|
|
if (norecurse) return;
|
|
|
|
if (sphitx != 0x100 && !(PPU_status & 0x40)) {
|
|
if ((sphitx < (lastpixel - 16)) && !(sphitx < ((lasttile - 2) * 8)))
|
|
lasttile++;
|
|
}
|
|
|
|
if (lasttile > 34) lasttile = 34;
|
|
numtiles = lasttile - firsttile;
|
|
|
|
if (numtiles <= 0) return;
|
|
|
|
P = Pline;
|
|
|
|
vofs = 0;
|
|
|
|
if(PEC586Hack)
|
|
vofs = ((RefreshAddr & 0x200) << 3) | ((RefreshAddr >> 12) & 7);
|
|
else
|
|
vofs = ((PPU[0] & 0x10) << 8) | ((RefreshAddr >> 12) & 7);
|
|
|
|
if (!ScreenON && !SpriteON) {
|
|
uint32 tem;
|
|
tem = Pal[0] | (Pal[0] << 8) | (Pal[0] << 16) | (Pal[0] << 24);
|
|
tem |= 0x40404040;
|
|
FCEU_dwmemset(Pline, tem, numtiles * 8);
|
|
P += numtiles * 8;
|
|
Pline = P;
|
|
|
|
firsttile = lasttile;
|
|
|
|
#define TOFIXNUM (272 - 0x4)
|
|
if (lastpixel >= TOFIXNUM && tofix) {
|
|
Fixit1();
|
|
tofix = 0;
|
|
}
|
|
|
|
if ((lastpixel - 16) >= 0) {
|
|
InputScanlineHook(Plinef, spork ? sprlinebuf : 0, linestartts, lasttile * 8 - 16);
|
|
}
|
|
return;
|
|
}
|
|
|
|
//Priority bits, needed for sprite emulation.
|
|
Pal[0] |= 64;
|
|
Pal[4] |= 64;
|
|
Pal[8] |= 64;
|
|
Pal[0xC] |= 64;
|
|
|
|
//This high-level graphics MMC5 emulation code was written for MMC5 carts in "CL" mode.
|
|
//It's probably not totally correct for carts in "SL" mode.
|
|
|
|
#define PPUT_MMC5
|
|
if (MMC5Hack && geniestage != 1) {
|
|
if (MMC5HackCHRMode == 0 && (MMC5HackSPMode & 0x80)) {
|
|
int tochange = MMC5HackSPMode & 0x1F;
|
|
tochange -= firsttile;
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
if ((tochange <= 0 && MMC5HackSPMode & 0x40) || (tochange > 0 && !(MMC5HackSPMode & 0x40))) {
|
|
#define PPUT_MMC5SP
|
|
#include "pputile.inc"
|
|
#undef PPUT_MMC5SP
|
|
} else {
|
|
#include "pputile.inc"
|
|
}
|
|
tochange--;
|
|
}
|
|
} else if (MMC5HackCHRMode == 1 && (MMC5HackSPMode & 0x80)) {
|
|
int tochange = MMC5HackSPMode & 0x1F;
|
|
tochange -= firsttile;
|
|
|
|
#define PPUT_MMC5SP
|
|
#define PPUT_MMC5CHR1
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
#undef PPUT_MMC5CHR1
|
|
#undef PPUT_MMC5SP
|
|
} else if (MMC5HackCHRMode == 1) {
|
|
#define PPUT_MMC5CHR1
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
#undef PPUT_MMC5CHR1
|
|
} else {
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
}
|
|
}
|
|
#undef PPUT_MMC5
|
|
else if (PPU_hook) {
|
|
norecurse = 1;
|
|
#define PPUT_HOOK
|
|
if (PEC586Hack) {
|
|
#define PPU_BGFETCH
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
#undef PPU_BGFETCH
|
|
} else {
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
}
|
|
#undef PPUT_HOOK
|
|
norecurse = 0;
|
|
} else {
|
|
if (PEC586Hack) {
|
|
#define PPU_BGFETCH
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
#undef PPU_BGFETCH
|
|
} else {
|
|
for (X1 = firsttile; X1 < lasttile; X1++) {
|
|
#include "pputile.inc"
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef vofs
|
|
#undef RefreshAddr
|
|
|
|
//Reverse changes made before.
|
|
Pal[0] &= 63;
|
|
Pal[4] &= 63;
|
|
Pal[8] &= 63;
|
|
Pal[0xC] &= 63;
|
|
|
|
RefreshAddr = smorkus;
|
|
if (firsttile <= 2 && 2 < lasttile && !(PPU[1] & 2)) {
|
|
uint32 tem;
|
|
tem = Pal[0] | (Pal[0] << 8) | (Pal[0] << 16) | (Pal[0] << 24);
|
|
tem |= 0x40404040;
|
|
*(uint32*)Plinef = *(uint32*)(Plinef + 4) = tem;
|
|
}
|
|
|
|
if (!ScreenON) {
|
|
uint32 tem;
|
|
int tstart, tcount;
|
|
tem = Pal[0] | (Pal[0] << 8) | (Pal[0] << 16) | (Pal[0] << 24);
|
|
tem |= 0x40404040;
|
|
|
|
tcount = lasttile - firsttile;
|
|
tstart = firsttile - 2;
|
|
if (tstart < 0) {
|
|
tcount += tstart;
|
|
tstart = 0;
|
|
}
|
|
if (tcount > 0)
|
|
FCEU_dwmemset(Plinef + tstart * 8, tem, tcount * 8);
|
|
}
|
|
|
|
if (lastpixel >= TOFIXNUM && tofix) {
|
|
Fixit1();
|
|
tofix = 0;
|
|
}
|
|
|
|
//This only works right because of a hack earlier in this function.
|
|
CheckSpriteHit(lastpixel);
|
|
|
|
if ((lastpixel - 16) >= 0) {
|
|
InputScanlineHook(Plinef, spork ? sprlinebuf : 0, linestartts, lasttile * 8 - 16);
|
|
}
|
|
Pline = P;
|
|
firsttile = lasttile;
|
|
}
|
|
|
|
static INLINE void Fixit2(void) {
|
|
if (ScreenON || SpriteON) {
|
|
uint32 rad = RefreshAddr;
|
|
rad &= 0xFBE0;
|
|
rad |= TempAddr & 0x041f;
|
|
RefreshAddr = rad;
|
|
}
|
|
}
|
|
|
|
static void Fixit1(void) {
|
|
if (ScreenON || SpriteON) {
|
|
uint32 rad = RefreshAddr;
|
|
|
|
if ((rad & 0x7000) == 0x7000) {
|
|
rad ^= 0x7000;
|
|
if ((rad & 0x3E0) == 0x3A0)
|
|
rad ^= 0xBA0;
|
|
else if ((rad & 0x3E0) == 0x3e0)
|
|
rad ^= 0x3e0;
|
|
else
|
|
rad += 0x20;
|
|
} else
|
|
rad += 0x1000;
|
|
RefreshAddr = rad;
|
|
}
|
|
}
|
|
|
|
void MMC5_hb(int); //Ugh ugh ugh.
|
|
static void DoLine(void) {
|
|
int x;
|
|
// scanlines after 239 are dummy for dendy, and Xbuf is capped at 0xffff bytes, don't let it overflow
|
|
// send all future writes to the invisible sanline. the easiest way to "skip" them altogether in old ppu
|
|
// todo: figure out what exactly should be skipped. it's known that there's no activity on PPU bus
|
|
uint8 *target = XBuf + ((scanline < 240 ? scanline : 240) << 8);
|
|
|
|
if (MMC5Hack) MMC5_hb(scanline);
|
|
|
|
X6502_Run(256);
|
|
EndRL();
|
|
|
|
if (!renderbg) {// User asked to not display background data.
|
|
uint32 tem;
|
|
uint8 col;
|
|
if (gNoBGFillColor == 0xFF)
|
|
col = Pal[0];
|
|
else col = gNoBGFillColor;
|
|
tem = col | (col << 8) | (col << 16) | (col << 24);
|
|
tem |= 0x40404040;
|
|
FCEU_dwmemset(target, tem, 256);
|
|
}
|
|
|
|
if (SpriteON)
|
|
CopySprites(target);
|
|
|
|
if (ScreenON || SpriteON) { // Yes, very el-cheapo.
|
|
if (PPU[1] & 0x01) {
|
|
for (x = 63; x >= 0; x--)
|
|
*(uint32*)&target[x << 2] = (*(uint32*)&target[x << 2]) & 0x30303030;
|
|
}
|
|
}
|
|
if ((PPU[1] >> 5) == 0x7) {
|
|
for (x = 63; x >= 0; x--)
|
|
*(uint32*)&target[x << 2] = ((*(uint32*)&target[x << 2]) & 0x3f3f3f3f) | 0xc0c0c0c0;
|
|
} else if (PPU[1] & 0xE0)
|
|
for (x = 63; x >= 0; x--)
|
|
*(uint32*)&target[x << 2] = (*(uint32*)&target[x << 2]) | 0x40404040;
|
|
else
|
|
for (x = 63; x >= 0; x--)
|
|
*(uint32*)&target[x << 2] = ((*(uint32*)&target[x << 2]) & 0x3f3f3f3f) | 0x80808080;
|
|
|
|
sphitx = 0x100;
|
|
|
|
if (ScreenON || SpriteON)
|
|
FetchSpriteData();
|
|
|
|
if (GameHBIRQHook && (ScreenON || SpriteON) && ((PPU[0] & 0x38) != 0x18)) {
|
|
X6502_Run(6);
|
|
Fixit2();
|
|
X6502_Run(4);
|
|
GameHBIRQHook();
|
|
X6502_Run(85 - 16 - 10);
|
|
} else {
|
|
X6502_Run(6); // Tried 65, caused problems with Slalom(maybe others)
|
|
Fixit2();
|
|
X6502_Run(85 - 6 - 16);
|
|
|
|
// A semi-hack for Star Trek: 25th Anniversary
|
|
if (GameHBIRQHook && (ScreenON || SpriteON) && ((PPU[0] & 0x38) != 0x18))
|
|
GameHBIRQHook();
|
|
}
|
|
|
|
DEBUG(FCEUD_UpdateNTView(scanline, 0));
|
|
|
|
if (SpriteON)
|
|
RefreshSprites();
|
|
if (GameHBIRQHook2 && (ScreenON || SpriteON))
|
|
GameHBIRQHook2();
|
|
scanline++;
|
|
if (scanline < 240) {
|
|
ResetRL(XBuf + (scanline << 8));
|
|
}
|
|
X6502_Run(16);
|
|
}
|
|
|
|
#define V_FLIP 0x80
|
|
#define H_FLIP 0x40
|
|
#define SP_BACK 0x20
|
|
|
|
typedef struct {
|
|
uint8 y, no, atr, x;
|
|
} SPR;
|
|
|
|
typedef struct {
|
|
uint8 ca[2], atr, x;
|
|
} SPRB;
|
|
|
|
void FCEUI_DisableSpriteLimitation(int a) {
|
|
maxsprites = a ? 64 : 8;
|
|
}
|
|
|
|
static uint8 numsprites, SpriteBlurp;
|
|
static void FetchSpriteData(void) {
|
|
uint8 ns, sb;
|
|
SPR *spr;
|
|
uint8 H;
|
|
int n;
|
|
int vofs;
|
|
uint8 P0 = PPU[0];
|
|
|
|
spr = (SPR*)SPRAM;
|
|
H = 8;
|
|
|
|
ns = sb = 0;
|
|
|
|
vofs = (uint32)(P0 & 0x8 & (((P0 & 0x20) ^ 0x20) >> 2)) << 9;
|
|
H += (P0 & 0x20) >> 2;
|
|
|
|
if (!PPU_hook)
|
|
for (n = 63; n >= 0; n--, spr++) {
|
|
if ((uint32)(scanline - spr->y) >= H) continue;
|
|
if (ns < maxsprites) {
|
|
if (n == 63) sb = 1;
|
|
|
|
{
|
|
SPRB dst;
|
|
uint8 *C;
|
|
int t;
|
|
uint32 vadr;
|
|
|
|
t = (int)scanline - (spr->y);
|
|
|
|
if (Sprite16)
|
|
vadr = ((spr->no & 1) << 12) + ((spr->no & 0xFE) << 4);
|
|
else
|
|
vadr = (spr->no << 4) + vofs;
|
|
|
|
if (spr->atr & V_FLIP) {
|
|
vadr += 7;
|
|
vadr -= t;
|
|
vadr += (P0 & 0x20) >> 1;
|
|
vadr -= t & 8;
|
|
} else {
|
|
vadr += t;
|
|
vadr += t & 8;
|
|
}
|
|
|
|
/* Fix this geniestage hack */
|
|
if (MMC5Hack && geniestage != 1)
|
|
C = MMC5SPRVRAMADR(vadr);
|
|
else
|
|
C = VRAMADR(vadr);
|
|
|
|
if (SpriteON)
|
|
RENDER_LOG(vadr);
|
|
dst.ca[0] = C[0];
|
|
if (SpriteON)
|
|
RENDER_LOG(vadr + 8);
|
|
dst.ca[1] = C[8];
|
|
dst.x = spr->x;
|
|
dst.atr = spr->atr;
|
|
|
|
*(uint32*)&SPRBUF[ns << 2] = *(uint32*)&dst;
|
|
}
|
|
|
|
ns++;
|
|
} else {
|
|
PPU_status |= 0x20;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
for (n = 63; n >= 0; n--, spr++) {
|
|
if ((uint32)(scanline - spr->y) >= H) continue;
|
|
|
|
if (ns < maxsprites) {
|
|
if (n == 63) sb = 1;
|
|
|
|
{
|
|
SPRB dst;
|
|
uint8 *C;
|
|
int t;
|
|
uint32 vadr;
|
|
|
|
t = (int)scanline - (spr->y);
|
|
|
|
if (Sprite16)
|
|
vadr = ((spr->no & 1) << 12) + ((spr->no & 0xFE) << 4);
|
|
else
|
|
vadr = (spr->no << 4) + vofs;
|
|
|
|
if (spr->atr & V_FLIP) {
|
|
vadr += 7;
|
|
vadr -= t;
|
|
vadr += (P0 & 0x20) >> 1;
|
|
vadr -= t & 8;
|
|
} else {
|
|
vadr += t;
|
|
vadr += t & 8;
|
|
}
|
|
|
|
if (MMC5Hack)
|
|
C = MMC5SPRVRAMADR(vadr);
|
|
else
|
|
C = VRAMADR(vadr);
|
|
if (SpriteON)
|
|
RENDER_LOG(vadr);
|
|
dst.ca[0] = C[0];
|
|
if (ns < 8) {
|
|
PPU_hook(0x2000);
|
|
PPU_hook(vadr);
|
|
}
|
|
if (SpriteON)
|
|
RENDER_LOG(vadr + 8);
|
|
dst.ca[1] = C[8];
|
|
dst.x = spr->x;
|
|
dst.atr = spr->atr;
|
|
|
|
|
|
*(uint32*)&SPRBUF[ns << 2] = *(uint32*)&dst;
|
|
}
|
|
|
|
ns++;
|
|
} else {
|
|
PPU_status |= 0x20;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//Handle case when >8 sprites per scanline option is enabled.
|
|
if (ns > 8) PPU_status |= 0x20;
|
|
else if (PPU_hook) {
|
|
for (n = 0; n < (8 - ns); n++) {
|
|
PPU_hook(0x2000);
|
|
PPU_hook(vofs);
|
|
}
|
|
}
|
|
numsprites = ns;
|
|
SpriteBlurp = sb;
|
|
}
|
|
|
|
static void RefreshSprites(void) {
|
|
int n;
|
|
SPRB *spr;
|
|
|
|
spork = 0;
|
|
if (!numsprites) return;
|
|
|
|
FCEU_dwmemset(sprlinebuf, 0x80808080, 256);
|
|
numsprites--;
|
|
spr = (SPRB*)SPRBUF + numsprites;
|
|
|
|
for (n = numsprites; n >= 0; n--, spr--) {
|
|
uint32 pixdata;
|
|
uint8 J, atr;
|
|
|
|
int x = spr->x;
|
|
uint8 *C;
|
|
uint8 *VB;
|
|
|
|
pixdata = ppulut1[spr->ca[0]] | ppulut2[spr->ca[1]];
|
|
J = spr->ca[0] | spr->ca[1];
|
|
atr = spr->atr;
|
|
|
|
if (J) {
|
|
if (n == 0 && SpriteBlurp && !(PPU_status & 0x40)) {
|
|
sphitx = x;
|
|
sphitdata = J;
|
|
if (atr & H_FLIP)
|
|
sphitdata = ((J << 7) & 0x80) |
|
|
((J << 5) & 0x40) |
|
|
((J << 3) & 0x20) |
|
|
((J << 1) & 0x10) |
|
|
((J >> 1) & 0x08) |
|
|
((J >> 3) & 0x04) |
|
|
((J >> 5) & 0x02) |
|
|
((J >> 7) & 0x01);
|
|
}
|
|
|
|
C = sprlinebuf + x;
|
|
VB = (PALRAM + 0x10) + ((atr & 3) << 2);
|
|
|
|
if (atr & SP_BACK) {
|
|
if (atr & H_FLIP) {
|
|
if (J & 0x80) C[7] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x40) C[6] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x20) C[5] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x10) C[4] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x08) C[3] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x04) C[2] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x02) C[1] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x01) C[0] = VB[pixdata] | 0x40;
|
|
} else {
|
|
if (J & 0x80) C[0] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x40) C[1] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x20) C[2] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x10) C[3] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x08) C[4] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x04) C[5] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x02) C[6] = VB[pixdata & 3] | 0x40;
|
|
pixdata >>= 4;
|
|
if (J & 0x01) C[7] = VB[pixdata] | 0x40;
|
|
}
|
|
} else {
|
|
if (atr & H_FLIP) {
|
|
if (J & 0x80) C[7] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x40) C[6] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x20) C[5] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x10) C[4] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x08) C[3] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x04) C[2] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x02) C[1] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x01) C[0] = VB[pixdata];
|
|
} else {
|
|
if (J & 0x80) C[0] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x40) C[1] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x20) C[2] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x10) C[3] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x08) C[4] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x04) C[5] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x02) C[6] = VB[pixdata & 3];
|
|
pixdata >>= 4;
|
|
if (J & 0x01) C[7] = VB[pixdata];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SpriteBlurp = 0;
|
|
spork = 1;
|
|
}
|
|
|
|
static void CopySprites(uint8 *target) {
|
|
uint8 n = ((PPU[1] & 4) ^ 4) << 1;
|
|
uint8 *P = target;
|
|
|
|
if (!spork) return;
|
|
spork = 0;
|
|
|
|
if (!rendersprites) return; //User asked to not display sprites.
|
|
|
|
loopskie:
|
|
{
|
|
uint32 t = *(uint32*)(sprlinebuf + n);
|
|
|
|
if (t != 0x80808080) {
|
|
#ifdef LSB_FIRST
|
|
if (!(t & 0x80)) {
|
|
if (!(t & 0x40) || (P[n] & 0x40)) // Normal sprite || behind bg sprite
|
|
P[n] = sprlinebuf[n];
|
|
}
|
|
|
|
if (!(t & 0x8000)) {
|
|
if (!(t & 0x4000) || (P[n + 1] & 0x40)) // Normal sprite || behind bg sprite
|
|
P[n + 1] = (sprlinebuf + 1)[n];
|
|
}
|
|
|
|
if (!(t & 0x800000)) {
|
|
if (!(t & 0x400000) || (P[n + 2] & 0x40)) // Normal sprite || behind bg sprite
|
|
P[n + 2] = (sprlinebuf + 2)[n];
|
|
}
|
|
|
|
if (!(t & 0x80000000)) {
|
|
if (!(t & 0x40000000) || (P[n + 3] & 0x40)) // Normal sprite || behind bg sprite
|
|
P[n + 3] = (sprlinebuf + 3)[n];
|
|
}
|
|
#else
|
|
/* TODO: Simplify */
|
|
if (!(t & 0x80000000)) {
|
|
if (!(t & 0x40000000)) // Normal sprite
|
|
P[n] = sprlinebuf[n];
|
|
else if (P[n] & 64) // behind bg sprite
|
|
P[n] = sprlinebuf[n];
|
|
}
|
|
|
|
if (!(t & 0x800000)) {
|
|
if (!(t & 0x400000)) // Normal sprite
|
|
P[n + 1] = (sprlinebuf + 1)[n];
|
|
else if (P[n + 1] & 64) // behind bg sprite
|
|
P[n + 1] = (sprlinebuf + 1)[n];
|
|
}
|
|
|
|
if (!(t & 0x8000)) {
|
|
if (!(t & 0x4000)) // Normal sprite
|
|
P[n + 2] = (sprlinebuf + 2)[n];
|
|
else if (P[n + 2] & 64) // behind bg sprite
|
|
P[n + 2] = (sprlinebuf + 2)[n];
|
|
}
|
|
|
|
if (!(t & 0x80)) {
|
|
if (!(t & 0x40)) // Normal sprite
|
|
P[n + 3] = (sprlinebuf + 3)[n];
|
|
else if (P[n + 3] & 64) // behind bg sprite
|
|
P[n + 3] = (sprlinebuf + 3)[n];
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
n += 4;
|
|
if (n) goto loopskie;
|
|
}
|
|
|
|
void FCEUPPU_SetVideoSystem(int w) {
|
|
if (w) {
|
|
scanlines_per_frame = dendy ? 262: 312;
|
|
FSettings.FirstSLine = FSettings.UsrFirstSLine[1];
|
|
FSettings.LastSLine = FSettings.UsrLastSLine[1];
|
|
} else {
|
|
scanlines_per_frame = 262;
|
|
FSettings.FirstSLine = FSettings.UsrFirstSLine[0];
|
|
FSettings.LastSLine = FSettings.UsrLastSLine[0];
|
|
}
|
|
}
|
|
|
|
//Initializes the PPU
|
|
void FCEUPPU_Init(void) {
|
|
makeppulut();
|
|
}
|
|
|
|
void PPU_ResetHooks() {
|
|
FFCEUX_PPURead = FFCEUX_PPURead_Default;
|
|
}
|
|
|
|
void FCEUPPU_Reset(void) {
|
|
VRAMBuffer = PPU[0] = PPU[1] = PPU_status = PPU[3] = 0;
|
|
PPUSPL = 0;
|
|
PPUGenLatch = 0;
|
|
RefreshAddr = TempAddr = 0;
|
|
vtoggle = 0;
|
|
ppudead = 2;
|
|
kook = 0;
|
|
idleSynch = 1;
|
|
|
|
ppur.reset();
|
|
spr_read.reset();
|
|
}
|
|
|
|
void FCEUPPU_Power(void) {
|
|
int x;
|
|
|
|
memset(NTARAM, 0x00, 0x800);
|
|
memset(PALRAM, 0x00, 0x20);
|
|
memset(UPALRAM, 0x00, 0x03);
|
|
memset(SPRAM, 0x00, 0x100);
|
|
FCEUPPU_Reset();
|
|
|
|
for (x = 0x2000; x < 0x4000; x += 8) {
|
|
ARead[x] = A200x;
|
|
BWrite[x] = B2000;
|
|
ARead[x + 1] = A200x;
|
|
BWrite[x + 1] = B2001;
|
|
ARead[x + 2] = A2002;
|
|
BWrite[x + 2] = B2002;
|
|
ARead[x + 3] = A200x;
|
|
BWrite[x + 3] = B2003;
|
|
ARead[x + 4] = A2004;
|
|
BWrite[x + 4] = B2004;
|
|
ARead[x + 5] = A200x;
|
|
BWrite[x + 5] = B2005;
|
|
ARead[x + 6] = A200x;
|
|
BWrite[x + 6] = B2006;
|
|
ARead[x + 7] = A2007;
|
|
BWrite[x + 7] = B2007;
|
|
}
|
|
BWrite[0x4014] = B4014;
|
|
}
|
|
|
|
int FCEUPPU_Loop(int skip) {
|
|
if ((newppu) && (GameInfo->type != GIT_NSF)) {
|
|
int FCEUX_PPU_Loop(int skip);
|
|
return FCEUX_PPU_Loop(skip);
|
|
}
|
|
|
|
//Needed for Knight Rider, possibly others.
|
|
if (ppudead) {
|
|
memset(XBuf, 0x80, 256 * 240);
|
|
X6502_Run(scanlines_per_frame * (256 + 85));
|
|
ppudead--;
|
|
} else {
|
|
X6502_Run(256 + 85);
|
|
PPU_status |= 0x80;
|
|
|
|
//Not sure if this is correct. According to Matt Conte and my own tests, it is.
|
|
//Timing is probably off, though.
|
|
//NOTE: Not having this here breaks a Super Donkey Kong game.
|
|
PPU[3] = PPUSPL = 0;
|
|
|
|
//I need to figure out the true nature and length of this delay.
|
|
X6502_Run(12);
|
|
if (GameInfo->type == GIT_NSF)
|
|
DoNSFFrame();
|
|
else {
|
|
if (VBlankON)
|
|
TriggerNMI();
|
|
}
|
|
X6502_Run((scanlines_per_frame - 242) * (256 + 85) - 12);
|
|
PPU_status &= 0x1f;
|
|
X6502_Run(256);
|
|
|
|
{
|
|
int x;
|
|
|
|
if (ScreenON || SpriteON) {
|
|
if (GameHBIRQHook && ((PPU[0] & 0x38) != 0x18))
|
|
GameHBIRQHook();
|
|
if (PPU_hook)
|
|
for (x = 0; x < 42; x++) {
|
|
PPU_hook(0x2000); PPU_hook(0);
|
|
}
|
|
if (GameHBIRQHook2)
|
|
GameHBIRQHook2();
|
|
}
|
|
X6502_Run(85 - 16);
|
|
if (ScreenON || SpriteON) {
|
|
RefreshAddr = TempAddr;
|
|
if (PPU_hook) PPU_hook(RefreshAddr & 0x3fff);
|
|
}
|
|
|
|
//Clean this stuff up later.
|
|
spork = numsprites = 0;
|
|
ResetRL(XBuf);
|
|
|
|
X6502_Run(16 - kook);
|
|
kook ^= 1;
|
|
}
|
|
if (GameInfo->type == GIT_NSF)
|
|
X6502_Run((256 + 85) * (dendy ? 290 : 240));
|
|
#ifdef FRAMESKIP
|
|
else if (skip) {
|
|
int y;
|
|
|
|
y = SPRAM[0];
|
|
y++;
|
|
|
|
PPU_status |= 0x20; // Fixes "Bee 52". Does it break anything?
|
|
if (GameHBIRQHook) {
|
|
X6502_Run(256);
|
|
for (scanline = 0; scanline < 240; scanline++) {
|
|
if (ScreenON || SpriteON)
|
|
GameHBIRQHook();
|
|
if (scanline == y && SpriteON) PPU_status |= 0x40;
|
|
X6502_Run((scanline == 239) ? 85 : (256 + 85));
|
|
}
|
|
} else if (y < 240) {
|
|
X6502_Run((256 + 85) * y);
|
|
if (SpriteON) PPU_status |= 0x40; // Quick and very dirty hack.
|
|
X6502_Run((256 + 85) * (240 - y));
|
|
} else
|
|
X6502_Run((256 + 85) * 240);
|
|
}
|
|
#endif
|
|
else {
|
|
int x, max, maxref;
|
|
|
|
deemp = PPU[1] >> 5;
|
|
for (scanline = 0; scanline < (dendy ? 290 : 240); ) { //scanline is incremented in DoLine. Evil. :/
|
|
deempcnt[deemp]++;
|
|
if (scanline < 240)
|
|
DEBUG(FCEUD_UpdatePPUView(scanline, 1));
|
|
DoLine();
|
|
}
|
|
if (MMC5Hack) MMC5_hb(scanline);
|
|
for (x = 1, max = 0, maxref = 0; x < 7; x++) {
|
|
if (deempcnt[x] > max) {
|
|
max = deempcnt[x];
|
|
maxref = x;
|
|
}
|
|
deempcnt[x] = 0;
|
|
}
|
|
SetNESDeemph(maxref, 0);
|
|
}
|
|
} //else... to if(ppudead)
|
|
|
|
#ifdef FRAMESKIP
|
|
if (skip) {
|
|
FCEU_PutImageDummy();
|
|
return(0);
|
|
} else
|
|
#endif
|
|
{
|
|
FCEU_PutImage();
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
int (*PPU_MASTER)(int skip) = FCEUPPU_Loop;
|
|
|
|
static uint16 TempAddrT, RefreshAddrT;
|
|
|
|
void FCEUPPU_LoadState(int version) {
|
|
TempAddr = TempAddrT;
|
|
RefreshAddr = RefreshAddrT;
|
|
}
|
|
|
|
SFORMAT FCEUPPU_STATEINFO[] = {
|
|
{ NTARAM, 0x800, "NTAR" },
|
|
{ PALRAM, 0x20, "PRAM" },
|
|
{ SPRAM, 0x100, "SPRA" },
|
|
{ PPU, 0x4, "PPUR" },
|
|
{ &kook, 1, "KOOK" },
|
|
{ &ppudead, 1, "DEAD" },
|
|
{ &PPUSPL, 1, "PSPL" },
|
|
{ &XOffset, 1, "XOFF" },
|
|
{ &vtoggle, 1, "VTGL" },
|
|
{ &RefreshAddrT, 2 | FCEUSTATE_RLSB, "RADD" },
|
|
{ &TempAddrT, 2 | FCEUSTATE_RLSB, "TADD" },
|
|
{ &VRAMBuffer, 1, "VBUF" },
|
|
{ &PPUGenLatch, 1, "PGEN" },
|
|
{ 0 }
|
|
};
|
|
|
|
SFORMAT FCEU_NEWPPU_STATEINFO[] = {
|
|
{ &idleSynch, 1, "IDLS" },
|
|
{ &spr_read.num, 4 | FCEUSTATE_RLSB, "SR_0" },
|
|
{ &spr_read.count, 4 | FCEUSTATE_RLSB, "SR_1" },
|
|
{ &spr_read.fetch, 4 | FCEUSTATE_RLSB, "SR_2" },
|
|
{ &spr_read.found, 4 | FCEUSTATE_RLSB, "SR_3" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx0" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx1" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx2" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx3" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx4" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx5" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx6" },
|
|
{ &spr_read.found_pos[0], 4 | FCEUSTATE_RLSB, "SRx7" },
|
|
{ &spr_read.ret, 4 | FCEUSTATE_RLSB, "SR_4" },
|
|
{ &spr_read.last, 4 | FCEUSTATE_RLSB, "SR_5" },
|
|
{ &spr_read.mode, 4 | FCEUSTATE_RLSB, "SR_6" },
|
|
{ &ppur.fv, 4 | FCEUSTATE_RLSB, "PFVx" },
|
|
{ &ppur.v, 4 | FCEUSTATE_RLSB, "PVxx" },
|
|
{ &ppur.h, 4 | FCEUSTATE_RLSB, "PHxx" },
|
|
{ &ppur.vt, 4 | FCEUSTATE_RLSB, "PVTx" },
|
|
{ &ppur.ht, 4 | FCEUSTATE_RLSB, "PHTx" },
|
|
{ &ppur._fv, 4 | FCEUSTATE_RLSB, "P_FV" },
|
|
{ &ppur._v, 4 | FCEUSTATE_RLSB, "P_Vx" },
|
|
{ &ppur._h, 4 | FCEUSTATE_RLSB, "P_Hx" },
|
|
{ &ppur._vt, 4 | FCEUSTATE_RLSB, "P_VT" },
|
|
{ &ppur._ht, 4 | FCEUSTATE_RLSB, "P_HT" },
|
|
{ &ppur.fh, 4 | FCEUSTATE_RLSB, "PFHx" },
|
|
{ &ppur.s, 4 | FCEUSTATE_RLSB, "PSxx" },
|
|
{ &ppur.status.sl, 4 | FCEUSTATE_RLSB, "PST0" },
|
|
{ &ppur.status.cycle, 4 | FCEUSTATE_RLSB, "PST1" },
|
|
{ &ppur.status.end_cycle, 4 | FCEUSTATE_RLSB, "PST2" },
|
|
{ 0 }
|
|
};
|
|
|
|
void FCEUPPU_SaveState(void) {
|
|
TempAddrT = TempAddr;
|
|
RefreshAddrT = RefreshAddr;
|
|
}
|
|
|
|
uint32 FCEUPPU_PeekAddress()
|
|
{
|
|
if (newppu)
|
|
{
|
|
return ppur.get_2007access() & 0x3FFF;
|
|
}
|
|
|
|
return RefreshAddr & 0x3FFF;
|
|
}
|
|
|
|
//---------------------
|
|
int pputime = 0;
|
|
int totpputime = 0;
|
|
const int kLineTime = 341;
|
|
const int kFetchTime = 2;
|
|
|
|
void runppu(int x) {
|
|
ppur.status.cycle = (ppur.status.cycle + x) % ppur.status.end_cycle;
|
|
X6502_Run(x);
|
|
}
|
|
|
|
//todo - consider making this a 3 or 4 slot fifo to keep from touching so much memory
|
|
struct BGData {
|
|
struct Record {
|
|
uint8 nt, pecnt, at, pt[2];
|
|
|
|
INLINE void Read() {
|
|
RefreshAddr = ppur.get_ntread();
|
|
if (PEC586Hack)
|
|
ppur.s = (RefreshAddr & 0x200) >> 9;
|
|
pecnt = (RefreshAddr & 1) << 3;
|
|
nt = CALL_PPUREAD(RefreshAddr);
|
|
runppu(kFetchTime);
|
|
|
|
RefreshAddr = ppur.get_atread();
|
|
at = CALL_PPUREAD(RefreshAddr);
|
|
|
|
//modify at to get appropriate palette shift
|
|
if (ppur.vt & 2) at >>= 4;
|
|
if (ppur.ht & 2) at >>= 2;
|
|
at &= 0x03;
|
|
at <<= 2;
|
|
//horizontal scroll clocked at cycle 3 and then
|
|
//vertical scroll at 251
|
|
runppu(1);
|
|
if (PPUON) {
|
|
ppur.increment_hsc();
|
|
if (ppur.status.cycle == 251)
|
|
ppur.increment_vs();
|
|
}
|
|
runppu(1);
|
|
|
|
ppur.par = nt;
|
|
RefreshAddr = ppur.get_ptread();
|
|
if (PEC586Hack) {
|
|
if (ScreenON)
|
|
RENDER_LOG(RefreshAddr | pecnt);
|
|
pt[0] = CALL_PPUREAD(RefreshAddr | pecnt);
|
|
runppu(kFetchTime);
|
|
pt[1] = CALL_PPUREAD(RefreshAddr | pecnt);
|
|
runppu(kFetchTime);
|
|
} else {
|
|
if (ScreenON)
|
|
RENDER_LOG(RefreshAddr);
|
|
pt[0] = CALL_PPUREAD(RefreshAddr);
|
|
runppu(kFetchTime);
|
|
RefreshAddr |= 8;
|
|
if (ScreenON)
|
|
RENDER_LOG(RefreshAddr);
|
|
pt[1] = CALL_PPUREAD(RefreshAddr);
|
|
runppu(kFetchTime);
|
|
}
|
|
}
|
|
};
|
|
|
|
Record main[34]; //one at the end is junk, it can never be rendered
|
|
} bgdata;
|
|
|
|
static inline int PaletteAdjustPixel(int pixel) {
|
|
if ((PPU[1] >> 5) == 0x7)
|
|
return (pixel & 0x3f) | 0xc0;
|
|
else if (PPU[1] & 0xE0)
|
|
return pixel | 0x40;
|
|
else
|
|
return (pixel & 0x3F) | 0x80;
|
|
}
|
|
|
|
int framectr = 0;
|
|
int FCEUX_PPU_Loop(int skip) {
|
|
//262 scanlines
|
|
if (ppudead) {
|
|
// not quite emulating all the NES power up behavior
|
|
// since it is known that the NES ignores writes to some
|
|
// register before around a full frame, but no games
|
|
// should write to those regs during that time, it needs
|
|
// to wait for vblank
|
|
ppur.status.sl = 241;
|
|
if (PAL)
|
|
runppu(70 * kLineTime);
|
|
else
|
|
runppu(20 * kLineTime);
|
|
ppur.status.sl = 0;
|
|
runppu(242 * kLineTime);
|
|
--ppudead;
|
|
goto finish;
|
|
}
|
|
|
|
{
|
|
PPU_status |= 0x80;
|
|
ppuphase = PPUPHASE_VBL;
|
|
|
|
//Not sure if this is correct. According to Matt Conte and my own tests, it is.
|
|
//Timing is probably off, though.
|
|
//NOTE: Not having this here breaks a Super Donkey Kong game.
|
|
PPU[3] = PPUSPL = 0;
|
|
const int delay = 20; //fceu used 12 here but I couldnt get it to work in marble madness and pirates.
|
|
|
|
ppur.status.sl = 241; //for sprite reads
|
|
|
|
runppu(delay); //X6502_Run(12);
|
|
if (VBlankON) TriggerNMI();
|
|
if (PAL)
|
|
runppu(70 * (kLineTime) - delay);
|
|
else
|
|
runppu(20 * (kLineTime) - delay);
|
|
|
|
//this seems to run just before the dummy scanline begins
|
|
PPU_status = 0;
|
|
//this early out caused metroid to fail to boot. I am leaving it here as a reminder of what not to do
|
|
//if(!PPUON) { runppu(kLineTime*242); goto finish; }
|
|
|
|
//There are 2 conditions that update all 5 PPU scroll counters with the
|
|
//contents of the latches adjacent to them. The first is after a write to
|
|
//2006/2. The second, is at the beginning of scanline 20, when the PPU starts
|
|
//rendering data for the first time in a frame (this update won't happen if
|
|
//all rendering is disabled via 2001.3 and 2001.4).
|
|
|
|
//if(PPUON)
|
|
// ppur.install_latches();
|
|
|
|
static uint8 oams[2][64][8];//[7] turned to [8] for faster indexing
|
|
static int oamcounts[2] = { 0, 0 };
|
|
static int oamslot = 0;
|
|
static int oamcount;
|
|
|
|
//capture the initial xscroll
|
|
//int xscroll = ppur.fh;
|
|
//render 241/291 scanlines (1 dummy at beginning, dendy's 50 at the end)
|
|
for (int sl = 0; sl < (dendy ? 291 : 241); sl++) {
|
|
spr_read.start_scanline();
|
|
|
|
g_rasterpos = 0;
|
|
ppur.status.sl = sl;
|
|
|
|
linestartts = timestamp * 48 + X.count; // pixel timestamp for debugger
|
|
|
|
const int yp = sl - 1;
|
|
ppuphase = PPUPHASE_BG;
|
|
|
|
if (sl != 0 && sl < 241) { // ignore the invisible
|
|
DEBUG(FCEUD_UpdatePPUView(scanline = yp, 1));
|
|
DEBUG(FCEUD_UpdateNTView(scanline = yp, 1));
|
|
}
|
|
|
|
if (MMC5Hack) MMC5_hb(yp);
|
|
|
|
|
|
//twiddle the oam buffers
|
|
const int scanslot = oamslot ^ 1;
|
|
const int renderslot = oamslot;
|
|
oamslot ^= 1;
|
|
|
|
oamcount = oamcounts[renderslot];
|
|
|
|
//the main scanline rendering loop:
|
|
//32 times, we will fetch a tile and then render 8 pixels.
|
|
//two of those tiles were read in the last scanline.
|
|
for (int xt = 0; xt < 32; xt++) {
|
|
bgdata.main[xt + 2].Read();
|
|
|
|
//ok, we're also going to draw here.
|
|
//unless we're on the first dummy scanline
|
|
if (sl != 0 && sl < 241) { // cape at 240 for dendy, its PPU does nothing afterwards
|
|
int xstart = xt << 3;
|
|
oamcount = oamcounts[renderslot];
|
|
uint8 * const target = XBuf + (yp << 8) + xstart;
|
|
uint8 *ptr = target;
|
|
int rasterpos = xstart;
|
|
|
|
//check all the conditions that can cause things to render in these 8px
|
|
const bool renderspritenow = SpriteON && rendersprites && (xt > 0 || SpriteLeft8);
|
|
const bool renderbgnow = ScreenON && renderbg && (xt > 0 || BGLeft8);
|
|
for (int xp = 0; xp < 8; xp++, rasterpos++, g_rasterpos++) {
|
|
//bg pos is different from raster pos due to its offsetability.
|
|
//so adjust for that here
|
|
const int bgpos = rasterpos + ppur.fh;
|
|
const int bgpx = bgpos & 7;
|
|
const int bgtile = bgpos >> 3;
|
|
|
|
uint8 pixel = 0, pixelcolor;
|
|
|
|
//generate the BG data
|
|
if (renderbgnow) {
|
|
uint8* pt = bgdata.main[bgtile].pt;
|
|
pixel = ((pt[0] >> (7 - bgpx)) & 1) | (((pt[1] >> (7 - bgpx)) & 1) << 1) | bgdata.main[bgtile].at;
|
|
}
|
|
pixelcolor = PALRAM[pixel];
|
|
|
|
//look for a sprite to be drawn
|
|
bool havepixel = false;
|
|
for (int s = 0; s < oamcount; s++) {
|
|
uint8* oam = oams[renderslot][s];
|
|
int x = oam[3];
|
|
if (rasterpos >= x && rasterpos < x + 8) {
|
|
//build the pixel.
|
|
//fetch the LSB of the patterns
|
|
uint8 spixel = oam[4] & 1;
|
|
spixel |= (oam[5] & 1) << 1;
|
|
|
|
//shift down the patterns so the next pixel is in the LSB
|
|
oam[4] >>= 1;
|
|
oam[5] >>= 1;
|
|
|
|
if (!renderspritenow) continue;
|
|
|
|
//bail out if we already have a pixel from a higher priority sprite
|
|
if (havepixel) continue;
|
|
|
|
//transparent pixel bailout
|
|
if (spixel == 0) continue;
|
|
|
|
//spritehit:
|
|
//1. is it sprite#0?
|
|
//2. is the bg pixel nonzero?
|
|
//then, it is spritehit.
|
|
if (oam[6] == 0 && (pixel & 3) != 0 &&
|
|
rasterpos < 255) {
|
|
PPU_status |= 0x40;
|
|
}
|
|
havepixel = true;
|
|
|
|
//priority handling
|
|
if (oam[2] & 0x20) {
|
|
//behind background:
|
|
if ((pixel & 3) != 0) continue;
|
|
}
|
|
|
|
//bring in the palette bits and palettize
|
|
spixel |= (oam[2] & 3) << 2;
|
|
pixelcolor = PALRAM[0x10 + spixel];
|
|
}
|
|
}
|
|
|
|
*ptr++ = PaletteAdjustPixel(pixelcolor);
|
|
}
|
|
}
|
|
}
|
|
|
|
//look for sprites (was supposed to run concurrent with bg rendering)
|
|
oamcounts[scanslot] = 0;
|
|
oamcount = 0;
|
|
const int spriteHeight = Sprite16 ? 16 : 8;
|
|
for (int i = 0; i < 64; i++) {
|
|
oams[scanslot][oamcount][7] = 0;
|
|
uint8* spr = SPRAM + i * 4;
|
|
if (yp >= spr[0] && yp < spr[0] + spriteHeight) {
|
|
//if we already have maxsprites, then this new one causes an overflow,
|
|
//set the flag and bail out.
|
|
if (oamcount >= 8 && PPUON) {
|
|
PPU_status |= 0x20;
|
|
if (maxsprites == 8)
|
|
break;
|
|
}
|
|
|
|
//just copy some bytes into the internal sprite buffer
|
|
for (int j = 0; j < 4; j++)
|
|
oams[scanslot][oamcount][j] = spr[j];
|
|
oams[scanslot][oamcount][7] = 1;
|
|
|
|
//note that we stuff the oam index into [6].
|
|
//i need to turn this into a struct so we can have fewer magic numbers
|
|
oams[scanslot][oamcount][6] = (uint8)i;
|
|
oamcount++;
|
|
}
|
|
}
|
|
oamcounts[scanslot] = oamcount;
|
|
|
|
//FV is clocked by the PPU's horizontal blanking impulse, and therefore will increment every scanline.
|
|
//well, according to (which?) tests, maybe at the end of hblank.
|
|
//but, according to what it took to get crystalis working, it is at the beginning of hblank.
|
|
|
|
//this is done at cycle 251
|
|
//rendering scanline, it doesn't need to be scanline 0,
|
|
//because on the first scanline when the increment is 0, the vs_scroll is reloaded.
|
|
//if(PPUON && sl != 0)
|
|
// ppur.increment_vs();
|
|
|
|
//todo - think about clearing oams to a predefined value to force deterministic behavior
|
|
|
|
ppuphase = PPUPHASE_OBJ;
|
|
|
|
//fetch sprite patterns
|
|
for (int s = 0; s < maxsprites; s++) {
|
|
//if we have hit our eight sprite pattern and we dont have any more sprites, then bail
|
|
if (s == oamcount && s >= 8)
|
|
break;
|
|
|
|
//if this is a real sprite sprite, then it is not above the 8 sprite limit.
|
|
//this is how we support the no 8 sprite limit feature.
|
|
//not that at some point we may need a virtual CALL_PPUREAD which just peeks and doesnt increment any counters
|
|
//this could be handy for the debugging tools also
|
|
const bool realSprite = (s < 8);
|
|
|
|
uint8* const oam = oams[scanslot][s];
|
|
uint32 line = yp - oam[0];
|
|
if (oam[2] & 0x80) //vflip
|
|
line = spriteHeight - line - 1;
|
|
|
|
uint32 patternNumber = oam[1];
|
|
uint32 patternAddress;
|
|
|
|
//create deterministic dummy fetch pattern
|
|
if (!oam[7]) {
|
|
patternNumber = 0;
|
|
line = 0;
|
|
}
|
|
|
|
//8x16 sprite handling:
|
|
if (Sprite16) {
|
|
uint32 bank = (patternNumber & 1) << 12;
|
|
patternNumber = patternNumber & ~1;
|
|
patternNumber |= (line >> 3);
|
|
patternAddress = (patternNumber << 4) | bank;
|
|
} else {
|
|
patternAddress = (patternNumber << 4) | (SpAdrHI << 9);
|
|
}
|
|
|
|
//offset into the pattern for the current line.
|
|
//tricky: tall sprites have already had lines>8 taken care of by getting a new pattern number above.
|
|
//so we just need the line offset for the second pattern
|
|
patternAddress += line & 7;
|
|
|
|
//garbage nametable fetches
|
|
int garbage_todo = 2;
|
|
if (PPUON)
|
|
{
|
|
if (sl == 0 && ppur.status.cycle == 304)
|
|
{
|
|
runppu(1);
|
|
if (PPUON) ppur.install_latches();
|
|
runppu(1);
|
|
garbage_todo = 0;
|
|
}
|
|
if ((sl != 0 && sl < 241) && ppur.status.cycle == 256)
|
|
{
|
|
runppu(1);
|
|
//at 257: 3d world runner is ugly if we do this at 256
|
|
if (PPUON) ppur.install_h_latches();
|
|
runppu(1);
|
|
garbage_todo = 0;
|
|
}
|
|
}
|
|
if (realSprite) runppu(garbage_todo);
|
|
|
|
//Dragon's Lair (Europe version mapper 4)
|
|
//does not set SpriteON in the beginning but it does
|
|
//set the bg on so if using the conditional SpriteON the MMC3 counter
|
|
//the counter will never count and no IRQs will be fired so use PPUON
|
|
if (((PPU[0] & 0x38) != 0x18) && s == 2 && PPUON) {
|
|
//(The MMC3 scanline counter is based entirely on PPU A12, triggered on rising edges (after the line remains low for a sufficiently long period of time))
|
|
//http://nesdevwiki.org/wiki/index.php/Nintendo_MMC3
|
|
//test cases for timing: SMB3, Crystalis
|
|
//crystalis requires deferring this til somewhere in sprite [1,3]
|
|
//kirby requires deferring this til somewhere in sprite [2,5..
|
|
//if (PPUON && GameHBIRQHook) {
|
|
if (GameHBIRQHook) {
|
|
GameHBIRQHook();
|
|
}
|
|
}
|
|
|
|
if (realSprite) runppu(kFetchTime);
|
|
|
|
|
|
//pattern table fetches
|
|
RefreshAddr = patternAddress;
|
|
if (SpriteON)
|
|
RENDER_LOG(RefreshAddr);
|
|
oam[4] = CALL_PPUREAD(RefreshAddr);
|
|
if (realSprite) runppu(kFetchTime);
|
|
|
|
RefreshAddr += 8;
|
|
if (SpriteON)
|
|
RENDER_LOG(RefreshAddr);
|
|
oam[5] = CALL_PPUREAD(RefreshAddr);
|
|
if (realSprite) runppu(kFetchTime);
|
|
|
|
//hflip
|
|
if (!(oam[2] & 0x40)) {
|
|
oam[4] = bitrevlut[oam[4]];
|
|
oam[5] = bitrevlut[oam[5]];
|
|
}
|
|
}
|
|
|
|
ppuphase = PPUPHASE_BG;
|
|
|
|
//fetch BG: two tiles for next line
|
|
for (int xt = 0; xt < 2; xt++)
|
|
bgdata.main[xt].Read();
|
|
|
|
//I'm unclear of the reason why this particular access to memory is made.
|
|
//The nametable address that is accessed 2 times in a row here, is also the
|
|
//same nametable address that points to the 3rd tile to be rendered on the
|
|
//screen (or basically, the first nametable address that will be accessed when
|
|
//the PPU is fetching background data on the next scanline).
|
|
//(not implemented yet)
|
|
runppu(kFetchTime);
|
|
if (sl == 0) {
|
|
if (idleSynch && PPUON && !PAL)
|
|
ppur.status.end_cycle = 340;
|
|
else
|
|
ppur.status.end_cycle = 341;
|
|
idleSynch ^= 1;
|
|
} else
|
|
ppur.status.end_cycle = 341;
|
|
runppu(kFetchTime);
|
|
|
|
//After memory access 170, the PPU simply rests for 4 cycles (or the
|
|
//equivelant of half a memory access cycle) before repeating the whole
|
|
//pixel/scanline rendering process. If the scanline being rendered is the very
|
|
//first one on every second frame, then this delay simply doesn't exist.
|
|
if (ppur.status.end_cycle == 341)
|
|
runppu(1);
|
|
} //scanline loop
|
|
|
|
if (MMC5Hack) MMC5_hb(240);
|
|
|
|
//idle for one line
|
|
runppu(kLineTime);
|
|
framectr++;
|
|
}
|
|
|
|
finish:
|
|
FCEU_PutImage();
|
|
|
|
return 0;
|
|
}
|