frodo-wii/Src/SID_WIN32.h

570 lines
13 KiB
C
Raw Permalink Normal View History

2008-12-31 17:16:24 +01:00
/*
2009-01-12 20:54:49 +01:00
* SID_WIN32.h - 6581 emulation, WIN32 specific stuff
2008-12-31 17:16:24 +01:00
*
2009-01-12 20:54:49 +01:00
* Frodo (C) 1994-1997,2002-2005 Christian Bauer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
2008-12-31 17:16:24 +01:00
*/
#include <dsound.h>
#include "VIC.h"
#include "main.h"
#define FRAG_FREQ SCREEN_FREQ // one frag per frame
#define FRAGMENT_SIZE (SAMPLE_FREQ/FRAG_FREQ) // samples, not bytes
#define FRAG_INTERVAL (1000/FRAG_FREQ) // in milliseconds
#define BUFFER_FRAGS FRAG_FREQ // frags the in buffer
#define BUFFER_SIZE (2*FRAGMENT_SIZE*BUFFER_FRAGS) // bytes, not samples
#define MAX_LEAD_AVG BUFFER_FRAGS // lead average count
// This won't hurt DirectX 2 but it will help when using the DirectX 3 runtime.
#if !defined(DSBCAPS_GETCURRENTPOSITION2)
#define DSBCAPS_GETCURRENTPOSITION2 0x00010000
#endif
class DigitalPlayer {
public:
virtual ~DigitalPlayer() = 0;
virtual BOOL Ready() = 0;
virtual int GetCurrentPosition() = 0;
virtual void Write(void *buffer, int position, int length) = 0;
virtual void Pause() = 0;
virtual void Resume() = 0;
};
DigitalPlayer::~DigitalPlayer()
{
}
class DirectSound: public DigitalPlayer {
public:
DirectSound();
~DirectSound();
BOOL Ready();
int GetCurrentPosition();
void Write(void *buffer, int position, int length);
void Pause();
void Resume();
private:
BOOL ready;
LPDIRECTSOUND pDS;
LPDIRECTSOUNDBUFFER pPrimaryBuffer;
LPDIRECTSOUNDBUFFER pSoundBuffer;
};
class WaveOut: public DigitalPlayer {
public:
WaveOut();
~WaveOut();
BOOL Ready();
int GetCurrentPosition();
void Write(void *buffer, int position, int length);
void Pause();
void Resume();
private:
void UnprepareHeader(int index);
void UnprepareHeaders();
private:
BOOL ready;
HWAVEOUT hWaveOut;
char wave_buffer[BUFFER_SIZE];
WAVEHDR wave_header[SCREEN_FREQ];
int last_unprepared;
};
void DigitalRenderer::init_sound()
{
ready = FALSE;
sound_buffer = new SWORD[2*FRAGMENT_SIZE];
ThePlayer = 0;
to_output = 0;
divisor = 0;
lead = new int[MAX_LEAD_AVG];
StartPlayer();
}
DigitalRenderer::~DigitalRenderer()
{
StopPlayer();
delete[] sound_buffer;
delete[] lead;
}
void DigitalRenderer::StartPlayer()
{
direct_sound = ThePrefs.DirectSound;
if (ThePrefs.DirectSound)
ThePlayer = new DirectSound;
else
ThePlayer = new WaveOut;
ready = ThePlayer->Ready();
sb_pos = 0;
memset(lead, 0, sizeof(lead));
lead_pos = 0;
}
void DigitalRenderer::StopPlayer()
{
delete ThePlayer;
ready = FALSE;
}
void DigitalRenderer::EmulateLine()
{
if (!ready)
return;
sample_buf[sample_in_ptr] = volume;
sample_in_ptr = (sample_in_ptr + 1) % SAMPLE_BUF_SIZE;
#if 0
// Now see how many samples have to be added for this line.
// XXX: This is too much computation here, precompute it.
divisor += SAMPLE_FREQ;
while (divisor >= 0)
divisor -= TOTAL_RASTERS*SCREEN_FREQ, to_output++;
// Calculate the sound data only when we have enough to fill
// the buffer entirely.
if (to_output < FRAGMENT_SIZE)
return;
to_output -= FRAGMENT_SIZE;
VBlank();
#endif
}
void DigitalRenderer::VBlank()
{
if (!ready)
return;
// Delete and recreate the player if preferences have changed.
if (direct_sound != ThePrefs.DirectSound) {
StopPlayer();
StartPlayer();
}
// Convert latency preferences from milliseconds to frags.
int lead_smooth = ThePrefs.LatencyAvg/FRAG_INTERVAL;
int lead_hiwater = ThePrefs.LatencyMax/FRAG_INTERVAL;
int lead_lowater = ThePrefs.LatencyMin/FRAG_INTERVAL;
// Compute the current lead in frags.
int current_position = ThePlayer->GetCurrentPosition();
if (current_position == -1)
return;
int lead_in_bytes = (sb_pos - current_position + BUFFER_SIZE) % BUFFER_SIZE;
if (lead_in_bytes >= BUFFER_SIZE/2)
lead_in_bytes -= BUFFER_SIZE;
int lead_in_frags = lead_in_bytes / int(2*FRAGMENT_SIZE);
lead[lead_pos++] = lead_in_frags;
if (lead_pos == lead_smooth)
lead_pos = 0;
// Compute the average lead in frags.
int avg_lead = 0;
for (int i = 0; i < lead_smooth; i++)
avg_lead += lead[i];
avg_lead /= lead_smooth;
//Debug("lead = %d, avg = %d\n", lead_in_frags, avg_lead);
// If we're getting too far ahead of the audio skip a frag.
if (avg_lead > lead_hiwater) {
for (int i = 0; i < lead_smooth; i++)
lead[i]--;
Debug("Skipping a frag...\n");
return;
}
// Calculate one frag.
int nsamples = FRAGMENT_SIZE;
calc_buffer(sound_buffer, 2*FRAGMENT_SIZE);
// If we're getting too far behind the audio add an extra frag.
if (avg_lead < lead_lowater) {
for (int i = 0; i < lead_smooth; i++)
lead[i]++;
Debug("Adding an extra frag...\n");
calc_buffer(sound_buffer + FRAGMENT_SIZE, 2*FRAGMENT_SIZE);
nsamples += FRAGMENT_SIZE;
}
// Write the frags to the player and update out write position.
ThePlayer->Write(sound_buffer, sb_pos, 2*nsamples);
sb_pos = (sb_pos + 2*nsamples) % BUFFER_SIZE;
}
void DigitalRenderer::Pause()
{
if (!ready)
return;
ThePlayer->Pause();
}
void DigitalRenderer::Resume()
{
if (!ready)
return;
ThePlayer->Resume();
}
// Direct sound implemenation.
DirectSound::DirectSound()
{
ready = FALSE;
pDS = NULL;
pPrimaryBuffer = NULL;
pSoundBuffer = NULL;
HRESULT dsrval = DirectSoundCreate(NULL, &pDS, NULL);
if (dsrval != DS_OK) {
DebugResult("DirectSoundCreate failed", dsrval);
return;
}
// Set cooperative level trying to get exclusive or normal mode.
DWORD level = ThePrefs.ExclusiveSound ? DSSCL_EXCLUSIVE : DSSCL_NORMAL;
dsrval = pDS->SetCooperativeLevel(hwnd, level);
if (dsrval != DS_OK) {
DebugResult("SetCooperativeLevel failed", dsrval);
return;
}
WAVEFORMATEX wfx;
memset(&wfx, 0, sizeof(wfx));
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = 1;
wfx.nSamplesPerSec = 44100;
wfx.wBitsPerSample = 16;
wfx.nBlockAlign = wfx.nChannels*wfx.wBitsPerSample/8;
wfx.nAvgBytesPerSec = wfx.nBlockAlign*wfx.nSamplesPerSec;
wfx.cbSize = 0;
DSBUFFERDESC dsbd;
memset(&dsbd, 0, sizeof(dsbd));
dsbd.dwSize = sizeof(dsbd);
dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER;
dsbd.dwBufferBytes = 0;
dsbd.lpwfxFormat = NULL;
dsrval = pDS->CreateSoundBuffer(&dsbd, &pPrimaryBuffer, NULL);
if (dsrval != DS_OK) {
DebugResult("CreateSoundBuffer for primary failed", dsrval);
return;
}
dsrval = pPrimaryBuffer->SetFormat(&wfx);
if (dsrval != DS_OK) {
DebugResult("SetFormat on primary failed", dsrval);
//return;
}
dsrval = pPrimaryBuffer->Play(0, 0, DSBPLAY_LOOPING);
if (dsrval != DS_OK) {
DebugResult("Play primary failed", dsrval);
return;
}
dsbd.dwSize = sizeof(dsbd);
dsbd.dwFlags = DSBCAPS_GETCURRENTPOSITION2;
dsbd.dwBufferBytes = BUFFER_SIZE;
dsbd.lpwfxFormat = &wfx;
dsrval = pDS->CreateSoundBuffer(&dsbd, &pSoundBuffer, NULL);
if (dsrval != DS_OK) {
DebugResult("CreateSoundBuffer failed", dsrval);
return;
}
ready = TRUE;
}
DirectSound::~DirectSound()
{
if (pDS != NULL) {
if (pSoundBuffer != NULL) {
pSoundBuffer->Release();
pSoundBuffer = NULL;
}
if (pPrimaryBuffer != NULL) {
pPrimaryBuffer->Release();
pPrimaryBuffer = NULL;
}
pDS->Release();
pDS = NULL;
}
}
BOOL DirectSound::Ready()
{
return ready;
}
int DirectSound::GetCurrentPosition()
{
DWORD dwPlayPos, dwWritePos;
HRESULT dsrval = pSoundBuffer->GetCurrentPosition(&dwPlayPos, &dwWritePos);
if (dsrval != DS_OK) {
DebugResult("GetCurrentPostion failed", dsrval);
return -1;
}
return dwWritePos;
}
void DirectSound::Write(void *buffer, int position, int length)
{
// Lock sound buffer.
LPVOID pMem1, pMem2;
DWORD dwSize1, dwSize2;
HRESULT dsrval = pSoundBuffer->Lock(position, length,
&pMem1, &dwSize1, &pMem2, &dwSize2, 0);
if (dsrval != DS_OK) {
DebugResult("Sound Lock failed", dsrval);
return;
}
// Copy the sample buffer into the sound buffer.
BYTE *pSample = (BYTE *) buffer;
memcpy(pMem1, pSample, dwSize1);
if (dwSize2 != 0)
memcpy(pMem2, pSample + dwSize1, dwSize2);
// Unlock the sound buffer.
dsrval = pSoundBuffer->Unlock(pMem1, dwSize1, pMem2, dwSize2);
if (dsrval != DS_OK) {
DebugResult("Unlock failed\n", dsrval);
return;
}
// Play the sound buffer.
dsrval = pSoundBuffer->Play(0, 0, DSBPLAY_LOOPING);
if (dsrval != DS_OK) {
DebugResult("Play failed", dsrval);
return;
}
}
void DirectSound::Pause()
{
HRESULT dsrval = pSoundBuffer->Stop();
if (dsrval != DS_OK)
DebugResult("Stop failed", dsrval);
dsrval = pPrimaryBuffer->Stop();
if (dsrval != DS_OK)
DebugResult("Stop primary failed", dsrval);
}
void DirectSound::Resume()
{
HRESULT dsrval = pPrimaryBuffer->Play(0, 0, DSBPLAY_LOOPING);
if (dsrval != DS_OK)
DebugResult("Play primary failed", dsrval);
dsrval = pSoundBuffer->Play(0, 0, DSBPLAY_LOOPING);
if (dsrval != DS_OK)
DebugResult("Play failed", dsrval);
}
// Wave output implemenation.
WaveOut::WaveOut()
{
ready = FALSE;
WAVEFORMATEX wfx;
memset(&wfx, 0, sizeof(wfx));
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = 1;
wfx.nSamplesPerSec = 44100;
wfx.wBitsPerSample = 16;
wfx.nBlockAlign = wfx.nChannels*wfx.wBitsPerSample/8;
wfx.nAvgBytesPerSec = wfx.nBlockAlign*wfx.nSamplesPerSec;
wfx.cbSize = 0;
MMRESULT worval = waveOutOpen(&hWaveOut, WAVE_MAPPER, &wfx, 0, 0, 0);
if (worval != MMSYSERR_NOERROR) {
Debug("waveOutOpen returned %d\n", worval);
return;
}
memset(wave_header, 0, sizeof(wave_header));
last_unprepared = 0;
ready = TRUE;
}
WaveOut::~WaveOut()
{
waveOutReset(hWaveOut);
UnprepareHeaders();
waveOutClose(hWaveOut);
}
BOOL WaveOut::Ready()
{
return ready;
}
int WaveOut::GetCurrentPosition()
{
MMTIME mmtime;
memset(&mmtime, 0, sizeof(mmtime));
mmtime.wType = TIME_BYTES;
MMRESULT worval = waveOutGetPosition(hWaveOut, &mmtime, sizeof(mmtime));
if (worval != MMSYSERR_NOERROR) {
Debug("waveOutGetPosition(%d) returned %d\n", worval);
return -1;
}
int current_position = mmtime.u.cb % BUFFER_SIZE;
return current_position;
}
void WaveOut::Write(void *buffer, int position, int length)
{
// If we are called for a double length buffer split it in half.
if (length == 4*FRAGMENT_SIZE) {
int half = length/2;
Write(buffer, position, half);
Write(((char *) buffer) + half, position + half, half);
return;
}
// Free up as many previous frags as possible.
for (;;) {
WAVEHDR &wh = wave_header[last_unprepared];
if (!(wh.dwFlags & WHDR_DONE))
break;
UnprepareHeader(last_unprepared);
last_unprepared++;
if (last_unprepared == BUFFER_FRAGS)
last_unprepared = 0;
}
// Make sure the current header isn't in use.
int index = position/(2*FRAGMENT_SIZE);
WAVEHDR &wh = wave_header[index];
if (wh.dwFlags & WHDR_DONE)
UnprepareHeader(index);
if (wh.dwFlags != 0) {
Debug("wave header %d is in use!\n", index);
return;
}
// Prepare the header and write the sound data.
wh.lpData = wave_buffer + position;
wh.dwBufferLength = length;
wh.dwFlags = 0;
memcpy(wh.lpData, buffer, length);
MMRESULT worval = waveOutPrepareHeader(hWaveOut, &wh, sizeof(wh));
if (worval != MMSYSERR_NOERROR) {
Debug("waveOutPrepareHeader(%d) returned %d\n", index, worval);
return;
}
worval = waveOutWrite(hWaveOut, &wh, sizeof(wh));
if (worval != MMSYSERR_NOERROR) {
Debug("waveOutWrite(%d) returned %d\n", index, worval);
return;
}
}
void WaveOut::Pause()
{
waveOutPause(hWaveOut);
}
void WaveOut::Resume()
{
waveOutRestart(hWaveOut);
}
void WaveOut::UnprepareHeader(int index)
{
WAVEHDR &wh = wave_header[index];
MMRESULT worval = waveOutUnprepareHeader(hWaveOut, &wh, sizeof(wh));
if (worval != MMSYSERR_NOERROR) {
Debug("waveOutUnprepareHeader(%d) returned %d\n", index, worval);
return;
}
memset(&wh, 0, sizeof(wh));
}
void WaveOut::UnprepareHeaders()
{
for (int i = 0; i < BUFFER_FRAGS; i++) {
WAVEHDR &wh = wave_header[i];
if (wh.dwFlags & WHDR_DONE)
UnprepareHeader(i);
}
}
#if 0
// Log player implemenation.
void Log::Write()
{
// Dump the sound output to the log for debugging.
{
int last = sound_buffer[0];
int count = 1;
for (int i = 1; i < nsamples; i++) {
if (sound_buffer[i] == last) {
count++;
continue;
}
Debug("[%dx%d] ", count, last);
count = 1;
last = sound_buffer[i];
}
Debug("[%dx%d] ", count, last);
}
}
#endif
#if 0
// File player implemenation.
void Log::Write()
{
// Log the sound output to a file for debugging.
{
static FILE *ofp = NULL;
if (ofp == NULL) {
ofp = fopen("debug.sid", "wb");
if (ofp == NULL)
Debug("fopen failed\n");
}
if (ofp != NULL) {
Debug("Write sound data to file\n");
if (fwrite(sound_buffer, 1, 2*nsamples, ofp) != 2*nsamples)
Debug("fwrite failed\n");
}
}
}
#endif