/* * CPUC64.cpp - 6510 (C64) emulation (line based) * * Frodo (C) 1994-1997,2002 Christian Bauer * * * Notes: * ------ * * - The EmulateLine() function is called for every emulated * raster line. It has a cycle counter that is decremented * by every executed opcode and if the counter goes below * zero, the function returns. * - Memory configurations: * $01 $a000-$bfff $d000-$dfff $e000-$ffff * ----------------------------------------------- * 0 RAM RAM RAM * 1 RAM Char ROM RAM * 2 RAM Char ROM Kernal ROM * 3 Basic ROM Char ROM Kernal ROM * 4 RAM RAM RAM * 5 RAM I/O RAM * 6 RAM I/O Kernal ROM * 7 Basic ROM I/O Kernal ROM * - All memory accesses are done with the read_byte() and * write_byte() functions which also do the memory address * decoding. The read_zp() and write_zp() functions allow * faster access to the zero page, the pop_byte() and * push_byte() macros for the stack. * - If a write occurs to addresses 0 or 1, new_config is * called to check whether the memory configuration has * changed * - The PC is either emulated with a 16 bit address or a * direct memory pointer (for faster access), depending on * the PC_IS_POINTER #define. In the latter case, a second * pointer, pc_base, is kept to allow recalculating the * 16 bit 6510 PC if it has to be pushed on the stack. * - The possible interrupt sources are: * INT_VICIRQ: I flag is checked, jump to ($fffe) * INT_CIAIRQ: I flag is checked, jump to ($fffe) * INT_NMI: Jump to ($fffa) * INT_RESET: Jump to ($fffc) * - Interrupts are not checked before every opcode but only * at certain times: * On entering EmulateLine() * On CLI * On PLP if the I flag was cleared * On RTI if the I flag was cleared * - The z_flag variable has the inverse meaning of the * 6510 Z flag * - Only the highest bit of the n_flag variable is used * - The $f2 opcode that would normally crash the 6510 is * used to implement emulator-specific functions, mainly * those for the IEC routines * * Incompatibilities: * ------------------ * * - If PC_IS_POINTER is set, neither branches accross memory * areas nor jumps to I/O space are possible * - Extra cycles for crossing page boundaries are not * accounted for * - The cassette sense line is always closed */ #include "sysdeps.h" #include "CPUC64.h" #include "C64.h" #include "VIC.h" #include "SID.h" #include "CIA.h" #include "REU.h" #include "IEC.h" #include "Display.h" #include "Version.h" enum { INT_RESET = 3 }; /* * 6510 constructor: Initialize registers */ MOS6510::MOS6510(C64 *c64, uint8 *Ram, uint8 *Basic, uint8 *Kernal, uint8 *Char, uint8 *Color) : the_c64(c64), ram(Ram), basic_rom(Basic), kernal_rom(Kernal), char_rom(Char), color_ram(Color) { a = x = y = 0; sp = 0xff; n_flag = z_flag = 0; v_flag = d_flag = c_flag = false; i_flag = true; dfff_byte = 0x55; borrowed_cycles = 0; } /* * Reset CPU asynchronously */ void MOS6510::AsyncReset(void) { interrupt.intr[INT_RESET] = true; } /* * Raise NMI asynchronously (Restore key) */ void MOS6510::AsyncNMI(void) { if (!nmi_state) interrupt.intr[INT_NMI] = true; } /* * Memory configuration has probably changed */ void MOS6510::new_config(void) { uint8 port = ~ram[0] | ram[1]; basic_in = (port & 3) == 3; kernal_in = port & 2; char_in = (port & 3) && !(port & 4); io_in = (port & 3) && (port & 4); } /* * Read a byte from I/O / ROM space */ inline uint8 MOS6510::read_byte_io(uint16 adr) { switch (adr >> 12) { case 0xa: case 0xb: if (basic_in) return basic_rom[adr & 0x1fff]; else return ram[adr]; case 0xc: return ram[adr]; case 0xd: if (io_in) switch ((adr >> 8) & 0x0f) { case 0x0: // VIC case 0x1: case 0x2: case 0x3: return TheVIC->ReadRegister(adr & 0x3f); case 0x4: // SID case 0x5: case 0x6: case 0x7: return TheSID->ReadRegister(adr & 0x1f); case 0x8: // Color RAM case 0x9: case 0xa: case 0xb: return color_ram[adr & 0x03ff] | rand() & 0xf0; case 0xc: // CIA 1 return TheCIA1->ReadRegister(adr & 0x0f); case 0xd: // CIA 2 return TheCIA2->ReadRegister(adr & 0x0f); case 0xe: // REU/Open I/O case 0xf: if ((adr & 0xfff0) == 0xdf00) return TheREU->ReadRegister(adr & 0x0f); else if (adr < 0xdfa0) return rand(); else return read_emulator_id(adr & 0x7f); } else if (char_in) return char_rom[adr & 0x0fff]; else return ram[adr]; case 0xe: case 0xf: if (kernal_in) return kernal_rom[adr & 0x1fff]; else return ram[adr]; default: // Can't happen return 0; } } /* * Read a byte from the CPU's address space */ uint8 MOS6510::read_byte(uint16 adr) { if (adr < 0xa000) return ram[adr]; else return read_byte_io(adr); } /* * $dfa0-$dfff: Emulator identification */ const char frodo_id[0x5c] = "FRODO\r(C) 1994-1997 CHRISTIAN BAUER"; uint8 MOS6510::read_emulator_id(uint16 adr) { switch (adr) { case 0x7c: // $dffc: revision return FRODO_REVISION << 4; case 0x7d: // $dffd: version return FRODO_VERSION; case 0x7e: // $dffe returns 'F' (Frodo ID) return 'F'; case 0x7f: // $dfff alternates between $55 and $aa dfff_byte = ~dfff_byte; return dfff_byte; default: return frodo_id[adr - 0x20]; } } /* * Read a word (little-endian) from the CPU's address space */ #if LITTLE_ENDIAN_UNALIGNED inline uint16 MOS6510::read_word(uint16 adr) { switch (adr >> 12) { case 0x0: case 0x1: case 0x2: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: case 0x8: case 0x9: return *(uint16*)&ram[adr]; break; case 0xa: case 0xb: if (basic_in) return *(uint16*)&basic_rom[adr & 0x1fff]; else return *(uint16*)&ram[adr]; case 0xc: return *(uint16*)&ram[adr]; case 0xd: if (io_in) return read_byte(adr) | (read_byte(adr+1) << 8); else if (char_in) return *(uint16*)&char_rom[adr & 0x0fff]; else return *(uint16*)&ram[adr]; case 0xe: case 0xf: if (kernal_in) return *(uint16*)&kernal_rom[adr & 0x1fff]; else return *(uint16*)&ram[adr]; default: // Can't happen return 0; } } #else inline uint16 MOS6510::read_word(uint16 adr) { return read_byte(adr) | (read_byte(adr+1) << 8); } #endif /* * Write byte to I/O space */ void MOS6510::write_byte_io(uint16 adr, uint8 byte) { if (adr >= 0xe000) { ram[adr] = byte; if (adr == 0xff00) TheREU->FF00Trigger(); } else if (io_in) switch ((adr >> 8) & 0x0f) { case 0x0: // VIC case 0x1: case 0x2: case 0x3: TheVIC->WriteRegister(adr & 0x3f, byte); return; case 0x4: // SID case 0x5: case 0x6: case 0x7: TheSID->WriteRegister(adr & 0x1f, byte); return; case 0x8: // Color RAM case 0x9: case 0xa: case 0xb: color_ram[adr & 0x03ff] = byte & 0x0f; return; case 0xc: // CIA 1 TheCIA1->WriteRegister(adr & 0x0f, byte); return; case 0xd: // CIA 2 TheCIA2->WriteRegister(adr & 0x0f, byte); return; case 0xe: // REU/Open I/O case 0xf: if ((adr & 0xfff0) == 0xdf00) TheREU->WriteRegister(adr & 0x0f, byte); return; } else ram[adr] = byte; } /* * Write a byte to the CPU's address space */ inline void MOS6510::write_byte(uint16 adr, uint8 byte) { if (adr < 0xd000) { ram[adr] = byte; if (adr < 2) new_config(); } else write_byte_io(adr, byte); } /* * Read a byte from the zeropage */ inline uint8 MOS6510::read_zp(uint16 adr) { return ram[adr]; } /* * Read a word (little-endian) from the zeropage */ inline uint16 MOS6510::read_zp_word(uint16 adr) { // !! zeropage word addressing wraps around !! #if LITTLE_ENDIAN_UNALIGNED return *(uint16 *)&ram[adr & 0xff]; #else return ram[adr & 0xff] | (ram[(adr+1) & 0xff] << 8); #endif } /* * Write a byte to the zeropage */ inline void MOS6510::write_zp(uint16 adr, uint8 byte) { ram[adr] = byte; // Check if memory configuration may have changed. if (adr < 2) new_config(); } /* * Read byte from 6510 address space with special memory config (used by SAM) */ uint8 MOS6510::ExtReadByte(uint16 adr) { // Save old memory configuration bool bi = basic_in, ki = kernal_in, ci = char_in, ii = io_in; // Set new configuration basic_in = (ExtConfig & 3) == 3; kernal_in = ExtConfig & 2; char_in = (ExtConfig & 3) && ~(ExtConfig & 4); io_in = (ExtConfig & 3) && (ExtConfig & 4); // Read byte uint8 byte = read_byte(adr); // Restore old configuration basic_in = bi; kernal_in = ki; char_in = ci; io_in = ii; return byte; } /* * Write byte to 6510 address space with special memory config (used by SAM) */ void MOS6510::ExtWriteByte(uint16 adr, uint8 byte) { // Save old memory configuration bool bi = basic_in, ki = kernal_in, ci = char_in, ii = io_in; // Set new configuration basic_in = (ExtConfig & 3) == 3; kernal_in = ExtConfig & 2; char_in = (ExtConfig & 3) && ~(ExtConfig & 4); io_in = (ExtConfig & 3) && (ExtConfig & 4); // Write byte write_byte(adr, byte); // Restore old configuration basic_in = bi; kernal_in = ki; char_in = ci; io_in = ii; } /* * Read byte from 6510 address space with current memory config (used by REU) */ uint8 MOS6510::REUReadByte(uint16 adr) { return read_byte(adr); } /* * Write byte to 6510 address space with current memory config (used by REU) */ void MOS6510::REUWriteByte(uint16 adr, uint8 byte) { write_byte(adr, byte); } /* * Jump to address */ #if PC_IS_POINTER void MOS6510::jump(uint16 adr) { if (adr < 0xa000) { pc = ram + adr; pc_base = ram; } else switch (adr >> 12) { case 0xa: case 0xb: if (basic_in) { pc = basic_rom + (adr & 0x1fff); pc_base = basic_rom - 0xa000; } else { pc = ram + adr; pc_base = ram; } break; case 0xc: pc = ram + adr; pc_base = ram; break; case 0xd: if (io_in) illegal_jump(pc-pc_base, adr); else if (char_in) { pc = char_rom + (adr & 0x0fff); pc_base = char_rom - 0xd000; } else { pc = ram + adr; pc_base = ram; } break; case 0xe: case 0xf: if (kernal_in) { pc = kernal_rom + (adr & 0x1fff); pc_base = kernal_rom - 0xe000; } else { pc = ram + adr; pc_base = ram; } break; } } #else inline void MOS6510::jump(uint16 adr) { pc = adr; } #endif /* * Adc instruction */ void MOS6510::do_adc(uint8 byte) { if (!d_flag) { uint16 tmp; // Binary mode tmp = a + byte + (c_flag ? 1 : 0); c_flag = tmp > 0xff; v_flag = !((a ^ byte) & 0x80) && ((a ^ tmp) & 0x80); z_flag = n_flag = a = tmp; } else { uint16 al, ah; // Decimal mode al = (a & 0x0f) + (byte & 0x0f) + (c_flag ? 1 : 0); // Calculate lower nybble if (al > 9) al += 6; // BCD fixup for lower nybble ah = (a >> 4) + (byte >> 4); // Calculate upper nybble if (al > 0x0f) ah++; z_flag = a + byte + (c_flag ? 1 : 0); // Set flags n_flag = ah << 4; // Only highest bit used v_flag = (((ah << 4) ^ a) & 0x80) && !((a ^ byte) & 0x80); if (ah > 9) ah += 6; // BCD fixup for upper nybble c_flag = ah > 0x0f; // Set carry flag a = (ah << 4) | (al & 0x0f); // Compose result } } /* * Sbc instruction */ void MOS6510::do_sbc(uint8 byte) { uint16 tmp = a - byte - (c_flag ? 0 : 1); if (!d_flag) { // Binary mode c_flag = tmp < 0x100; v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80); z_flag = n_flag = a = tmp; } else { uint16 al, ah; // Decimal mode al = (a & 0x0f) - (byte & 0x0f) - (c_flag ? 0 : 1); // Calculate lower nybble ah = (a >> 4) - (byte >> 4); // Calculate upper nybble if (al & 0x10) { al -= 6; // BCD fixup for lower nybble ah--; } if (ah & 0x10) ah -= 6; // BCD fixup for upper nybble c_flag = tmp < 0x100; // Set flags v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80); z_flag = n_flag = tmp; a = (ah << 4) | (al & 0x0f); // Compose result } } /* * Get 6510 register state */ void MOS6510::GetState(MOS6510State *s) { s->a = a; s->x = x; s->y = y; s->p = 0x20 | (n_flag & 0x80); if (v_flag) s->p |= 0x40; if (d_flag) s->p |= 0x08; if (i_flag) s->p |= 0x04; if (!z_flag) s->p |= 0x02; if (c_flag) s->p |= 0x01; s->ddr = ram[0]; s->pr = ram[1] & 0x3f; #if PC_IS_POINTER s->pc = pc - pc_base; #else s->pc = pc; #endif s->sp = sp | 0x0100; s->intr[INT_VICIRQ] = interrupt.intr[INT_VICIRQ]; s->intr[INT_CIAIRQ] = interrupt.intr[INT_CIAIRQ]; s->intr[INT_NMI] = interrupt.intr[INT_NMI]; s->intr[INT_RESET] = interrupt.intr[INT_RESET]; s->nmi_state = nmi_state; s->dfff_byte = dfff_byte; s->instruction_complete = true; } /* * Restore 6510 state */ void MOS6510::SetState(MOS6510State *s) { a = s->a; x = s->x; y = s->y; n_flag = s->p; v_flag = s->p & 0x40; d_flag = s->p & 0x08; i_flag = s->p & 0x04; z_flag = !(s->p & 0x02); c_flag = s->p & 0x01; ram[0] = s->ddr; ram[1] = s->pr; new_config(); jump(s->pc); sp = s->sp & 0xff; interrupt.intr[INT_VICIRQ] = s->intr[INT_VICIRQ]; interrupt.intr[INT_CIAIRQ] = s->intr[INT_CIAIRQ]; interrupt.intr[INT_NMI] = s->intr[INT_NMI]; interrupt.intr[INT_RESET] = s->intr[INT_RESET]; nmi_state = s->nmi_state; dfff_byte = s->dfff_byte; } /* * Reset CPU */ void MOS6510::Reset(void) { // Delete 'CBM80' if present if (ram[0x8004] == 0xc3 && ram[0x8005] == 0xc2 && ram[0x8006] == 0xcd && ram[0x8007] == 0x38 && ram[0x8008] == 0x30) ram[0x8004] = 0; // Initialize extra 6510 registers and memory configuration ram[0] = ram[1] = 0; new_config(); // Clear all interrupt lines interrupt.intr_any = 0; nmi_state = false; // Read reset vector jump(read_word(0xfffc)); } /* * Illegal opcode encountered */ void MOS6510::illegal_op(uint8 op, uint16 at) { char illop_msg[80]; sprintf(illop_msg, "Illegal opcode %02x at %04x.", op, at); ShowRequester(illop_msg, "Reset"); the_c64->Reset(); Reset(); } /* * Jump to illegal address space (PC_IS_POINTER only) */ void MOS6510::illegal_jump(uint16 at, uint16 to) { char illop_msg[80]; sprintf(illop_msg, "Jump to I/O space at %04x to %04x.", at, to); ShowRequester(illop_msg, "Reset"); the_c64->Reset(); Reset(); } /* * Stack macros */ // Pop a byte from the stack #define pop_byte() ram[(++sp) | 0x0100] // Push a byte onto the stack #define push_byte(byte) (ram[(sp--) & 0xff | 0x0100] = (byte)) // Pop processor flags from the stack #define pop_flags() \ n_flag = tmp = pop_byte(); \ v_flag = tmp & 0x40; \ d_flag = tmp & 0x08; \ i_flag = tmp & 0x04; \ z_flag = !(tmp & 0x02); \ c_flag = tmp & 0x01; // Push processor flags onto the stack #define push_flags(b_flag) \ tmp = 0x20 | (n_flag & 0x80); \ if (v_flag) tmp |= 0x40; \ if (b_flag) tmp |= 0x10; \ if (d_flag) tmp |= 0x08; \ if (i_flag) tmp |= 0x04; \ if (!z_flag) tmp |= 0x02; \ if (c_flag) tmp |= 0x01; \ push_byte(tmp); /* * Emulate cycles_left worth of 6510 instructions * Returns number of cycles of last instruction */ int MOS6510::EmulateLine(int cycles_left) { uint8 tmp, tmp2; uint16 adr; // Used by read_adr_abs()! int last_cycles = 0; // Any pending interrupts? if (interrupt.intr_any) { handle_int: if (interrupt.intr[INT_RESET]) Reset(); else if (interrupt.intr[INT_NMI]) { interrupt.intr[INT_NMI] = false; // Simulate an edge-triggered input #if PC_IS_POINTER push_byte((pc-pc_base) >> 8); push_byte(pc-pc_base); #else push_byte(pc >> 8); push_byte(pc); #endif push_flags(false); i_flag = true; jump(read_word(0xfffa)); last_cycles = 7; } else if ((interrupt.intr[INT_VICIRQ] || interrupt.intr[INT_CIAIRQ]) && !i_flag) { #if PC_IS_POINTER push_byte((pc-pc_base) >> 8); push_byte(pc-pc_base); #else push_byte(pc >> 8); push_byte(pc); #endif push_flags(false); i_flag = true; jump(read_word(0xfffe)); last_cycles = 7; } } #include "CPU_emulline.i" // Extension opcode case 0xf2: #if PC_IS_POINTER if ((pc-pc_base) < 0xe000) { illegal_op(0xf2, pc-pc_base-1); #else if (pc < 0xe000) { illegal_op(0xf2, pc-1); #endif break; } switch (read_byte_imm()) { case 0x00: ram[0x90] |= TheIEC->Out(ram[0x95], ram[0xa3] & 0x80); c_flag = false; jump(0xedac); break; case 0x01: ram[0x90] |= TheIEC->OutATN(ram[0x95]); c_flag = false; jump(0xedac); break; case 0x02: ram[0x90] |= TheIEC->OutSec(ram[0x95]); c_flag = false; jump(0xedac); break; case 0x03: ram[0x90] |= TheIEC->In(&a); set_nz(a); c_flag = false; jump(0xedac); break; case 0x04: TheIEC->SetATN(); jump(0xedfb); break; case 0x05: TheIEC->RelATN(); jump(0xedac); break; case 0x06: TheIEC->Turnaround(); jump(0xedac); break; case 0x07: TheIEC->Release(); jump(0xedac); break; default: #if PC_IS_POINTER illegal_op(0xf2, pc-pc_base-1); #else illegal_op(0xf2, pc-1); #endif break; } break; } } return last_cycles; }