/* * VIC_SC.cpp - 6569R5 emulation (cycle based) * * Frodo (C) 1994-1997,2002 Christian Bauer * * * Incompatibilities: * ------------------ * * - Color of $ff bytes read when BA is low and AEC is high * is not correct * - Changes to border/background color are visible 7 pixels * too late * - Sprite data access doesn't respect BA * - Sprite collisions are only detected within the visible * screen area (excluding borders) * - Sprites are only drawn if they completely fit within the * left/right limits of the chunky bitmap */ #include "sysdeps.h" #include "VIC.h" #include "C64.h" #include "CPUC64.h" #include "Display.h" #include "Prefs.h" // First and last displayed line const int FIRST_DISP_LINE = 0x10; const int LAST_DISP_LINE = 0x11f; // First and last possible line for Bad Lines const int FIRST_DMA_LINE = 0x30; const int LAST_DMA_LINE = 0xf7; // Display window coordinates const int ROW25_YSTART = 0x33; const int ROW25_YSTOP = 0xfb; const int ROW24_YSTART = 0x37; const int ROW24_YSTOP = 0xf7; #if defined(SMALL_DISPLAY) /* This does not work yet, the sprite code doesn't know about it. */ const int COL40_XSTART = 0x14; const int COL40_XSTOP = 0x154; const int COL38_XSTART = 0x1B; const int COL38_XSTOP = 0x14B; #else const int COL40_XSTART = 0x20; const int COL40_XSTOP = 0x160; const int COL38_XSTART = 0x27; const int COL38_XSTOP = 0x157; #endif // Tables for sprite X expansion uint16 ExpTable[256] = { 0x0000, 0x0003, 0x000C, 0x000F, 0x0030, 0x0033, 0x003C, 0x003F, 0x00C0, 0x00C3, 0x00CC, 0x00CF, 0x00F0, 0x00F3, 0x00FC, 0x00FF, 0x0300, 0x0303, 0x030C, 0x030F, 0x0330, 0x0333, 0x033C, 0x033F, 0x03C0, 0x03C3, 0x03CC, 0x03CF, 0x03F0, 0x03F3, 0x03FC, 0x03FF, 0x0C00, 0x0C03, 0x0C0C, 0x0C0F, 0x0C30, 0x0C33, 0x0C3C, 0x0C3F, 0x0CC0, 0x0CC3, 0x0CCC, 0x0CCF, 0x0CF0, 0x0CF3, 0x0CFC, 0x0CFF, 0x0F00, 0x0F03, 0x0F0C, 0x0F0F, 0x0F30, 0x0F33, 0x0F3C, 0x0F3F, 0x0FC0, 0x0FC3, 0x0FCC, 0x0FCF, 0x0FF0, 0x0FF3, 0x0FFC, 0x0FFF, 0x3000, 0x3003, 0x300C, 0x300F, 0x3030, 0x3033, 0x303C, 0x303F, 0x30C0, 0x30C3, 0x30CC, 0x30CF, 0x30F0, 0x30F3, 0x30FC, 0x30FF, 0x3300, 0x3303, 0x330C, 0x330F, 0x3330, 0x3333, 0x333C, 0x333F, 0x33C0, 0x33C3, 0x33CC, 0x33CF, 0x33F0, 0x33F3, 0x33FC, 0x33FF, 0x3C00, 0x3C03, 0x3C0C, 0x3C0F, 0x3C30, 0x3C33, 0x3C3C, 0x3C3F, 0x3CC0, 0x3CC3, 0x3CCC, 0x3CCF, 0x3CF0, 0x3CF3, 0x3CFC, 0x3CFF, 0x3F00, 0x3F03, 0x3F0C, 0x3F0F, 0x3F30, 0x3F33, 0x3F3C, 0x3F3F, 0x3FC0, 0x3FC3, 0x3FCC, 0x3FCF, 0x3FF0, 0x3FF3, 0x3FFC, 0x3FFF, 0xC000, 0xC003, 0xC00C, 0xC00F, 0xC030, 0xC033, 0xC03C, 0xC03F, 0xC0C0, 0xC0C3, 0xC0CC, 0xC0CF, 0xC0F0, 0xC0F3, 0xC0FC, 0xC0FF, 0xC300, 0xC303, 0xC30C, 0xC30F, 0xC330, 0xC333, 0xC33C, 0xC33F, 0xC3C0, 0xC3C3, 0xC3CC, 0xC3CF, 0xC3F0, 0xC3F3, 0xC3FC, 0xC3FF, 0xCC00, 0xCC03, 0xCC0C, 0xCC0F, 0xCC30, 0xCC33, 0xCC3C, 0xCC3F, 0xCCC0, 0xCCC3, 0xCCCC, 0xCCCF, 0xCCF0, 0xCCF3, 0xCCFC, 0xCCFF, 0xCF00, 0xCF03, 0xCF0C, 0xCF0F, 0xCF30, 0xCF33, 0xCF3C, 0xCF3F, 0xCFC0, 0xCFC3, 0xCFCC, 0xCFCF, 0xCFF0, 0xCFF3, 0xCFFC, 0xCFFF, 0xF000, 0xF003, 0xF00C, 0xF00F, 0xF030, 0xF033, 0xF03C, 0xF03F, 0xF0C0, 0xF0C3, 0xF0CC, 0xF0CF, 0xF0F0, 0xF0F3, 0xF0FC, 0xF0FF, 0xF300, 0xF303, 0xF30C, 0xF30F, 0xF330, 0xF333, 0xF33C, 0xF33F, 0xF3C0, 0xF3C3, 0xF3CC, 0xF3CF, 0xF3F0, 0xF3F3, 0xF3FC, 0xF3FF, 0xFC00, 0xFC03, 0xFC0C, 0xFC0F, 0xFC30, 0xFC33, 0xFC3C, 0xFC3F, 0xFCC0, 0xFCC3, 0xFCCC, 0xFCCF, 0xFCF0, 0xFCF3, 0xFCFC, 0xFCFF, 0xFF00, 0xFF03, 0xFF0C, 0xFF0F, 0xFF30, 0xFF33, 0xFF3C, 0xFF3F, 0xFFC0, 0xFFC3, 0xFFCC, 0xFFCF, 0xFFF0, 0xFFF3, 0xFFFC, 0xFFFF }; uint16 MultiExpTable[256] = { 0x0000, 0x0005, 0x000A, 0x000F, 0x0050, 0x0055, 0x005A, 0x005F, 0x00A0, 0x00A5, 0x00AA, 0x00AF, 0x00F0, 0x00F5, 0x00FA, 0x00FF, 0x0500, 0x0505, 0x050A, 0x050F, 0x0550, 0x0555, 0x055A, 0x055F, 0x05A0, 0x05A5, 0x05AA, 0x05AF, 0x05F0, 0x05F5, 0x05FA, 0x05FF, 0x0A00, 0x0A05, 0x0A0A, 0x0A0F, 0x0A50, 0x0A55, 0x0A5A, 0x0A5F, 0x0AA0, 0x0AA5, 0x0AAA, 0x0AAF, 0x0AF0, 0x0AF5, 0x0AFA, 0x0AFF, 0x0F00, 0x0F05, 0x0F0A, 0x0F0F, 0x0F50, 0x0F55, 0x0F5A, 0x0F5F, 0x0FA0, 0x0FA5, 0x0FAA, 0x0FAF, 0x0FF0, 0x0FF5, 0x0FFA, 0x0FFF, 0x5000, 0x5005, 0x500A, 0x500F, 0x5050, 0x5055, 0x505A, 0x505F, 0x50A0, 0x50A5, 0x50AA, 0x50AF, 0x50F0, 0x50F5, 0x50FA, 0x50FF, 0x5500, 0x5505, 0x550A, 0x550F, 0x5550, 0x5555, 0x555A, 0x555F, 0x55A0, 0x55A5, 0x55AA, 0x55AF, 0x55F0, 0x55F5, 0x55FA, 0x55FF, 0x5A00, 0x5A05, 0x5A0A, 0x5A0F, 0x5A50, 0x5A55, 0x5A5A, 0x5A5F, 0x5AA0, 0x5AA5, 0x5AAA, 0x5AAF, 0x5AF0, 0x5AF5, 0x5AFA, 0x5AFF, 0x5F00, 0x5F05, 0x5F0A, 0x5F0F, 0x5F50, 0x5F55, 0x5F5A, 0x5F5F, 0x5FA0, 0x5FA5, 0x5FAA, 0x5FAF, 0x5FF0, 0x5FF5, 0x5FFA, 0x5FFF, 0xA000, 0xA005, 0xA00A, 0xA00F, 0xA050, 0xA055, 0xA05A, 0xA05F, 0xA0A0, 0xA0A5, 0xA0AA, 0xA0AF, 0xA0F0, 0xA0F5, 0xA0FA, 0xA0FF, 0xA500, 0xA505, 0xA50A, 0xA50F, 0xA550, 0xA555, 0xA55A, 0xA55F, 0xA5A0, 0xA5A5, 0xA5AA, 0xA5AF, 0xA5F0, 0xA5F5, 0xA5FA, 0xA5FF, 0xAA00, 0xAA05, 0xAA0A, 0xAA0F, 0xAA50, 0xAA55, 0xAA5A, 0xAA5F, 0xAAA0, 0xAAA5, 0xAAAA, 0xAAAF, 0xAAF0, 0xAAF5, 0xAAFA, 0xAAFF, 0xAF00, 0xAF05, 0xAF0A, 0xAF0F, 0xAF50, 0xAF55, 0xAF5A, 0xAF5F, 0xAFA0, 0xAFA5, 0xAFAA, 0xAFAF, 0xAFF0, 0xAFF5, 0xAFFA, 0xAFFF, 0xF000, 0xF005, 0xF00A, 0xF00F, 0xF050, 0xF055, 0xF05A, 0xF05F, 0xF0A0, 0xF0A5, 0xF0AA, 0xF0AF, 0xF0F0, 0xF0F5, 0xF0FA, 0xF0FF, 0xF500, 0xF505, 0xF50A, 0xF50F, 0xF550, 0xF555, 0xF55A, 0xF55F, 0xF5A0, 0xF5A5, 0xF5AA, 0xF5AF, 0xF5F0, 0xF5F5, 0xF5FA, 0xF5FF, 0xFA00, 0xFA05, 0xFA0A, 0xFA0F, 0xFA50, 0xFA55, 0xFA5A, 0xFA5F, 0xFAA0, 0xFAA5, 0xFAAA, 0xFAAF, 0xFAF0, 0xFAF5, 0xFAFA, 0xFAFF, 0xFF00, 0xFF05, 0xFF0A, 0xFF0F, 0xFF50, 0xFF55, 0xFF5A, 0xFF5F, 0xFFA0, 0xFFA5, 0xFFAA, 0xFFAF, 0xFFF0, 0xFFF5, 0xFFFA, 0xFFFF }; #ifdef GLOBAL_VARS static uint16 mx[8]; // VIC registers static uint8 my[8]; static uint8 mx8; static uint8 ctrl1, ctrl2; static uint8 lpx, lpy; static uint8 me, mxe, mye, mdp, mmc; static uint8 vbase; static uint8 irq_flag, irq_mask; static uint8 clx_spr, clx_bgr; static uint8 ec, b0c, b1c, b2c, b3c, mm0, mm1; static uint8 sc[8]; static uint8 *ram, *char_rom, *color_ram; // Pointers to RAM and ROM static C64 *the_c64; // Pointer to C64 static C64Display *the_display; // Pointer to C64Display static MOS6510 *the_cpu; // Pointer to 6510 static MOS6569 *the_vic; // Pointer to self static uint8 colors[256]; // Indices of the 16 C64 colors (16 times mirrored to avoid "& 0x0f") static uint8 ec_color, b0c_color, b1c_color, b2c_color, b3c_color; // Indices for exterior/background colors static uint8 mm0_color, mm1_color; // Indices for MOB multicolors static uint8 spr_color[8]; // Indices for MOB colors static uint8 matrix_line[40]; // Buffer for video line, read in Bad Lines static uint8 color_line[40]; // Buffer for color line, read in Bad Lines #ifdef __POWERPC__ static double chunky_tmp[DISPLAY_X/8]; // Temporary line buffer for GameKit speedup #endif static uint8 *chunky_ptr; // Pointer in chunky bitmap buffer static uint8 *chunky_line_start; // Pointer to start of current line in bitmap buffer static uint8 *fore_mask_ptr; // Pointer in fore_mask_buf static int xmod; // Number of bytes per row static uint16 raster_x; // Current raster x position static uint16 raster_y; // Current raster line static uint16 irq_raster; // Interrupt raster line static uint16 dy_start; // Comparison values for border logic static uint16 dy_stop; static uint16 rc; // Row counter static uint16 vc; // Video counter static uint16 vc_base; // Video counter base static uint16 x_scroll; // X scroll value static uint16 y_scroll; // Y scroll value static uint16 cia_vabase; // CIA VA14/15 video base static int cycle; // Current cycle in line (1..63) static int display_idx; // Index of current display mode static int ml_index; // Index in matrix/color_line[] static int skip_counter; // Counter for frame-skipping static uint16 mc[8]; // Sprite data counters static uint16 mc_base[8]; // Sprite data counter bases static uint8 spr_coll_buf[0x180]; // Buffer for sprite-sprite collisions and priorities static uint8 fore_mask_buf[0x180/8]; // Foreground mask for sprite-graphics collisions and priorities static bool display_state; // true: Display state, false: Idle state static bool border_on; // Flag: Upper/lower border on static bool frame_skipped; // Flag: Frame is being skipped static bool bad_lines_enabled; // Flag: Bad Lines enabled for this frame static bool lp_triggered; // Flag: Lightpen was triggered in this frame static bool is_bad_line; // Flag: Current line is Bad Line static bool draw_this_line; // Flag: This line is drawn on the screen static bool ud_border_on; // Flag: Upper/lower border on static bool vblanking; // Flag: VBlank in next cycle static bool border_on_sample[5]; // Samples of border state at different cycles (1, 17, 18, 56, 57) static uint8 border_color_sample[DISPLAY_X/8]; // Samples of border color at each "displayed" cycle static uint16 matrix_base; // Video matrix base static uint16 char_base; // Character generator base static uint16 bitmap_base; // Bitmap base static uint8 ref_cnt; // Refresh counter static uint8 spr_exp_y; // 8 sprite y expansion flipflops static uint8 spr_dma_on; // 8 flags: Sprite DMA active static uint8 spr_disp_on; // 8 flags: Sprite display active static uint8 spr_draw; // 8 flags: Draw sprite in this line static uint16 spr_ptr[8]; // Sprite data pointers static uint8 gfx_data, char_data, color_data, last_char_data; static uint8 spr_data[8][4]; // Sprite data read static uint8 spr_draw_data[8][4]; // Sprite data for drawing static uint32 first_ba_cycle; // Cycle when BA first went low #endif /* * Constructor: Initialize variables */ MOS6569::MOS6569(C64 *c64, C64Display *disp, MOS6510 *CPU, uint8 *RAM, uint8 *Char, uint8 *Color) #ifndef GLOBAL_VARS : ram(RAM), char_rom(Char), color_ram(Color), the_c64(c64), the_display(disp), the_cpu(CPU) #endif { int i; // Set pointers #ifdef GLOBAL_VARS the_vic = this; the_c64 = c64; the_display = disp; the_cpu = CPU; ram = RAM; char_rom = Char; color_ram = Color; #endif matrix_base = 0; char_base = 0; bitmap_base = 0; // Get bitmap info chunky_ptr = chunky_line_start = disp->BitmapBase(); xmod = disp->BitmapXMod(); // Initialize VIC registers mx8 = 0; ctrl1 = ctrl2 = 0; lpx = lpy = 0; me = mxe = mye = mdp = mmc = 0; vbase = irq_flag = irq_mask = 0; clx_spr = clx_bgr = 0; cia_vabase = 0; ec = b0c = b1c = b2c = b3c = mm0 = mm1 = 0; for (i=0; i<8; i++) mx[i] = my[i] = sc[i] = 0; // Initialize other variables raster_y = TOTAL_RASTERS - 1; rc = 7; irq_raster = vc = vc_base = x_scroll = y_scroll = 0; dy_start = ROW24_YSTART; dy_stop = ROW24_YSTOP; ml_index = 0; cycle = 1; display_idx = 0; display_state = false; border_on = ud_border_on = vblanking = false; lp_triggered = draw_this_line = false; spr_dma_on = spr_disp_on = 0; for (i=0; i<8; i++) { mc[i] = 63; spr_ptr[i] = 0; } frame_skipped = false; skip_counter = 1; memset(spr_coll_buf, 0, 0x180); memset(fore_mask_buf, 0, 0x180/8); // Preset colors to black disp->InitColors(colors); ec_color = b0c_color = b1c_color = b2c_color = b3c_color = mm0_color = mm1_color = colors[0]; for (i=0; i<8; i++) spr_color[i] = colors[0]; } /* * Reinitialize the colors table for when the palette has changed */ void MOS6569::ReInitColors(void) { int i; // Build inverse color table. uint8 xlate_colors[256]; memset(xlate_colors, 0, sizeof(xlate_colors)); for (i = 0; i < 16; i++) xlate_colors[colors[i]] = i; // Get the new colors. the_display->InitColors(colors); // Build color translation table. for (i = 0; i < 256; i++) xlate_colors[i] = colors[xlate_colors[i]]; // Translate all the old colors variables. ec_color = colors[ec]; b0c_color = colors[b0c]; b1c_color = colors[b1c]; b2c_color = colors[b2c]; b3c_color = colors[b3c]; mm0_color = colors[mm0]; mm1_color = colors[mm1]; for (i = 0; i < 8; i++) spr_color[i] = colors[sc[i]]; // Translate the border color sample buffer. for (int x = 0; x < sizeof(border_color_sample); x++) border_color_sample[x] = xlate_colors[border_color_sample[x]]; // Translate the chunky buffer. uint8 *scanline = the_display->BitmapBase(); for (int y = 0; y < DISPLAY_Y; y++) { for (int x = 0; x < DISPLAY_X; x++) scanline[x] = xlate_colors[scanline[x]]; scanline += xmod; } } /* * Get VIC state */ void MOS6569::GetState(MOS6569State *vd) { int i; vd->m0x = mx[0] & 0xff; vd->m0y = my[0]; vd->m1x = mx[1] & 0xff; vd->m1y = my[1]; vd->m2x = mx[2] & 0xff; vd->m2y = my[2]; vd->m3x = mx[3] & 0xff; vd->m3y = my[3]; vd->m4x = mx[4] & 0xff; vd->m4y = my[4]; vd->m5x = mx[5] & 0xff; vd->m5y = my[5]; vd->m6x = mx[6] & 0xff; vd->m6y = my[6]; vd->m7x = mx[7] & 0xff; vd->m7y = my[7]; vd->mx8 = mx8; vd->ctrl1 = (ctrl1 & 0x7f) | ((raster_y & 0x100) >> 1); vd->raster = raster_y & 0xff; vd->lpx = lpx; vd->lpy = lpy; vd->ctrl2 = ctrl2; vd->vbase = vbase; vd->irq_flag = irq_flag; vd->irq_mask = irq_mask; vd->me = me; vd->mxe = mxe; vd->mye = mye; vd->mdp = mdp; vd->mmc = mmc; vd->mm = clx_spr; vd->md = clx_bgr; vd->ec = ec; vd->b0c = b0c; vd->b1c = b1c; vd->b2c = b2c; vd->b3c = b3c; vd->mm0 = mm0; vd->mm1 = mm1; vd->m0c = sc[0]; vd->m1c = sc[1]; vd->m2c = sc[2]; vd->m3c = sc[3]; vd->m4c = sc[4]; vd->m5c = sc[5]; vd->m6c = sc[6]; vd->m7c = sc[7]; vd->pad0 = 0; vd->irq_raster = irq_raster; vd->vc = vc; vd->vc_base = vc_base; vd->rc = rc; vd->spr_dma = spr_dma_on; vd->spr_disp = spr_disp_on; for (i=0; i<8; i++) { vd->mc[i] = mc[i]; vd->mc_base[i] = mc_base[i]; } vd->display_state = display_state; vd->bad_line = raster_y >= FIRST_DMA_LINE && raster_y <= LAST_DMA_LINE && ((raster_y & 7) == y_scroll) && bad_lines_enabled; vd->bad_line_enable = bad_lines_enabled; vd->lp_triggered = lp_triggered; vd->border_on = border_on; vd->bank_base = cia_vabase; vd->matrix_base = ((vbase & 0xf0) << 6) | cia_vabase; vd->char_base = ((vbase & 0x0e) << 10) | cia_vabase; vd->bitmap_base = ((vbase & 0x08) << 10) | cia_vabase; for (i=0; i<8; i++) vd->sprite_base[i] = spr_ptr[i] | cia_vabase; vd->cycle = cycle; vd->raster_x = raster_x; vd->ml_index = ml_index; vd->ref_cnt = ref_cnt; vd->last_vic_byte = LastVICByte; vd->ud_border_on = ud_border_on; } /* * Set VIC state (only works if in VBlank) */ void MOS6569::SetState(MOS6569State *vd) { int i, j; mx[0] = vd->m0x; my[0] = vd->m0y; mx[1] = vd->m1x; my[1] = vd->m1y; mx[2] = vd->m2x; my[2] = vd->m2y; mx[3] = vd->m3x; my[3] = vd->m3y; mx[4] = vd->m4x; my[4] = vd->m4y; mx[5] = vd->m5x; my[5] = vd->m5y; mx[6] = vd->m6x; my[6] = vd->m6y; mx[7] = vd->m7x; my[7] = vd->m7y; mx8 = vd->mx8; for (i=0, j=1; i<8; i++, j<<=1) { if (mx8 & j) mx[i] |= 0x100; else mx[i] &= 0xff; } ctrl1 = vd->ctrl1; ctrl2 = vd->ctrl2; x_scroll = ctrl2 & 7; y_scroll = ctrl1 & 7; if (ctrl1 & 8) { dy_start = ROW25_YSTART; dy_stop = ROW25_YSTOP; } else { dy_start = ROW24_YSTART; dy_stop = ROW24_YSTOP; } display_idx = ((ctrl1 & 0x60) | (ctrl2 & 0x10)) >> 4; raster_y = 0; lpx = vd->lpx; lpy = vd->lpy; vbase = vd->vbase; cia_vabase = vd->bank_base; matrix_base = (vbase & 0xf0) << 6; char_base = (vbase & 0x0e) << 10; bitmap_base = (vbase & 0x08) << 10; irq_flag = vd->irq_flag; irq_mask = vd->irq_mask; me = vd->me; mxe = vd->mxe; mye = vd->mye; mdp = vd->mdp; mmc = vd->mmc; clx_spr = vd->mm; clx_bgr = vd->md; ec = vd->ec; ec_color = colors[ec]; b0c = vd->b0c; b1c = vd->b1c; b2c = vd->b2c; b3c = vd->b3c; b0c_color = colors[b0c]; b1c_color = colors[b1c]; b2c_color = colors[b2c]; b3c_color = colors[b3c]; mm0 = vd->mm0; mm1 = vd->mm1; mm0_color = colors[mm0]; mm1_color = colors[mm1]; sc[0] = vd->m0c; sc[1] = vd->m1c; sc[2] = vd->m2c; sc[3] = vd->m3c; sc[4] = vd->m4c; sc[5] = vd->m5c; sc[6] = vd->m6c; sc[7] = vd->m7c; for (i=0; i<8; i++) spr_color[i] = colors[sc[i]]; irq_raster = vd->irq_raster; vc = vd->vc; vc_base = vd->vc_base; rc = vd->rc; spr_dma_on = vd->spr_dma; spr_disp_on = vd->spr_disp; for (i=0; i<8; i++) { mc[i] = vd->mc[i]; mc_base[i] = vd->mc_base[i]; spr_ptr[i] = vd->sprite_base[i] & 0x3fff; } display_state = vd->display_state; bad_lines_enabled = vd->bad_line_enable; lp_triggered = vd->lp_triggered; border_on = vd->border_on; cycle = vd->cycle; raster_x = vd->raster_x; ml_index = vd->ml_index; ref_cnt = vd->ref_cnt; LastVICByte = vd->last_vic_byte; ud_border_on = vd->ud_border_on; } /* * Trigger raster IRQ */ #ifdef GLOBAL_VARS static inline void raster_irq(void) #else inline void MOS6569::raster_irq(void) #endif { irq_flag |= 0x01; if (irq_mask & 0x01) { irq_flag |= 0x80; the_cpu->TriggerVICIRQ(); } } /* * Read from VIC register */ uint8 MOS6569::ReadRegister(uint16 adr) { switch (adr) { case 0x00: case 0x02: case 0x04: case 0x06: case 0x08: case 0x0a: case 0x0c: case 0x0e: return mx[adr >> 1]; case 0x01: case 0x03: case 0x05: case 0x07: case 0x09: case 0x0b: case 0x0d: case 0x0f: return my[adr >> 1]; case 0x10: // Sprite X position MSB return mx8; case 0x11: // Control register 1 return (ctrl1 & 0x7f) | ((raster_y & 0x100) >> 1); case 0x12: // Raster counter return raster_y; case 0x13: // Light pen X return lpx; case 0x14: // Light pen Y return lpy; case 0x15: // Sprite enable return me; case 0x16: // Control register 2 return ctrl2 | 0xc0; case 0x17: // Sprite Y expansion return mye; case 0x18: // Memory pointers return vbase | 0x01; case 0x19: // IRQ flags return irq_flag | 0x70; case 0x1a: // IRQ mask return irq_mask | 0xf0; case 0x1b: // Sprite data priority return mdp; case 0x1c: // Sprite multicolor return mmc; case 0x1d: // Sprite X expansion return mxe; case 0x1e:{ // Sprite-sprite collision uint8 ret = clx_spr; clx_spr = 0; // Read and clear return ret; } case 0x1f:{ // Sprite-background collision uint8 ret = clx_bgr; clx_bgr = 0; // Read and clear return ret; } case 0x20: return ec | 0xf0; case 0x21: return b0c | 0xf0; case 0x22: return b1c | 0xf0; case 0x23: return b2c | 0xf0; case 0x24: return b3c | 0xf0; case 0x25: return mm0 | 0xf0; case 0x26: return mm1 | 0xf0; case 0x27: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: return sc[adr - 0x27] | 0xf0; default: return 0xff; } } /* * Write to VIC register */ void MOS6569::WriteRegister(uint16 adr, uint8 byte) { switch (adr) { case 0x00: case 0x02: case 0x04: case 0x06: case 0x08: case 0x0a: case 0x0c: case 0x0e: mx[adr >> 1] = (mx[adr >> 1] & 0xff00) | byte; break; case 0x10:{ int i, j; mx8 = byte; for (i=0, j=1; i<8; i++, j<<=1) { if (mx8 & j) mx[i] |= 0x100; else mx[i] &= 0xff; } break; } case 0x01: case 0x03: case 0x05: case 0x07: case 0x09: case 0x0b: case 0x0d: case 0x0f: my[adr >> 1] = byte; break; case 0x11:{ // Control register 1 ctrl1 = byte; y_scroll = byte & 7; uint16 new_irq_raster = (irq_raster & 0xff) | ((byte & 0x80) << 1); if (irq_raster != new_irq_raster && raster_y == new_irq_raster) raster_irq(); irq_raster = new_irq_raster; if (byte & 8) { dy_start = ROW25_YSTART; dy_stop = ROW25_YSTOP; } else { dy_start = ROW24_YSTART; dy_stop = ROW24_YSTOP; } // In line $30, the DEN bit controls if Bad Lines can occur if (raster_y == 0x30 && byte & 0x10) bad_lines_enabled = true; // Bad Line condition? is_bad_line = (raster_y >= FIRST_DMA_LINE && raster_y <= LAST_DMA_LINE && ((raster_y & 7) == y_scroll) && bad_lines_enabled); display_idx = ((ctrl1 & 0x60) | (ctrl2 & 0x10)) >> 4; break; } case 0x12:{ // Raster counter uint16 new_irq_raster = (irq_raster & 0xff00) | byte; if (irq_raster != new_irq_raster && raster_y == new_irq_raster) raster_irq(); irq_raster = new_irq_raster; break; } case 0x15: // Sprite enable me = byte; break; case 0x16: // Control register 2 ctrl2 = byte; x_scroll = byte & 7; display_idx = ((ctrl1 & 0x60) | (ctrl2 & 0x10)) >> 4; break; case 0x17: // Sprite Y expansion mye = byte; spr_exp_y |= ~byte; break; case 0x18: // Memory pointers vbase = byte; matrix_base = (byte & 0xf0) << 6; char_base = (byte & 0x0e) << 10; bitmap_base = (byte & 0x08) << 10; break; case 0x19: // IRQ flags irq_flag = irq_flag & (~byte & 0x0f); if (irq_flag & irq_mask) // Set master bit if allowed interrupt still pending irq_flag |= 0x80; else the_cpu->ClearVICIRQ(); // Else clear interrupt break; case 0x1a: // IRQ mask irq_mask = byte & 0x0f; if (irq_flag & irq_mask) { // Trigger interrupt if pending and now allowed irq_flag |= 0x80; the_cpu->TriggerVICIRQ(); } else { irq_flag &= 0x7f; the_cpu->ClearVICIRQ(); } break; case 0x1b: // Sprite data priority mdp = byte; break; case 0x1c: // Sprite multicolor mmc = byte; break; case 0x1d: // Sprite X expansion mxe = byte; break; case 0x20: ec_color = colors[ec = byte]; break; case 0x21: b0c_color = colors[b0c = byte]; break; case 0x22: b1c_color = colors[b1c = byte]; break; case 0x23: b2c_color = colors[b2c = byte]; break; case 0x24: b3c_color = colors[b3c = byte]; break; case 0x25: mm0_color = colors[mm0 = byte]; break; case 0x26: mm1_color = colors[mm1 = byte]; break; case 0x27: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: spr_color[adr - 0x27] = colors[sc[adr - 0x27] = byte]; break; } } /* * CIA VA14/15 has changed */ void MOS6569::ChangedVA(uint16 new_va) { cia_vabase = new_va << 14; WriteRegister(0x18, vbase); // Force update of memory pointers } /* * Trigger lightpen interrupt, latch lightpen coordinates */ void MOS6569::TriggerLightpen(void) { if (!lp_triggered) { // Lightpen triggers only once per frame lp_triggered = true; lpx = raster_x >> 1; // Latch current coordinates lpy = raster_y; irq_flag |= 0x08; // Trigger IRQ if (irq_mask & 0x08) { irq_flag |= 0x80; the_cpu->TriggerVICIRQ(); } } } /* * Read a byte from the VIC's address space */ #ifdef GLOBAL_VARS static inline uint8 read_byte(uint16 adr) #else inline uint8 MOS6569::read_byte(uint16 adr) #endif { uint16 va = adr | cia_vabase; if ((va & 0x7000) == 0x1000) #ifdef GLOBAL_VARS return the_vic->LastVICByte = char_rom[va & 0x0fff]; #else return LastVICByte = char_rom[va & 0x0fff]; #endif else #ifdef GLOBAL_VARS return the_vic->LastVICByte = ram[va]; #else return LastVICByte = ram[va]; #endif } /* * Quick memset of 8 bytes */ inline void memset8(uint8 *p, uint8 c) { p[0] = p[1] = p[2] = p[3] = p[4] = p[5] = p[6] = p[7] = c; } /* * Video matrix access */ #ifdef __i386 inline #endif #ifdef GLOBAL_VARS static void matrix_access(void) #else void MOS6569::matrix_access(void) #endif { if (the_cpu->BALow) { if (the_c64->CycleCounter-first_ba_cycle < 3) matrix_line[ml_index] = color_line[ml_index] = 0xff; else { uint16 adr = (vc & 0x03ff) | matrix_base; matrix_line[ml_index] = read_byte(adr); color_line[ml_index] = color_ram[adr & 0x03ff]; } } } /* * Graphics data access */ #ifdef __i386 inline #endif #ifdef GLOBAL_VARS static void graphics_access(void) #else void MOS6569::graphics_access(void) #endif { if (display_state) { uint16 adr; if (ctrl1 & 0x20) // Bitmap adr = ((vc & 0x03ff) << 3) | bitmap_base | rc; else // Text adr = (matrix_line[ml_index] << 3) | char_base | rc; if (ctrl1 & 0x40) // ECM adr &= 0xf9ff; gfx_data = read_byte(adr); char_data = matrix_line[ml_index]; color_data = color_line[ml_index]; ml_index++; vc++; } else { // Display is off gfx_data = read_byte(ctrl1 & 0x40 ? 0x39ff : 0x3fff); char_data = color_data = 0; } } /* * Background display (8 pixels) */ #ifdef GLOBAL_VARS static void draw_background(void) #else void MOS6569::draw_background(void) #endif { uint8 *p = chunky_ptr; uint8 c; if (!draw_this_line) return; switch (display_idx) { case 0: // Standard text case 1: // Multicolor text case 3: // Multicolor bitmap c = b0c_color; break; case 2: // Standard bitmap c = colors[last_char_data]; break; case 4: // ECM text if (last_char_data & 0x80) if (last_char_data & 0x40) c = b3c_color; else c = b2c_color; else if (last_char_data & 0x40) c = b1c_color; else c = b0c_color; break; default: c = colors[0]; break; } memset8(p, c); } /* * Graphics display (8 pixels) */ #ifdef __i386 inline #endif #ifdef GLOBAL_VARS static void draw_graphics(void) #else void MOS6569::draw_graphics(void) #endif { uint8 *p = chunky_ptr + x_scroll; uint8 c[4], data; if (!draw_this_line) return; if (ud_border_on) { draw_background(); return; } switch (display_idx) { case 0: // Standard text c[0] = b0c_color; c[1] = colors[color_data]; goto draw_std; case 1: // Multicolor text if (color_data & 8) { c[0] = b0c_color; c[1] = b1c_color; c[2] = b2c_color; c[3] = colors[color_data & 7]; goto draw_multi; } else { c[0] = b0c_color; c[1] = colors[color_data]; goto draw_std; } case 2: // Standard bitmap c[0] = colors[char_data]; c[1] = colors[char_data >> 4]; goto draw_std; case 3: // Multicolor bitmap c[0]= b0c_color; c[1] = colors[char_data >> 4]; c[2] = colors[char_data]; c[3] = colors[color_data]; goto draw_multi; case 4: // ECM text if (char_data & 0x80) if (char_data & 0x40) c[0] = b3c_color; else c[0] = b2c_color; else if (char_data & 0x40) c[0] = b1c_color; else c[0] = b0c_color; c[1] = colors[color_data]; goto draw_std; case 5: // Invalid multicolor text memset8(p, colors[0]); if (color_data & 8) { fore_mask_ptr[0] |= ((gfx_data & 0xaa) | (gfx_data & 0xaa) >> 1) >> x_scroll; fore_mask_ptr[1] |= ((gfx_data & 0xaa) | (gfx_data & 0xaa) >> 1) << (8-x_scroll); } else { fore_mask_ptr[0] |= gfx_data >> x_scroll; fore_mask_ptr[1] |= gfx_data << (7-x_scroll); } return; case 6: // Invalid standard bitmap memset8(p, colors[0]); fore_mask_ptr[0] |= gfx_data >> x_scroll; fore_mask_ptr[1] |= gfx_data << (7-x_scroll); return; case 7: // Invalid multicolor bitmap memset8(p, colors[0]); fore_mask_ptr[0] |= ((gfx_data & 0xaa) | (gfx_data & 0xaa) >> 1) >> x_scroll; fore_mask_ptr[1] |= ((gfx_data & 0xaa) | (gfx_data & 0xaa) >> 1) << (8-x_scroll); return; default: // Can't happen return; } draw_std: fore_mask_ptr[0] |= gfx_data >> x_scroll; fore_mask_ptr[1] |= gfx_data << (7-x_scroll); data = gfx_data; p[7] = c[data & 1]; data >>= 1; p[6] = c[data & 1]; data >>= 1; p[5] = c[data & 1]; data >>= 1; p[4] = c[data & 1]; data >>= 1; p[3] = c[data & 1]; data >>= 1; p[2] = c[data & 1]; data >>= 1; p[1] = c[data & 1]; data >>= 1; p[0] = c[data]; return; draw_multi: fore_mask_ptr[0] |= ((gfx_data & 0xaa) | (gfx_data & 0xaa) >> 1) >> x_scroll; fore_mask_ptr[1] |= ((gfx_data & 0xaa) | (gfx_data & 0xaa) >> 1) << (8-x_scroll); data = gfx_data; p[7] = p[6] = c[data & 3]; data >>= 2; p[5] = p[4] = c[data & 3]; data >>= 2; p[3] = p[2] = c[data & 3]; data >>= 2; p[1] = p[0] = c[data]; return; } /* * Sprite display */ #ifdef GLOBAL_VARS inline static void draw_sprites(void) #else inline void MOS6569::draw_sprites(void) #endif { int i; int snum, sbit; // Sprite number/bit mask int spr_coll=0, gfx_coll=0; // Clear sprite collision buffer { uint32 *lp = (uint32 *)spr_coll_buf - 1; for (i=0; i> (8-sshift)); if (mxe & sbit) { // X-expanded if (mx[snum] > DISPLAY_X-56) continue; uint32 sdata_l = 0, sdata_r = 0, fore_mask_r; fore_mask_r = (((*(fmbp+4) << 24) | (*(fmbp+5) << 16) | (*(fmbp+6) << 8) | (*(fmbp+7))) << sshift) | (*(fmbp+8) >> (8-sshift)); if (mmc & sbit) { // Multicolor mode uint32 plane0_l, plane0_r, plane1_l, plane1_r; // Expand sprite data sdata_l = MultiExpTable[sdata >> 24 & 0xff] << 16 | MultiExpTable[sdata >> 16 & 0xff]; sdata_r = MultiExpTable[sdata >> 8 & 0xff] << 16; // Convert sprite chunky pixels to bitplanes plane0_l = (sdata_l & 0x55555555) | (sdata_l & 0x55555555) << 1; plane1_l = (sdata_l & 0xaaaaaaaa) | (sdata_l & 0xaaaaaaaa) >> 1; plane0_r = (sdata_r & 0x55555555) | (sdata_r & 0x55555555) << 1; plane1_r = (sdata_r & 0xaaaaaaaa) | (sdata_r & 0xaaaaaaaa) >> 1; // Collision with graphics? if ((fore_mask & (plane0_l | plane1_l)) || (fore_mask_r & (plane0_r | plane1_r))) { gfx_coll |= sbit; if (mdp & sbit) { plane0_l &= ~fore_mask; // Mask sprite if in background plane1_l &= ~fore_mask; plane0_r &= ~fore_mask_r; plane1_r &= ~fore_mask_r; } } // Paint sprite for (i=0; i<32; i++, plane0_l<<=1, plane1_l<<=1) { uint8 col; if (plane1_l & 0x80000000) { if (plane0_l & 0x80000000) col = mm1_color; else col = color; } else { if (plane0_l & 0x80000000) col = mm0_color; else continue; } if (q[i]) spr_coll |= q[i] | sbit; else { p[i] = col; q[i] = sbit; } } for (; i<48; i++, plane0_r<<=1, plane1_r<<=1) { uint8 col; if (plane1_r & 0x80000000) { if (plane0_r & 0x80000000) col = mm1_color; else col = color; } else { if (plane0_r & 0x80000000) col = mm0_color; else continue; } if (q[i]) spr_coll |= q[i] | sbit; else { p[i] = col; q[i] = sbit; } } } else { // Standard mode // Expand sprite data sdata_l = ExpTable[sdata >> 24 & 0xff] << 16 | ExpTable[sdata >> 16 & 0xff]; sdata_r = ExpTable[sdata >> 8 & 0xff] << 16; // Collision with graphics? if ((fore_mask & sdata_l) || (fore_mask_r & sdata_r)) { gfx_coll |= sbit; if (mdp & sbit) { sdata_l &= ~fore_mask; // Mask sprite if in background sdata_r &= ~fore_mask_r; } } // Paint sprite for (i=0; i<32; i++, sdata_l<<=1) if (sdata_l & 0x80000000) { if (q[i]) // Collision with sprite? spr_coll |= q[i] | sbit; else { // Draw pixel if no collision p[i] = color; q[i] = sbit; } } for (; i<48; i++, sdata_r<<=1) if (sdata_r & 0x80000000) { if (q[i]) // Collision with sprite? spr_coll |= q[i] | sbit; else { // Draw pixel if no collision p[i] = color; q[i] = sbit; } } } } else { // Unexpanded if (mmc & sbit) { // Multicolor mode uint32 plane0, plane1; // Convert sprite chunky pixels to bitplanes plane0 = (sdata & 0x55555555) | (sdata & 0x55555555) << 1; plane1 = (sdata & 0xaaaaaaaa) | (sdata & 0xaaaaaaaa) >> 1; // Collision with graphics? if (fore_mask & (plane0 | plane1)) { gfx_coll |= sbit; if (mdp & sbit) { plane0 &= ~fore_mask; // Mask sprite if in background plane1 &= ~fore_mask; } } // Paint sprite for (i=0; i<24; i++, plane0<<=1, plane1<<=1) { uint8 col; if (plane1 & 0x80000000) { if (plane0 & 0x80000000) col = mm1_color; else col = color; } else { if (plane0 & 0x80000000) col = mm0_color; else continue; } if (q[i]) spr_coll |= q[i] | sbit; else { p[i] = col; q[i] = sbit; } } } else { // Standard mode // Collision with graphics? if (fore_mask & sdata) { gfx_coll |= sbit; if (mdp & sbit) sdata &= ~fore_mask; // Mask sprite if in background } // Paint sprite for (i=0; i<24; i++, sdata<<=1) if (sdata & 0x80000000) { if (q[i]) { // Collision with sprite? spr_coll |= q[i] | sbit; } else { // Draw pixel if no collision p[i] = color; q[i] = sbit; } } } } } } if (ThePrefs.SpriteCollisions) { // Check sprite-sprite collisions if (clx_spr) clx_spr |= spr_coll; else { clx_spr |= spr_coll; irq_flag |= 0x04; if (irq_mask & 0x04) { irq_flag |= 0x80; the_cpu->TriggerVICIRQ(); } } // Check sprite-background collisions if (clx_bgr) clx_bgr |= gfx_coll; else { clx_bgr |= gfx_coll; irq_flag |= 0x02; if (irq_mask & 0x02) { irq_flag |= 0x80; the_cpu->TriggerVICIRQ(); } } } } #ifdef __POWERPC__ static asm void fastcopy(register uchar *dst, register uchar *src); static asm void fastcopy(register uchar *dst, register uchar *src) { lfd fp0,0(src) lfd fp1,8(src) lfd fp2,16(src) lfd fp3,24(src) lfd fp4,32(src) lfd fp5,40(src) lfd fp6,48(src) lfd fp7,56(src) addi src,src,64 stfd fp0,0(dst) stfd fp1,8(dst) stfd fp2,16(dst) stfd fp3,24(dst) stfd fp4,32(dst) stfd fp5,40(dst) stfd fp6,48(dst) stfd fp7,56(dst) addi dst,dst,64 lfd fp0,0(src) lfd fp1,8(src) lfd fp2,16(src) lfd fp3,24(src) lfd fp4,32(src) lfd fp5,40(src) lfd fp6,48(src) lfd fp7,56(src) addi src,src,64 stfd fp0,0(dst) stfd fp1,8(dst) stfd fp2,16(dst) stfd fp3,24(dst) stfd fp4,32(dst) stfd fp5,40(dst) stfd fp6,48(dst) stfd fp7,56(dst) addi dst,dst,64 lfd fp0,0(src) lfd fp1,8(src) lfd fp2,16(src) lfd fp3,24(src) lfd fp4,32(src) lfd fp5,40(src) lfd fp6,48(src) lfd fp7,56(src) addi src,src,64 stfd fp0,0(dst) stfd fp1,8(dst) stfd fp2,16(dst) stfd fp3,24(dst) stfd fp4,32(dst) stfd fp5,40(dst) stfd fp6,48(dst) stfd fp7,56(dst) addi dst,dst,64 lfd fp0,0(src) lfd fp1,8(src) lfd fp2,16(src) lfd fp3,24(src) lfd fp4,32(src) lfd fp5,40(src) lfd fp6,48(src) lfd fp7,56(src) addi src,src,64 stfd fp0,0(dst) stfd fp1,8(dst) stfd fp2,16(dst) stfd fp3,24(dst) stfd fp4,32(dst) stfd fp5,40(dst) stfd fp6,48(dst) stfd fp7,56(dst) addi dst,dst,64 lfd fp0,0(src) lfd fp1,8(src) lfd fp2,16(src) lfd fp3,24(src) lfd fp4,32(src) lfd fp5,40(src) lfd fp6,48(src) lfd fp7,56(src) addi src,src,64 stfd fp0,0(dst) stfd fp1,8(dst) stfd fp2,16(dst) stfd fp3,24(dst) stfd fp4,32(dst) stfd fp5,40(dst) stfd fp6,48(dst) stfd fp7,56(dst) addi dst,dst,64 lfd fp0,0(src) lfd fp1,8(src) lfd fp2,16(src) lfd fp3,24(src) lfd fp4,32(src) lfd fp5,40(src) lfd fp6,48(src) lfd fp7,56(src) addi src,src,64 stfd fp0,0(dst) stfd fp1,8(dst) stfd fp2,16(dst) stfd fp3,24(dst) stfd fp4,32(dst) stfd fp5,40(dst) stfd fp6,48(dst) stfd fp7,56(dst) addi dst,dst,64 blr } #endif /* * Emulate one clock cycle, returns true if new raster line has started */ // Set BA low #define SetBALow \ if (!the_cpu->BALow) { \ first_ba_cycle = the_c64->CycleCounter; \ the_cpu->BALow = true; \ } // Turn on display if Bad Line #define DisplayIfBadLine \ if (is_bad_line) \ display_state = true; // Turn on display and matrix access if Bad Line #define FetchIfBadLine \ if (is_bad_line) { \ display_state = true; \ SetBALow; \ } // Turn on display and matrix access and reset RC if Bad Line #define RCIfBadLine \ if (is_bad_line) { \ display_state = true; \ rc = 0; \ SetBALow; \ } // Idle access #define IdleAccess \ read_byte(0x3fff) // Refresh access #define RefreshAccess \ read_byte(0x3f00 | ref_cnt--) // Turn on sprite DMA if necessary #define CheckSpriteDMA \ mask = 1; \ for (i=0; i<8; i++, mask<<=1) \ if ((me & mask) && (raster_y & 0xff) == my[i]) { \ spr_dma_on |= mask; \ mc_base[i] = 0; \ if (mye & mask) \ spr_exp_y &= ~mask; \ } // Fetch sprite data pointer #define SprPtrAccess(num) \ spr_ptr[num] = read_byte(matrix_base | 0x03f8 | num) << 6; // Fetch sprite data, increment data counter #define SprDataAccess(num, bytenum) \ if (spr_dma_on & (1 << num)) { \ spr_data[num][bytenum] = read_byte(mc[num] & 0x3f | spr_ptr[num]); \ mc[num]++; \ } else if (bytenum == 1) \ IdleAccess; // Sample border color and increment chunky_ptr and fore_mask_ptr #define SampleBorder \ if (draw_this_line) { \ if (border_on) \ border_color_sample[cycle-13] = ec_color; \ chunky_ptr += 8; \ fore_mask_ptr++; \ } bool MOS6569::EmulateCycle(void) { uint8 mask; int i; switch (cycle) { // Fetch sprite pointer 3, increment raster counter, trigger raster IRQ, // test for Bad Line, reset BA if sprites 3 and 4 off, read data of sprite 3 case 1: if (raster_y == TOTAL_RASTERS-1) // Trigger VBlank in cycle 2 vblanking = true; else { // Increment raster counter raster_y++; // Trigger raster IRQ if IRQ line reached if (raster_y == irq_raster) raster_irq(); // In line $30, the DEN bit controls if Bad Lines can occur if (raster_y == 0x30) bad_lines_enabled = ctrl1 & 0x10; // Bad Line condition? is_bad_line = (raster_y >= FIRST_DMA_LINE && raster_y <= LAST_DMA_LINE && ((raster_y & 7) == y_scroll) && bad_lines_enabled); // Don't draw all lines, hide some at the top and bottom draw_this_line = (raster_y >= FIRST_DISP_LINE && raster_y <= LAST_DISP_LINE && !frame_skipped); } // First sample of border state border_on_sample[0] = border_on; SprPtrAccess(3); SprDataAccess(3, 0); DisplayIfBadLine; if (!(spr_dma_on & 0x18)) the_cpu->BALow = false; break; // Set BA for sprite 5, read data of sprite 3 case 2: if (vblanking) { // Vertical blank, reset counters raster_y = vc_base = 0; ref_cnt = 0xff; lp_triggered = vblanking = false; if (!(frame_skipped = --skip_counter)) skip_counter = ThePrefs.SkipFrames; the_c64->VBlank(!frame_skipped); // Get bitmap pointer for next frame. This must be done // after calling the_c64->VBlank() because the preferences // and screen configuration may have been changed there chunky_line_start = the_display->BitmapBase(); xmod = the_display->BitmapXMod(); // Trigger raster IRQ if IRQ in line 0 if (irq_raster == 0) raster_irq(); } // Our output goes here #ifdef __POWERPC__ chunky_ptr = (uint8 *)chunky_tmp; #else chunky_ptr = chunky_line_start; #endif // Clear foreground mask memset(fore_mask_buf, 0, DISPLAY_X/8); fore_mask_ptr = fore_mask_buf; SprDataAccess(3,1); SprDataAccess(3,2); DisplayIfBadLine; if (spr_dma_on & 0x20) SetBALow; break; // Fetch sprite pointer 4, reset BA is sprite 4 and 5 off case 3: SprPtrAccess(4); SprDataAccess(4, 0); DisplayIfBadLine; if (!(spr_dma_on & 0x30)) the_cpu->BALow = false; break; // Set BA for sprite 6, read data of sprite 4 case 4: SprDataAccess(4, 1); SprDataAccess(4, 2); DisplayIfBadLine; if (spr_dma_on & 0x40) SetBALow; break; // Fetch sprite pointer 5, reset BA if sprite 5 and 6 off case 5: SprPtrAccess(5); SprDataAccess(5, 0); DisplayIfBadLine; if (!(spr_dma_on & 0x60)) the_cpu->BALow = false; break; // Set BA for sprite 7, read data of sprite 5 case 6: SprDataAccess(5, 1); SprDataAccess(5, 2); DisplayIfBadLine; if (spr_dma_on & 0x80) SetBALow; break; // Fetch sprite pointer 6, reset BA if sprite 6 and 7 off case 7: SprPtrAccess(6); SprDataAccess(6, 0); DisplayIfBadLine; if (!(spr_dma_on & 0xc0)) the_cpu->BALow = false; break; // Read data of sprite 6 case 8: SprDataAccess(6, 1); SprDataAccess(6, 2); DisplayIfBadLine; break; // Fetch sprite pointer 7, reset BA if sprite 7 off case 9: SprPtrAccess(7); SprDataAccess(7, 0); DisplayIfBadLine; if (!(spr_dma_on & 0x80)) the_cpu->BALow = false; break; // Read data of sprite 7 case 10: SprDataAccess(7, 1); SprDataAccess(7, 2); DisplayIfBadLine; break; // Refresh, reset BA case 11: RefreshAccess; DisplayIfBadLine; the_cpu->BALow = false; break; // Refresh, turn on matrix access if Bad Line case 12: RefreshAccess; FetchIfBadLine; break; // Refresh, turn on matrix access if Bad Line, reset raster_x, graphics display starts here case 13: draw_background(); SampleBorder; RefreshAccess; FetchIfBadLine; raster_x = 0xfffc; break; // Refresh, VCBASE->VCCOUNT, turn on matrix access and reset RC if Bad Line case 14: draw_background(); SampleBorder; RefreshAccess; RCIfBadLine; vc = vc_base; break; // Refresh and matrix access, increment mc_base by 2 if y expansion flipflop is set case 15: draw_background(); SampleBorder; RefreshAccess; FetchIfBadLine; for (i=0; i<8; i++) if (spr_exp_y & (1 << i)) mc_base[i] += 2; ml_index = 0; matrix_access(); break; // Graphics and matrix access, increment mc_base by 1 if y expansion flipflop is set // and check if sprite DMA can be turned off case 16: draw_background(); SampleBorder; graphics_access(); FetchIfBadLine; mask = 1; for (i=0; i<8; i++, mask<<=1) { if (spr_exp_y & mask) mc_base[i]++; if ((mc_base[i] & 0x3f) == 0x3f) spr_dma_on &= ~mask; } matrix_access(); break; // Graphics and matrix access, turn off border in 40 column mode, display window starts here case 17: if (ctrl2 & 8) { if (raster_y == dy_stop) ud_border_on = true; else { if (ctrl1 & 0x10) { if (raster_y == dy_start) border_on = ud_border_on = false; else if (!ud_border_on) border_on = false; } else if (!ud_border_on) border_on = false; } } // Second sample of border state border_on_sample[1] = border_on; draw_background(); draw_graphics(); SampleBorder; graphics_access(); FetchIfBadLine; matrix_access(); break; // Turn off border in 38 column mode case 18: if (!(ctrl2 & 8)) { if (raster_y == dy_stop) ud_border_on = true; else { if (ctrl1 & 0x10) { if (raster_y == dy_start) border_on = ud_border_on = false; else if (!ud_border_on) border_on = false; } else if (!ud_border_on) border_on = false; } } // Third sample of border state border_on_sample[2] = border_on; // Falls through // Graphics and matrix access case 19: case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: case 29: case 30: case 31: case 32: case 33: case 34: case 35: case 36: case 37: case 38: case 39: case 40: case 41: case 42: case 43: case 44: case 45: case 46: case 47: case 48: case 49: case 50: case 51: case 52: case 53: case 54: // Gnagna... draw_graphics(); SampleBorder; graphics_access(); FetchIfBadLine; matrix_access(); last_char_data = char_data; break; // Last graphics access, turn off matrix access, turn on sprite DMA if Y coordinate is // right and sprite is enabled, handle sprite y expansion, set BA for sprite 0 case 55: draw_graphics(); SampleBorder; graphics_access(); DisplayIfBadLine; // Invert y expansion flipflop if bit in MYE is set mask = 1; for (i=0; i<8; i++, mask<<=1) if (mye & mask) spr_exp_y ^= mask; CheckSpriteDMA; if (spr_dma_on & 0x01) { // Don't remove these braces! SetBALow; } else the_cpu->BALow = false; break; // Turn on border in 38 column mode, turn on sprite DMA if Y coordinate is right and // sprite is enabled, set BA for sprite 0, display window ends here case 56: if (!(ctrl2 & 8)) border_on = true; // Fourth sample of border state border_on_sample[3] = border_on; draw_graphics(); SampleBorder; IdleAccess; DisplayIfBadLine; CheckSpriteDMA; if (spr_dma_on & 0x01) SetBALow; break; // Turn on border in 40 column mode, set BA for sprite 1, paint sprites case 57: if (ctrl2 & 8) border_on = true; // Fifth sample of border state border_on_sample[4] = border_on; // Sample spr_disp_on and spr_data for sprite drawing if ((spr_draw = spr_disp_on)) memcpy(spr_draw_data, spr_data, 8*4); // Turn off sprite display if DMA is off mask = 1; for (i=0; i<8; i++, mask<<=1) if ((spr_disp_on & mask) && !(spr_dma_on & mask)) spr_disp_on &= ~mask; draw_background(); SampleBorder; IdleAccess; DisplayIfBadLine; if (spr_dma_on & 0x02) SetBALow; break; // Fetch sprite pointer 0, mc_base->mc, turn on sprite display if necessary, // turn off display if RC=7, read data of sprite 0 case 58: draw_background(); SampleBorder; mask = 1; for (i=0; i<8; i++, mask<<=1) { mc[i] = mc_base[i]; if ((spr_dma_on & mask) && (raster_y & 0xff) == my[i]) spr_disp_on |= mask; } SprPtrAccess(0); SprDataAccess(0, 0); if (rc == 7) { vc_base = vc; display_state = false; } if (is_bad_line || display_state) { display_state = true; rc = (rc + 1) & 7; } break; // Set BA for sprite 2, read data of sprite 0 case 59: draw_background(); SampleBorder; SprDataAccess(0, 1); SprDataAccess(0, 2); DisplayIfBadLine; if (spr_dma_on & 0x04) SetBALow; break; // Fetch sprite pointer 1, reset BA if sprite 1 and 2 off, graphics display ends here case 60: draw_background(); SampleBorder; if (draw_this_line) { // Draw sprites if (spr_draw && ThePrefs.SpritesOn) draw_sprites(); // Draw border #ifdef __POWERPC__ if (border_on_sample[0]) for (i=0; i<4; i++) memset8((uint8 *)chunky_tmp+i*8, border_color_sample[i]); if (border_on_sample[1]) memset8((uint8 *)chunky_tmp+4*8, border_color_sample[4]); if (border_on_sample[2]) for (i=5; i<43; i++) memset8((uint8 *)chunky_tmp+i*8, border_color_sample[i]); if (border_on_sample[3]) memset8((uint8 *)chunky_tmp+43*8, border_color_sample[43]); if (border_on_sample[4]) for (i=44; iBALow = false; break; // Set BA for sprite 3, read data of sprite 1 case 61: SprDataAccess(1, 1); SprDataAccess(1, 2); DisplayIfBadLine; if (spr_dma_on & 0x08) SetBALow; break; // Read sprite pointer 2, reset BA if sprite 2 and 3 off, read data of sprite 2 case 62: SprPtrAccess(2); SprDataAccess(2, 0); DisplayIfBadLine; if (!(spr_dma_on & 0x0c)) the_cpu->BALow = false; break; // Set BA for sprite 4, read data of sprite 2 case 63: SprDataAccess(2, 1); SprDataAccess(2, 2); DisplayIfBadLine; if (raster_y == dy_stop) ud_border_on = true; else if (ctrl1 & 0x10 && raster_y == dy_start) ud_border_on = false; if (spr_dma_on & 0x10) SetBALow; // Last cycle raster_x += 8; cycle = 1; return true; } // Next cycle raster_x += 8; cycle++; return false; }