frodo-wii/Src/CPU1541_SC.cpp

662 lines
14 KiB
C++

/*
* CPU1541_SC.cpp - Single-cycle 6502 (1541) emulation
*
* Frodo (C) 1994-1997,2002-2005 Christian Bauer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Notes:
* ------
*
* Opcode execution:
* - All opcodes are resolved into single clock cycles. There is one
* switch case for each cycle.
* - The "state" variable specifies the routine to be executed in the
* next cycle. Its upper 8 bits contain the current opcode, its lower
* 8 bits contain the cycle number (0..7) within the opcode.
* - Opcodes are fetched in cycle 0 (state = 0)
* - The states 0x0010..0x0027 are used for interrupts
* - There is exactly one memory access in each clock cycle
*
* Memory map (1541C, the 1541 and 1541-II are a bit different):
*
* $0000-$07ff RAM (2K)
* $0800-$0fff RAM mirror
* $1000-$17ff free
* $1800-$1bff VIA 1
* $1c00-$1fff VIA 2
* $2000-$bfff free
* $c000-$ffff ROM (16K)
*
* - All memory accesses are done with the read_byte() and
* write_byte() functions which also do the memory address
* decoding.
* - The possible interrupt sources are:
* INT_VIA1IRQ: I flag is checked, jump to ($fffe) (unused)
* INT_VIA2IRQ: I flag is checked, jump to ($fffe) (unused)
* INT_IECIRQ: I flag is checked, jump to ($fffe) (unused)
* INT_RESET: Jump to ($fffc)
* - The z_flag variable has the inverse meaning of the
* 6502 Z flag
* - Only the highest bit of the n_flag variable is used
* - The $f2 opcode that would normally crash the 6502 is
* used to implement emulator-specific functions
* - The 1541 6502 emulation also includes a very simple VIA
* emulation (enough to make the IEC bus and GCR loading work).
* It's too small to move it to a source file of its own.
*
* Incompatibilities:
* ------------------
*
* - VIA emulation incomplete
*/
#include "sysdeps.h"
#include "CPU1541.h"
#include "CPU_common.h"
#include "1541job.h"
#include "C64.h"
#include "CIA.h"
#include "Display.h"
enum {
INT_RESET = 3
};
/*
* 6502 constructor: Initialize registers
*/
MOS6502_1541::MOS6502_1541(C64 *c64, Job1541 *job, C64Display *disp, uint8 *Ram, uint8 *Rom)
: ram(Ram), rom(Rom), the_c64(c64), the_display(disp), the_job(job)
{
a = x = y = 0;
sp = 0xff;
n_flag = z_flag = 0;
v_flag = d_flag = c_flag = false;
i_flag = true;
via1_t1c = via1_t1l = via1_t2c = via1_t2l = 0;
via1_sr = 0;
via2_t1c = via2_t1l = via2_t2c = via2_t2l = 0;
via2_sr = 0;
first_irq_cycle = 0;
Idle = false;
}
/*
* Reset CPU asynchronously
*/
void MOS6502_1541::AsyncReset(void)
{
interrupt.intr[INT_RESET] = true;
Idle = false;
}
/*
* Get 6502 register state
*/
void MOS6502_1541::GetState(MOS6502State *s)
{
s->a = a;
s->x = x;
s->y = y;
s->p = 0x20 | (n_flag & 0x80);
if (v_flag) s->p |= 0x40;
if (d_flag) s->p |= 0x08;
if (i_flag) s->p |= 0x04;
if (!z_flag) s->p |= 0x02;
if (c_flag) s->p |= 0x01;
s->pc = pc;
s->sp = sp | 0x0100;
s->intr[INT_VIA1IRQ] = interrupt.intr[INT_VIA1IRQ];
s->intr[INT_VIA2IRQ] = interrupt.intr[INT_VIA2IRQ];
s->intr[INT_IECIRQ] = interrupt.intr[INT_IECIRQ];
s->intr[INT_RESET] = interrupt.intr[INT_RESET];
s->idle = Idle;
s->via1_pra = via1_pra; s->via1_ddra = via1_ddra;
s->via1_prb = via1_prb; s->via1_ddrb = via1_ddrb;
s->via1_t1c = via1_t1c; s->via1_t1l = via1_t1l;
s->via1_t2c = via1_t2c; s->via1_t2l = via1_t2l;
s->via1_sr = via1_sr;
s->via1_acr = via1_acr; s->via1_pcr = via1_pcr;
s->via1_ifr = via1_ifr; s->via1_ier = via1_ier;
s->via2_pra = via2_pra; s->via2_ddra = via2_ddra;
s->via2_prb = via2_prb; s->via2_ddrb = via2_ddrb;
s->via2_t1c = via2_t1c; s->via2_t1l = via2_t1l;
s->via2_t2c = via2_t2c; s->via2_t2l = via2_t2l;
s->via2_sr = via2_sr;
s->via2_acr = via2_acr; s->via2_pcr = via2_pcr;
s->via2_ifr = via2_ifr; s->via2_ier = via2_ier;
}
/*
* Restore 6502 state
*/
void MOS6502_1541::SetState(MOS6502State *s)
{
a = s->a;
x = s->x;
y = s->y;
n_flag = s->p;
v_flag = s->p & 0x40;
d_flag = s->p & 0x08;
i_flag = s->p & 0x04;
z_flag = !(s->p & 0x02);
c_flag = s->p & 0x01;
pc = s->pc;
sp = s->sp & 0xff;
interrupt.intr[INT_VIA1IRQ] = s->intr[INT_VIA1IRQ];
interrupt.intr[INT_VIA2IRQ] = s->intr[INT_VIA2IRQ];
interrupt.intr[INT_IECIRQ] = s->intr[INT_IECIRQ];
interrupt.intr[INT_RESET] = s->intr[INT_RESET];
Idle = s->idle;
via1_pra = s->via1_pra; via1_ddra = s->via1_ddra;
via1_prb = s->via1_prb; via1_ddrb = s->via1_ddrb;
via1_t1c = s->via1_t1c; via1_t1l = s->via1_t1l;
via1_t2c = s->via1_t2c; via1_t2l = s->via1_t2l;
via1_sr = s->via1_sr;
via1_acr = s->via1_acr; via1_pcr = s->via1_pcr;
via1_ifr = s->via1_ifr; via1_ier = s->via1_ier;
via2_pra = s->via2_pra; via2_ddra = s->via2_ddra;
via2_prb = s->via2_prb; via2_ddrb = s->via2_ddrb;
via2_t1c = s->via2_t1c; via2_t1l = s->via2_t1l;
via2_t2c = s->via2_t2c; via2_t2l = s->via2_t2l;
via2_sr = s->via2_sr;
via2_acr = s->via2_acr; via2_pcr = s->via2_pcr;
via2_ifr = s->via2_ifr; via2_ier = s->via2_ier;
}
/*
* Read a byte from I/O space
*/
inline uint8 MOS6502_1541::read_byte_io(uint16 adr)
{
if ((adr & 0xfc00) == 0x1800) // VIA 1
switch (adr & 0xf) {
case 0:
return (via1_prb & 0x1a
| ((IECLines & TheCIA2->IECLines) >> 7) // DATA
| ((IECLines & TheCIA2->IECLines) >> 4) & 0x04 // CLK
| (TheCIA2->IECLines << 3) & 0x80) ^ 0x85; // ATN
case 1:
case 15:
return 0xff; // Keep 1541C ROMs happy (track 0 sensor)
case 2:
return via1_ddrb;
case 3:
return via1_ddra;
case 4:
via1_ifr &= 0xbf;
return via1_t1c;
case 5:
return via1_t1c >> 8;
case 6:
return via1_t1l;
case 7:
return via1_t1l >> 8;
case 8:
via1_ifr &= 0xdf;
return via1_t2c;
case 9:
return via1_t2c >> 8;
case 10:
return via1_sr;
case 11:
return via1_acr;
case 12:
return via1_pcr;
case 13:
return via1_ifr | (via1_ifr & via1_ier ? 0x80 : 0);
case 14:
return via1_ier | 0x80;
default: // Can't happen
return 0;
}
else if ((adr & 0xfc00) == 0x1c00) // VIA 2
switch (adr & 0xf) {
case 0:
if (the_job->SyncFound())
return via2_prb & 0x7f | the_job->WPState();
else
return via2_prb | 0x80 | the_job->WPState();
case 1:
case 15:
return the_job->ReadGCRByte();
case 2:
return via2_ddrb;
case 3:
return via2_ddra;
case 4:
via2_ifr &= 0xbf;
interrupt.intr[INT_VIA2IRQ] = false; // Clear job IRQ
return via2_t1c;
case 5:
return via2_t1c >> 8;
case 6:
return via2_t1l;
case 7:
return via2_t1l >> 8;
case 8:
via2_ifr &= 0xdf;
return via2_t2c;
case 9:
return via2_t2c >> 8;
case 10:
return via2_sr;
case 11:
return via2_acr;
case 12:
return via2_pcr;
case 13:
return via2_ifr | (via2_ifr & via2_ier ? 0x80 : 0);
case 14:
return via2_ier | 0x80;
default: // Can't happen
return 0;
}
else
return adr >> 8;
}
/*
* Read a byte from the CPU's address space
*/
uint8 MOS6502_1541::read_byte(uint16 adr)
{
if (adr >= 0xc000)
return rom[adr & 0x3fff];
else if (adr < 0x1000)
return ram[adr & 0x07ff];
else
return read_byte_io(adr);
}
/*
* Read a word (little-endian) from the CPU's address space
*/
inline uint16 MOS6502_1541::read_word(uint16 adr)
{
return read_byte(adr) | (read_byte(adr+1) << 8);
}
/*
* Write a byte to I/O space
*/
void MOS6502_1541::write_byte_io(uint16 adr, uint8 byte)
{
if ((adr & 0xfc00) == 0x1800) // VIA 1
switch (adr & 0xf) {
case 0:
via1_prb = byte;
byte = ~via1_prb & via1_ddrb;
IECLines = (byte << 6) & ((~byte ^ TheCIA2->IECLines) << 3) & 0x80
| (byte << 3) & 0x40;
break;
case 1:
case 15:
via1_pra = byte;
break;
case 2:
via1_ddrb = byte;
byte &= ~via1_prb;
IECLines = (byte << 6) & ((~byte ^ TheCIA2->IECLines) << 3) & 0x80
| (byte << 3) & 0x40;
break;
case 3:
via1_ddra = byte;
break;
case 4:
case 6:
via1_t1l = via1_t1l & 0xff00 | byte;
break;
case 5:
via1_t1l = via1_t1l & 0xff | (byte << 8);
via1_ifr &= 0xbf;
via1_t1c = via1_t1l;
break;
case 7:
via1_t1l = via1_t1l & 0xff | (byte << 8);
break;
case 8:
via1_t2l = via1_t2l & 0xff00 | byte;
break;
case 9:
via1_t2l = via1_t2l & 0xff | (byte << 8);
via1_ifr &= 0xdf;
via1_t2c = via1_t2l;
break;
case 10:
via1_sr = byte;
break;
case 11:
via1_acr = byte;
break;
case 12:
via1_pcr = byte;
break;
case 13:
via1_ifr &= ~byte;
break;
case 14:
if (byte & 0x80)
via1_ier |= byte & 0x7f;
else
via1_ier &= ~byte;
break;
}
else if ((adr & 0xfc00) == 0x1c00)
switch (adr & 0xf) {
case 0:
if ((via2_prb ^ byte) & 8) // Bit 3: Drive LED
the_display->UpdateLEDs(byte & 8 ? 1 : 0, 0, 0, 0);
if ((via2_prb ^ byte) & 3) // Bits 0/1: Stepper motor
if ((via2_prb & 3) == ((byte+1) & 3))
the_job->MoveHeadOut();
else if ((via2_prb & 3) == ((byte-1) & 3))
the_job->MoveHeadIn();
via2_prb = byte & 0xef;
break;
case 1:
case 15:
via2_pra = byte;
break;
case 2:
via2_ddrb = byte;
break;
case 3:
via2_ddra = byte;
break;
case 4:
case 6:
via2_t1l = via2_t1l & 0xff00 | byte;
break;
case 5:
via2_t1l = via2_t1l & 0xff | (byte << 8);
via2_ifr &= 0xbf;
via2_t1c = via2_t1l;
break;
case 7:
via2_t1l = via2_t1l & 0xff | (byte << 8);
break;
case 8:
via2_t2l = via2_t2l & 0xff00 | byte;
break;
case 9:
via2_t2l = via2_t2l & 0xff | (byte << 8);
via2_ifr &= 0xdf;
via2_t2c = via2_t2l;
break;
case 10:
via2_sr = byte;
break;
case 11:
via2_acr = byte;
break;
case 12:
via2_pcr = byte;
break;
case 13:
via2_ifr &= ~byte;
break;
case 14:
if (byte & 0x80)
via2_ier |= byte & 0x7f;
else
via2_ier &= ~byte;
break;
}
}
/*
* Write a byte to the CPU's address space
*/
inline void MOS6502_1541::write_byte(uint16 adr, uint8 byte)
{
if (adr < 0x1000)
ram[adr & 0x7ff] = byte;
else
write_byte_io(adr, byte);
}
/*
* Read byte from 6502/1541 address space (used by SAM)
*/
uint8 MOS6502_1541::ExtReadByte(uint16 adr)
{
return read_byte(adr);
}
/*
* Write byte to 6502/1541 address space (used by SAM)
*/
void MOS6502_1541::ExtWriteByte(uint16 adr, uint8 byte)
{
write_byte(adr, byte);
}
/*
* Adc instruction
*/
inline void MOS6502_1541::do_adc(uint8 byte)
{
if (!d_flag) {
uint16 tmp;
// Binary mode
tmp = a + byte + (c_flag ? 1 : 0);
c_flag = tmp > 0xff;
v_flag = !((a ^ byte) & 0x80) && ((a ^ tmp) & 0x80);
z_flag = n_flag = a = tmp;
} else {
uint16 al, ah;
// Decimal mode
al = (a & 0x0f) + (byte & 0x0f) + (c_flag ? 1 : 0); // Calculate lower nybble
if (al > 9) al += 6; // BCD fixup for lower nybble
ah = (a >> 4) + (byte >> 4); // Calculate upper nybble
if (al > 0x0f) ah++;
z_flag = a + byte + (c_flag ? 1 : 0); // Set flags
n_flag = ah << 4; // Only highest bit used
v_flag = (((ah << 4) ^ a) & 0x80) && !((a ^ byte) & 0x80);
if (ah > 9) ah += 6; // BCD fixup for upper nybble
c_flag = ah > 0x0f; // Set carry flag
a = (ah << 4) | (al & 0x0f); // Compose result
}
}
/*
* Sbc instruction
*/
inline void MOS6502_1541::do_sbc(uint8 byte)
{
uint16 tmp = a - byte - (c_flag ? 0 : 1);
if (!d_flag) {
// Binary mode
c_flag = tmp < 0x100;
v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80);
z_flag = n_flag = a = tmp;
} else {
uint16 al, ah;
// Decimal mode
al = (a & 0x0f) - (byte & 0x0f) - (c_flag ? 0 : 1); // Calculate lower nybble
ah = (a >> 4) - (byte >> 4); // Calculate upper nybble
if (al & 0x10) {
al -= 6; // BCD fixup for lower nybble
ah--;
}
if (ah & 0x10) ah -= 6; // BCD fixup for upper nybble
c_flag = tmp < 0x100; // Set flags
v_flag = ((a ^ tmp) & 0x80) && ((a ^ byte) & 0x80);
z_flag = n_flag = tmp;
a = (ah << 4) | (al & 0x0f); // Compose result
}
}
/*
* Reset CPU
*/
void MOS6502_1541::Reset(void)
{
// IEC lines and VIA registers
IECLines = 0xc0;
via1_pra = via1_ddra = via1_prb = via1_ddrb = 0;
via1_acr = via1_pcr = 0;
via1_ifr = via1_ier = 0;
via2_pra = via2_ddra = via2_prb = via2_ddrb = 0;
via2_acr = via2_pcr = 0;
via2_ifr = via2_ier = 0;
// Clear all interrupt lines
interrupt.intr_any = 0;
// Read reset vector
pc = read_word(0xfffc);
state = 0;
// Wake up 1541
Idle = false;
}
/*
* Illegal opcode encountered
*/
void MOS6502_1541::illegal_op(uint8 op, uint16 at)
{
char illop_msg[80];
sprintf(illop_msg, "1541: Illegal opcode %02x at %04x.", op, at);
if (ShowRequester(illop_msg, "Reset 1541", "Reset C64"))
the_c64->Reset();
Reset();
}
/*
* Emulate one 6502 clock cycle
*/
// Read byte from memory
#define read_to(adr, to) \
to = read_byte(adr);
// Read byte from memory, throw away result
#define read_idle(adr) \
read_byte(adr);
void MOS6502_1541::EmulateCycle(void)
{
uint8 data, tmp;
// Any pending interrupts in state 0 (opcode fetch)?
if (!state && interrupt.intr_any) {
if (interrupt.intr[INT_RESET])
Reset();
else if ((interrupt.intr[INT_VIA1IRQ] || interrupt.intr[INT_VIA2IRQ] || interrupt.intr[INT_IECIRQ]) && (the_c64->CycleCounter-first_irq_cycle >= 2) && !i_flag)
state = 0x0008;
}
#define IS_CPU_1541
#include "CPU_emulcycle.h"
// Extension opcode
case O_EXT:
if (pc < 0xc000) {
illegal_op(0xf2, pc-1);
break;
}
switch (read_byte(pc++)) {
case 0x00: // Go to sleep in DOS idle loop if error flag is clear and no command received
Idle = !(ram[0x26c] | ram[0x7c]);
pc = 0xebff;
Last;
case 0x01: // Write sector
the_job->WriteSector();
pc = 0xf5dc;
Last;
case 0x02: // Format track
the_job->FormatTrack();
pc = 0xfd8b;
Last;
default:
illegal_op(0xf2, pc-1);
break;
}
break;
default:
illegal_op(op, pc-1);
break;
}
}