frodo-wii/Src/Network.cpp

1322 lines
31 KiB
C++

/*
* Network.h - Network handling
*
* Frodo (C) 2009 Simon Kagstrom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "sysdeps.h"
#include "Network.h"
#include "Display.h"
#include "Prefs.h"
#include "main.h"
#include "C64.h"
#if defined(GEKKO)
# include <wiiuse/wpad.h>
#endif
#define N_SQUARES_W 16
#define N_SQUARES_H 8
#define SQUARE_W (DISPLAY_X / N_SQUARES_W)
#define SQUARE_H (DISPLAY_Y / N_SQUARES_H)
#define SQUARE_TO_X(square) ( ((square) % N_SQUARES_W) * SQUARE_W )
#define SQUARE_TO_Y(square) ( ((square) / N_SQUARES_W) * SQUARE_H )
/* Worst cases for RLE and DIFF */
#define RAW_SIZE ( (SQUARE_W * SQUARE_H) / 2 )
#define RLE_SIZE ( RAW_SIZE * 4 + 8)
#define DIFF_SIZE ( RAW_SIZE * 4 + 8)
Network::Network(const char *remote_host, int port)
{
const size_t size = NETWORK_UPDATE_SIZE;
this->InitNetwork();
this->is_master = true; /* Assume true */
this->connected = false;
/* "big enough" buffer */
this->ud = (NetworkUpdate*)malloc( size );
assert(this->ud);
this->ResetNetworkUpdate();
this->traffic = 0;
this->last_traffic = 0;
this->target_kbps = 160000; /* kilobit per seconds */
this->kbps = 0;
this->raw_buf = (Uint8*)malloc(RAW_SIZE);
this->rle_buf = (Uint8*)malloc(RLE_SIZE);
this->diff_buf = (Uint8*)malloc(DIFF_SIZE);
assert(this->raw_buf && this->rle_buf && this->diff_buf);
/* Go from lower right to upper left */
this->refresh_square = N_SQUARES_W * N_SQUARES_H - 1;
this->square_updated = (Uint32*)malloc( N_SQUARES_W * N_SQUARES_H * sizeof(Uint32));
assert(this->square_updated);
memset(this->square_updated, 0, N_SQUARES_W * N_SQUARES_H * sizeof(Uint32));
this->screen = (Uint8 *)malloc(DISPLAY_X * DISPLAY_Y);
assert(this->screen);
this->sound_head = this->sound_tail = 0;
this->sound_last_cycles = SDL_GetTicks();
memset(this->sound_active, 0, sizeof(this->sound_active));
/* Assume black screen */
memset(this->screen, 0, DISPLAY_X * DISPLAY_Y);
memset(this->screenshot, 0, sizeof(this->screenshot));
Network::networking_started = true;
/* Peer addresses, if it fails we are out of luck */
if (this->InitSocket(remote_host, port) == false)
{
fprintf(stderr, "Could not init the socket\n");
exit(1);
}
this->network_connection_state = CONN_CONNECT_TO_BROKER;
this->connection_error_message = "Connection OK";
}
Network::~Network()
{
free(this->ud);
free(this->square_updated);
free(this->raw_buf);
free(this->rle_buf);
free(this->diff_buf);
free(this->screen);
this->CloseSocket();
this->ShutdownNetwork();
}
void Network::Tick(int ms)
{
int last_kbps = ((this->traffic - this->last_traffic) * 8) * (1000 / ms);
/* 1/3 of the new value, 2/3 of the old */
this->kbps = 2 * (this->kbps / 3) + (last_kbps / 3);
this->last_traffic = this->traffic;
}
bool Network::DecodeDisplayDiff(struct NetworkUpdate *src,
int x_start, int y_start)
{
struct NetworkUpdateDisplay *dp = (struct NetworkUpdateDisplay *)src->data;
int p = 0;
int x = x_start;
int y = y_start;
int sz = src->size - sizeof(NetworkUpdate) - sizeof(NetworkUpdateDisplay);
/* Something is wrong if this is true... */
if (sz % 2 != 0)
return false;
while (p < sz)
{
Uint8 len = dp->data[p];
Uint8 color = dp->data[p+1];
int x_diff = (x - x_start + len) % SQUARE_W;
int y_diff = (x - x_start + len) / SQUARE_W;
x = x_start + x_diff;
y = y + y_diff;
this->screen[y * DISPLAY_X + x] = color;
p += 2;
}
return true;
}
bool Network::DecodeDisplayRLE(struct NetworkUpdate *src,
int x_start, int y_start)
{
struct NetworkUpdateDisplay *dp = (struct NetworkUpdateDisplay *)src->data;
int p = 0;
int x = x_start;
int y = y_start;
int sz = src->size - sizeof(NetworkUpdate) - sizeof(NetworkUpdateDisplay);
/* Something is wrong if this is true... */
if (sz % 2 != 0)
return false;
while (p < sz)
{
Uint8 len = dp->data[p];
Uint8 color = dp->data[p+1];
while (len > 0)
{
this->screen[y * DISPLAY_X + x] = color;
len--;
x++;
if ((x - x_start) % SQUARE_W == 0)
{
x = x_start;
y++;
}
}
p += 2;
}
return true;
}
bool Network::DecodeDisplayRaw(struct NetworkUpdate *src,
int x_start, int y_start)
{
struct NetworkUpdateDisplay *dp = (struct NetworkUpdateDisplay *)src->data;
const int raw_w = SQUARE_W / 2;
for (int y = y_start; y < y_start + SQUARE_H; y++)
{
for (int x = x_start; x < x_start + SQUARE_W; x += 2)
{
Uint8 v = dp->data[(y - y_start) * raw_w + (x - x_start) / 2];
Uint8 a = v >> 4;
Uint8 b = v & 0xf;
this->screen[ y * DISPLAY_X + x ] = a;
this->screen[ y * DISPLAY_X + x + 1 ] = b;
}
}
return true;
}
bool Network::CompareSquare(Uint8 *a, Uint8 *b)
{
for (int y = 0; y < SQUARE_H; y++)
{
for (int x = 0; x < SQUARE_W; x += 4)
{
Uint32 va = *((Uint32*)&a[ y * DISPLAY_X + x ]);
Uint32 vb = *((Uint32*)&b[ y * DISPLAY_X + x ]);
if (va != vb)
return false;
}
}
return true;
}
void Network::EncodeScreenshot(Uint8 *dst, Uint8 *master)
{
int x, y;
int cnt = 0;
int p = 0;
memset(dst, 0, (SCREENSHOT_X * SCREENSHOT_Y) / 2);
for (y = 0; y < DISPLAY_Y; y += SCREENSHOT_FACTOR)
{
for (x = 0; x < DISPLAY_X; x += SCREENSHOT_FACTOR)
{
Uint8 col_s = master[ y * DISPLAY_X + x ];
bool is_odd = (cnt & 1) == 1;
int raw_shift = (is_odd ? 0 : 4);
/* Every second is shifted */
dst[ p ] |= (col_s << raw_shift);
if (is_odd)
p++;
cnt++;
}
}
}
void Network::EncodeDisplay(Uint8 *master, Uint8 *remote)
{
if (!this->network_connection_state == MASTER)
return;
for ( int sq = 0; sq < N_SQUARES_H * N_SQUARES_W; sq++ )
{
Uint8 *p_master = &master[ SQUARE_TO_Y(sq) * DISPLAY_X + SQUARE_TO_X(sq) ];
Uint8 *p_remote = &remote[ SQUARE_TO_Y(sq) * DISPLAY_X + SQUARE_TO_X(sq) ];
/* Refresh periodically or if the squares differ */
if ( (this->refresh_square == sq && this->kbps < this->target_kbps * 0.7) ||
this->CompareSquare(p_master, p_remote) == false)
{
NetworkUpdate *dst = (NetworkUpdate *)this->cur_ud;
/* Updated, encode this */
this->EncodeDisplaySquare(dst, master, remote, sq,
this->refresh_square != sq);
this->AddNetworkUpdate(dst);
/* This has been refreshed, move to the next one */
if (this->refresh_square == sq)
{
this->refresh_square--;
if (this->refresh_square < 0)
this->refresh_square = N_SQUARES_H * N_SQUARES_W - 1;
}
}
else
this->square_updated[sq] = 0;
}
memcpy(remote, master, DISPLAY_X * DISPLAY_Y);
}
size_t Network::EncodeDisplaySquare(struct NetworkUpdate *dst,
Uint8 *screen, Uint8 *remote, int square,
bool use_diff)
{
struct NetworkUpdateDisplay *dp = (struct NetworkUpdateDisplay *)dst->data;
const int x_start = SQUARE_TO_X(square);
const int y_start = SQUARE_TO_Y(square);
Uint8 rle_color = screen[ y_start * DISPLAY_X + x_start ];
int rle_len = 0, diff_len = 0;
size_t rle_sz = 0, diff_sz = 0;
const int raw_w = SQUARE_W / 2;
int type = DISPLAY_UPDATE_RAW;
size_t out;
for (int y = y_start; y < y_start + SQUARE_H; y++)
{
memset( &this->raw_buf[(y - y_start) * raw_w], 0, raw_w );
for (int x = x_start; x < x_start + SQUARE_W; x++)
{
Uint8 col_s = screen[ y * DISPLAY_X + x ];
Uint8 col_r = remote[ y * DISPLAY_X + x ];
bool is_odd = (x & 1) == 1;
int raw_shift = (is_odd ? 0 : 4);
/* Every second is shifted */
this->raw_buf[ (y - y_start) * raw_w + (x - x_start) / 2 ] |=
(col_s << raw_shift);
if (rle_color != col_s ||
rle_len >= 255)
{
this->rle_buf[rle_sz] = rle_len;
this->rle_buf[rle_sz + 1] = rle_color;
rle_sz += 2;
rle_len = 0;
rle_color = col_s;
}
if (col_r != col_s || diff_len >= 255)
{
this->diff_buf[diff_sz] = diff_len;
this->diff_buf[diff_sz + 1] = col_s;
diff_sz += 2;
diff_len = 0;
}
diff_len++;
rle_len++;
}
}
/* The last section for RLE */
if (rle_len != 0)
{
this->rle_buf[rle_sz] = rle_len;
this->rle_buf[rle_sz + 1] = rle_color;
rle_sz += 2;
}
out = RAW_SIZE;
if (use_diff && (diff_sz < rle_sz && diff_sz < RAW_SIZE))
{
memcpy(dp->data, this->diff_buf, diff_sz);
type = DISPLAY_UPDATE_DIFF;
out = diff_sz;
}
else if (rle_sz < RAW_SIZE)
{
memcpy(dp->data, this->rle_buf, rle_sz);
type = DISPLAY_UPDATE_RLE;
out = rle_sz;
}
else
memcpy(dp->data, this->raw_buf, RAW_SIZE);
/* Setup the structure */
dp->square = square;
dst = InitNetworkUpdate(dst, type,
sizeof(struct NetworkUpdate) + sizeof(struct NetworkUpdateDisplay) + out);
this->square_updated[square] = out | (type << 16);
return dst->size;
}
bool Network::DecodeDisplayUpdate(struct NetworkUpdate *src)
{
struct NetworkUpdateDisplay *dp = (struct NetworkUpdateDisplay *)src->data;
int square = dp->square;
const int square_x = SQUARE_TO_X(square);
const int square_y = SQUARE_TO_Y(square);
if (src->type == DISPLAY_UPDATE_DIFF)
return this->DecodeDisplayDiff(src, square_x, square_y);
else if (src->type == DISPLAY_UPDATE_RAW)
return this->DecodeDisplayRaw(src, square_x, square_y);
else if (src->type == DISPLAY_UPDATE_RLE)
return this->DecodeDisplayRLE(src, square_x, square_y);
/* Error */
return false;
}
void Network::EncodeTextMessage(char *str)
{
NetworkUpdate *dst = (NetworkUpdate *)this->cur_ud;
char *p = (char*)dst->data;
size_t len = strlen(str) + 1;
len += (len & 3);
dst = InitNetworkUpdate(dst, TEXT_MESSAGE,
sizeof(NetworkUpdate) + len);
memset(p, 0, len);
strncpy(p, str, len - 1);
this->AddNetworkUpdate(dst);
}
void Network::EnqueueSound(uint32 linecnt_diff, uint8 adr, uint8 val)
{
NetworkUpdateSoundInfo *cur = &this->sound_active[this->sound_head];
cur->adr = adr;
cur->val = val;
cur->delay_cycles = linecnt_diff;
this->sound_head++;
if (this->sound_head >= NETWORK_SOUND_BUF_SIZE)
this->sound_head = 0;
/* Head has reached tail */
if (this->sound_head == this->sound_tail)
this->sound_tail = (this->sound_head + 1) % NETWORK_SOUND_BUF_SIZE;
}
void Network::RegisterSidWrite(uint32 linecnt, uint8 adr, uint8 val)
{
this->EnqueueSound(linecnt - this->sound_last_cycles, adr, val);
/* Update the cycle counter */
sound_last_cycles = linecnt;
}
void Network::FlushSound(void)
{
NetworkUpdate *dst = this->cur_ud;
NetworkUpdateSound *snd = (NetworkUpdateSound *)dst->data;
NetworkUpdateSoundInfo *snd_info = snd->info;
snd->flags = 0;
snd->n_items = this->sound_head - this->sound_tail;
if (this->sound_head < this->sound_tail) {
snd->n_items = NETWORK_SOUND_BUF_SIZE - this->sound_tail + this->sound_head;
memcpy(snd_info, &this->sound_active[this->sound_tail],
(NETWORK_SOUND_BUF_SIZE - this->sound_tail) * sizeof(struct NetworkUpdateSoundInfo));
memcpy(snd_info + NETWORK_SOUND_BUF_SIZE - this->sound_tail,
&this->sound_active[0],
this->sound_head * sizeof(struct NetworkUpdateSoundInfo));
}
else
{
memcpy(snd_info, &this->sound_active[this->sound_tail],
(this->sound_head - this->sound_tail) * sizeof(struct NetworkUpdateSoundInfo));
}
this->sound_tail = this->sound_head;
this->sound_last_send = SDL_GetTicks();
InitNetworkUpdate(dst, SOUND_UPDATE, sizeof(NetworkUpdate) +
sizeof(NetworkUpdateSound) + sizeof(NetworkUpdateSoundInfo) * snd->n_items);
this->AddNetworkUpdate(dst);
this->sound_last_cycles = TheC64->linecnt;
}
struct NetworkUpdateSoundInfo *Network::DequeueSound()
{
struct NetworkUpdateSoundInfo *out;
if (this->sound_tail == this->sound_head)
return NULL;
out = &this->sound_active[this->sound_tail];
this->sound_tail = (this->sound_tail + 1) % NETWORK_SOUND_BUF_SIZE;
return out;
}
void Network::EncodeJoystickUpdate(Uint8 v)
{
struct NetworkUpdate *dst = this->cur_ud;
struct NetworkUpdateJoystick *j = (NetworkUpdateJoystick *)dst->data;
if (TheC64->network_connection_type == MASTER || this->cur_joystick_data == v)
return;
dst = InitNetworkUpdate(dst, JOYSTICK_UPDATE,
sizeof(NetworkUpdate) + sizeof(NetworkUpdateJoystick));
j->val = v;
this->AddNetworkUpdate(dst);
this->cur_joystick_data = v;
}
void Network::ResetNetworkUpdate(void)
{
memset(this->ud, 0, NETWORK_UPDATE_SIZE);
this->cur_ud = InitNetworkUpdate(this->ud, STOP, sizeof(NetworkUpdate));
}
void Network::DrawTransferredBlocks(SDL_Surface *screen)
{
const int x_border = (DISPLAY_X - FULL_DISPLAY_X / 2);
const int y_border = (DISPLAY_Y - FULL_DISPLAY_Y / 2);
for (int sq = 0; sq < N_SQUARES_W * N_SQUARES_H; sq++)
{
int x = SQUARE_TO_X(sq) * 2 - x_border;
int y = SQUARE_TO_Y(sq) * 2 - y_border;
int w = SQUARE_W * 2;
int h = SQUARE_H * 2;
if (this->square_updated[sq])
{
SDL_Rect l = {x, y, 1, h};
SDL_Rect r = {x + w, y, 1, h};
SDL_Rect u = {x, y, w, 1};
SDL_Rect d = {x, y + h, w, 1};
Uint32 raw = this->square_updated[sq];
SDL_Rect size = {x, y, 2 * ((raw & 0xffff) / 17), 4};
Uint32 color = 4;
if ((raw >> 16) == DISPLAY_UPDATE_RLE)
color = 5;
else if ((raw >> 16) == DISPLAY_UPDATE_DIFF)
color = 6;
SDL_FillRect(screen, &l, 19);
SDL_FillRect(screen, &r, 19);
SDL_FillRect(screen, &u, 19);
SDL_FillRect(screen, &d, 19);
SDL_FillRect(screen, &size, color);
}
}
}
bool Network::ReceiveUpdate()
{
struct timeval tv;
memset(&tv, 0, sizeof(tv));
return this->ReceiveUpdate(this->ud, NETWORK_UPDATE_SIZE, &tv);
}
bool Network::ReceiveUpdate(struct timeval *tv)
{
return this->ReceiveUpdate(this->ud, NETWORK_UPDATE_SIZE, tv);
}
bool Network::ReceiveUpdate(NetworkUpdate *dst, size_t total_sz,
struct timeval *tv)
{
Uint8 *p = (Uint8*)dst;
size_t sz_left = total_sz;
size_t received = 0;
bool has_stop = false;
if (this->Select(this->sock, tv) == false)
return false;
if (sz_left <= 0)
return false;
/* Receive the header */
do {
ssize_t actual_sz = this->ReceiveFrom(p, this->sock,
4096, NULL);
if (actual_sz <= 0)
return false;
received += actual_sz;
if (ntohs(dst->magic) != FRODO_NETWORK_MAGIC) {
printf("Packet with wrong magic received\n");
return false;
}
if (this->ScanDataForStop(dst, received) == true)
break;
sz_left -= actual_sz;
p = p + actual_sz;
} while (!has_stop);
if (this->DeMarshalAllData(dst, received) == false) {
printf("Demarshal error\n");
return false;
}
return true;
}
bool Network::SendUpdate()
{
NetworkUpdate *src = this->ud;
NetworkUpdate *stop = InitNetworkUpdate(this->cur_ud, STOP, sizeof(NetworkUpdate));
size_t sz;
/* Nothing to send, that's OK */
if ( src == stop )
return true;
/* Add a stop at the end of the update */
this->AddNetworkUpdate(stop);
if (this->MarshalAllData(src) == false)
return false;
sz = this->GetNetworkUpdateSize();
if (sz <= 0)
return false;
size_t cur_sz = 0;
Uint8 *p = (Uint8*)src;
do
{
size_t size_to_send = this->FillNetworkBuffer((NetworkUpdate*)p);
ssize_t v;
v = this->SendTo((void*)p, this->sock,
size_to_send, &this->connection_addr);
if (v < 0 || v != size_to_send)
return false;
cur_sz += size_to_send;
p += size_to_send;
} while (cur_sz < sz);
this->traffic += cur_sz;
return true;
}
size_t Network::FillNetworkBuffer(NetworkUpdate *cur)
{
size_t sz = 0;
size_t cur_sz;
int cnt = 0;
while(1)
{
cur_sz = ntohl(cur->size);
if (sz + cur_sz >= 4096)
break;
cnt++;
sz += cur_sz;
if (ntohs(cur->type) == STOP)
break;
cur = (NetworkUpdate*)((Uint8*)cur + cur_sz);
}
assert(sz <= 4096);
return sz;
}
void Network::AddNetworkUpdate(NetworkUpdate *update)
{
Uint8 *next = (Uint8*)this->cur_ud + update->size;
this->cur_ud = (NetworkUpdate*)next;
}
bool Network::MarshalData(NetworkUpdate *p)
{
switch (p->type)
{
case DISPLAY_UPDATE_RAW:
case DISPLAY_UPDATE_RLE:
case DISPLAY_UPDATE_DIFF:
case JOYSTICK_UPDATE:
case DISCONNECT:
case CONNECT_TO_PEER:
case TEXT_MESSAGE:
case STOP:
break;
case BANDWIDTH_PING:
case BANDWIDTH_ACK:
case PING:
case ACK:
{
NetworkUpdatePingAck *pa = (NetworkUpdatePingAck *)p->data;
pa->seq = htonl(pa->seq);
} break;
case SELECT_PEER:
{
NetworkUpdateSelectPeer *sp = (NetworkUpdateSelectPeer *)p->data;
sp->server_id = htonl(sp->server_id);
} break;
case LIST_PEERS:
{
NetworkUpdateListPeers *lp = (NetworkUpdateListPeers *)p->data;
for (unsigned int i = 0; i < lp->n_peers; i++)
{
NetworkUpdatePeerInfo *peer = &lp->peers[i];
peer->key = htons(peer->key);
peer->private_port = htons(peer->private_port);
peer->public_port = htons(peer->public_port);
peer->is_master = htons(peer->is_master);
peer->server_id = htonl(peer->server_id);
peer->version = htonl(peer->version);
peer->avatar = htonl(peer->avatar);
}
lp->n_peers = htonl(lp->n_peers);
lp->your_port = htons(lp->your_port);
} break;
case CONNECT_TO_BROKER:
{
NetworkUpdatePeerInfo *pi = (NetworkUpdatePeerInfo *)p->data;
/* The rest is simply ignored */
pi->is_master = htons(pi->is_master);
pi->key = htons(pi->key);
pi->version = htonl(pi->version);
} break;
case SOUND_UPDATE:
{
NetworkUpdateSound *snd = (NetworkUpdateSound *)p->data;
NetworkUpdateSoundInfo *info = (NetworkUpdateSoundInfo *)snd->info;
int items = snd->n_items;
snd->flags = htons(snd->flags);
snd->n_items = htons(snd->n_items);
for (unsigned int i = 0; i < items; i++)
{
NetworkUpdateSoundInfo *cur = &info[i];
cur->delay_cycles = htons(cur->delay_cycles);
}
} break;
default:
/* Unknown data... */
fprintf(stderr, "Got unknown data %d while marshalling. Something is wrong\n",
p->type);
exit(0); // FIXME! TMP!!
return false;
}
p->size = htonl(p->size);
p->magic = htons(p->magic);
p->type = htons(p->type);
return true;
}
bool Network::MarshalAllData(NetworkUpdate *ud)
{
NetworkUpdate *p = ud;
while (p->type != STOP)
{
NetworkUpdate *nxt = this->GetNext(p);
if (this->MarshalData(p) == false)
return false;
p = nxt;
}
/* The stop tag */
return this->MarshalData(p);
}
bool Network::DeMarshalData(NetworkUpdate *p)
{
p->size = ntohl(p->size);
p->magic = ntohs(p->magic);
p->type = ntohs(p->type);
if (p->magic != FRODO_NETWORK_MAGIC)
return false;
switch (p->type)
{
case DISPLAY_UPDATE_RAW:
case DISPLAY_UPDATE_RLE:
case DISPLAY_UPDATE_DIFF:
case JOYSTICK_UPDATE:
case DISCONNECT:
case CONNECT_TO_PEER:
case TEXT_MESSAGE:
case STOP:
/* Nothing to do, just bytes */
break;
case BANDWIDTH_PING:
case BANDWIDTH_ACK:
case PING:
case ACK:
{
NetworkUpdatePingAck *pa = (NetworkUpdatePingAck *)p->data;
pa->seq = ntohl(pa->seq);
} break;
case SELECT_PEER:
{
NetworkUpdateSelectPeer *sp = (NetworkUpdateSelectPeer *)p->data;
sp->server_id = ntohl(sp->server_id);
} break;
case LIST_PEERS:
{
NetworkUpdateListPeers *lp = (NetworkUpdateListPeers *)p->data;
lp->n_peers = ntohl(lp->n_peers);
for (unsigned int i = 0; i < lp->n_peers; i++)
{
NetworkUpdatePeerInfo *peer = &lp->peers[i];
peer->key = ntohs(peer->key);
peer->private_port = ntohs(peer->private_port);
peer->public_port = ntohs(peer->public_port);
peer->is_master = ntohs(peer->is_master);
peer->server_id = ntohl(peer->server_id);
peer->version = ntohl(peer->version);
peer->avatar = ntohl(peer->avatar);
}
lp->your_port = ntohs(lp->your_port);
} break;
case SOUND_UPDATE:
{
NetworkUpdateSound *snd = (NetworkUpdateSound *)p->data;
NetworkUpdateSoundInfo *info = (NetworkUpdateSoundInfo *)snd->info;
snd->flags = ntohs(snd->flags);
snd->n_items = ntohs(snd->n_items);
for (unsigned int i = 0; i < snd->n_items; i++)
{
NetworkUpdateSoundInfo *cur = &info[i];
cur->delay_cycles = ntohs(cur->delay_cycles);
}
} break;
default:
/* Unknown data... */
printf("Got unknown data: %d\n", p->type);
return false;
}
return true;
}
bool Network::DeMarshalAllData(NetworkUpdate *ud, size_t max_size)
{
NetworkUpdate *p = ud;
int cnt = 0;
size_t sz = 0;
while (ntohs(p->type) != STOP &&
sz + ntohl(p->size) < max_size)
{
if (this->DeMarshalData(p) == false)
return false;
sz += p->size;
cnt++;
p = this->GetNext(p);
}
return this->DeMarshalData(p);
}
bool Network::ScanDataForStop(NetworkUpdate *ud, size_t max_size)
{
NetworkUpdate *p = ud;
size_t sz = 0;
while (ntohs(p->type) != STOP &&
sz + ntohl(p->size) < max_size)
{
size_t cur_sz = ntohl(p->size);
sz += cur_sz;
p = (NetworkUpdate*)((Uint8*)p + cur_sz);
}
/* The stop tag (maybe) */
return ntohs(p->type) == STOP;
}
bool Network::DecodeUpdate(C64Display *display, uint8 *js, MOS6581 *dst)
{
NetworkUpdate *p = this->ud;
bool out = true;
while (p->type != STOP)
{
switch(p->type)
{
case SOUND_UPDATE:
{
/* No sound updates _to_ the master */
if (TheC64->network_connection_type == MASTER)
break;
NetworkUpdateSound *snd = (NetworkUpdateSound *)p->data;
NetworkUpdateSoundInfo *info = (NetworkUpdateSoundInfo *)snd->info;
for (unsigned int i = 0; i < snd->n_items; i++)
{
NetworkUpdateSoundInfo *cur = &info[i];
this->EnqueueSound(cur->delay_cycles, cur->adr, cur->val);
}
} break;
case DISPLAY_UPDATE_RAW:
case DISPLAY_UPDATE_RLE:
case DISPLAY_UPDATE_DIFF:
/* No screen updates _to_ the master */
if (TheC64->network_connection_type == MASTER)
break;
if (this->DecodeDisplayUpdate(p) == false)
out = false;
break;
case JOYSTICK_UPDATE:
/* No joystick updates _from_ the master */
if (js && TheC64->network_connection_type == MASTER)
{
NetworkUpdateJoystick *j = (NetworkUpdateJoystick *)p->data;
*js = j->val;
}
break;
case TEXT_MESSAGE:
{
static char display_buf[80];
strncpy(display_buf, (char*)p->data, 80);
display->display_status_string(display_buf, 4);
} break;
case LIST_PEERS:
{
} break;
case BANDWIDTH_PING:
case PING:
{
NetworkUpdatePingAck *ping = (NetworkUpdatePingAck *)p->data;
uint16 type = ACK;
if (ud->type == BANDWIDTH_PING)
type = BANDWIDTH_ACK;
this->SendPingAck(ping->seq, type, ud->size);
} break;
case BANDWIDTH_ACK:
case ACK:
/* We won't receive this, but it also doesn't really matter */
break;
case DISCONNECT:
out = false;
break;
default:
break;
}
p = this->GetNext(p);
}
return out;
}
bool Network::ConnectToBroker()
{
NetworkUpdate *ud = InitNetworkUpdate(this->ud, CONNECT_TO_BROKER,
sizeof(NetworkUpdate) + sizeof(NetworkUpdatePeerInfo));
NetworkUpdatePeerInfo *pi = (NetworkUpdatePeerInfo *)ud->data;
bool out;
pi->is_master = 0; /* Will be set later */
pi->key = ThePrefs.NetworkKey;
pi->version = FRODO_NETWORK_PROTOCOL_VERSION;
pi->avatar = ThePrefs.NetworkAvatar;
this->EncodeScreenshot(pi->screenshot, TheC64->TheDisplay->BitmapBase());
strcpy((char*)pi->name, ThePrefs.NetworkName);
this->AddNetworkUpdate(ud);
out = this->SendUpdate();
this->ResetNetworkUpdate();
return out;
}
bool Network::IpToStr(char *dst, uint8 *ip_in)
{
int ip[4];
for (int i = 0; i < 4; i++)
{
char tmp[3];
char *endp;
tmp[0] = ip_in[i * 2];
tmp[1] = ip_in[i * 2 + 1];
tmp[2] = '\0';
ip[i] = strtoul(tmp, &endp, 16);
if (endp == (const char*)tmp)
return false;
}
sprintf(dst, "%d.%d.%d.%d", ip[3], ip[2], ip[1], ip[0]);
return true;
}
void Network::SendPingAck(int seq, uint16 type, size_t size_to_send)
{
NetworkUpdate *ud = InitNetworkUpdate(this->ud, type, size_to_send);
NetworkUpdatePingAck *p = (NetworkUpdatePingAck*)ud->data;
p->seq = seq;
this->AddNetworkUpdate(ud);
}
network_connection_error_t Network::WaitForPeerAddress()
{
NetworkUpdateListPeers *pi;
this->ResetNetworkUpdate();
if (this->ReceiveUpdate() == false)
return AGAIN_ERROR;
if (this->ud->type == PING)
{
NetworkUpdatePingAck *p = (NetworkUpdatePingAck*)ud->data;
/* Send ack and go back to this state again */
this->SendPingAck(p->seq, ACK, ud->size);
this->SendUpdate();
this->ResetNetworkUpdate();
return AGAIN_ERROR;
}
if (this->ud->type != LIST_PEERS)
return SERVER_GARBAGE_ERROR;
pi = (NetworkUpdateListPeers *)this->ud->data;
if (pi->n_peers != 1)
{
fprintf(stderr, "There is something wrong with the server: Got %d peers on master connect\n"
"Contact Simon Kagstrom and ask him to correct it\n",
pi->n_peers);
return SERVER_GARBAGE_ERROR;
}
if (pi->peers[0].version != FRODO_NETWORK_PROTOCOL_VERSION)
return VERSION_ERROR;
/* Setup the peer info */
char buf[128];
/* Not sure what to do if this fails */
this->IpToStr(buf, pi->peers[0].public_ip);
printf("Converted ip to %s:%d\n", buf, pi->peers[0].public_port);
if (this->InitSockaddr(&this->connection_addr, buf,
pi->peers[0].public_port) == false)
{
printf("Init sockaddr error\n");
return SERVER_GARBAGE_ERROR;
}
return OK;
}
bool Network::SelectPeer(uint32 id)
{
NetworkUpdate *ud = InitNetworkUpdate(this->ud, SELECT_PEER,
sizeof(NetworkUpdate) + sizeof(NetworkUpdateSelectPeer));
NetworkUpdateSelectPeer *p = (NetworkUpdateSelectPeer*)ud->data;
bool out;
p->server_id = id;
this->AddNetworkUpdate(ud);
out = this->SendUpdate();
this->ResetNetworkUpdate();
return out;
}
network_connection_error_t Network::WaitForPeerList()
{
NetworkUpdateListPeers *pi;
struct timeval tv;
const char **msgs;
tv.tv_sec = 1;
tv.tv_usec = 0;
this->ResetNetworkUpdate();
if (this->ReceiveUpdate(&tv) == false)
return AGAIN_ERROR;
if (this->ud->type == PING)
{
NetworkUpdatePingAck *p = (NetworkUpdatePingAck*)ud->data;
/* Send ack and go back to this state again */
this->SendPingAck(p->seq, ACK, ud->size);
this->SendUpdate();
this->ResetNetworkUpdate();
return AGAIN_ERROR;
}
if (ud->type != LIST_PEERS)
return SERVER_GARBAGE_ERROR;
pi = (NetworkUpdateListPeers *)this->ud->data;
#if 0
if (pi->peers[i].version != FRODO_NETWORK_PROTOCOL_VERSION)
{
free(msgs);
return VERSION_ERROR;
}
#endif
int sel = 0; // FIXME! menu_select_peer(pi->peers, pi->n_peers);
/* FIXME! What to do here??? */
if (sel < 0)
return SERVER_GARBAGE_ERROR;
if (sel == 0) {
/* We want to wait for a connection, and are therefore
* implicitly a master */
return NO_PEERS_ERROR;
}
/* Correct the index */
sel--;
/* Setup the peer info */
char buf[128];
uint16 port = pi->peers[sel].public_port;
/* Not sure what to do if this fails */
this->IpToStr(buf, pi->peers[sel].public_ip);
/* Finally tell the broker who we selected */
this->SelectPeer(pi->peers[sel].server_id);
if (this->InitSockaddr(&this->connection_addr, buf,
port) == false)
return SERVER_GARBAGE_ERROR;
return OK;
}
bool Network::WaitForPeerReply()
{
struct timeval tv;
tv.tv_sec = 3;
tv.tv_usec = 0;
this->ResetNetworkUpdate();
if (this->ReceiveUpdate(&tv) == false)
return false;
if (this->ud->type != CONNECT_TO_PEER)
return false;
return true;
}
bool Network::ConnectToPeer()
{
NetworkUpdate *ud = InitNetworkUpdate(this->ud, CONNECT_TO_PEER,
sizeof(NetworkUpdate));
bool out;
this->AddNetworkUpdate(ud);
out = this->SendUpdate();
this->ResetNetworkUpdate();
return out;
}
network_connection_error_t Network::WaitForBandWidthReply()
{
unsigned cnt;
/* Wait until we've got an ack */
for (cnt = 0; cnt < 5; cnt++) {
struct timeval tv;
tv.tv_sec = 3;
tv.tv_usec = 0;
this->ResetNetworkUpdate();
if (this->ReceiveUpdate(&tv) == false)
return AGAIN_ERROR;
if (this->ud->type == BANDWIDTH_PING) {
NetworkUpdatePingAck *ping = (NetworkUpdatePingAck *)this->ud->data;
uint32 seq = ping->seq;
size_t sz = this->ud->size;
this->ResetNetworkUpdate();
this->SendPingAck(seq, BANDWIDTH_ACK, sz);
this->SendUpdate();
continue;
}
/* CONNECT_TO_PEER is sent twice, so we might get it here */
if (this->ud->type == CONNECT_TO_PEER)
continue;
if (this->ud->type == BANDWIDTH_ACK)
break;
else /* Everything else is an error */
return SERVER_GARBAGE_ERROR;
cnt++;
}
if (cnt == 5) {
printf("Timeout. Setting default kbps (160)\n");
this->target_kbps = 160000;
return OK;
}
/* We got a bandwidth ACK */
uint32 now = SDL_GetTicks();
int32 ms_diff = now - this->bandwidth_ping_ms;
size_t sz = this->ud->size;
if (ms_diff <= 0) {
/* Fast indeed, or maybe wrong */
this->target_kbps = 240000;
} else {
int bits_per_second = ((sz * 1000) / ms_diff) * 8;
this->target_kbps = bits_per_second;
}
/* But force it to be within these limits */
if (this->target_kbps > 300000)
this->target_kbps = 300000;
if (this->target_kbps < 150000)
this->target_kbps = 150000;
printf("%d bytes in %d ms. Setting cap at %d\n", sz, ms_diff, this->target_kbps);
return OK;
}
network_connection_error_t Network::ConnectFSM()
{
network_connection_error_t err;
/* See http://www.brynosaurus.com/pub/net/p2pnat/ for how this works.
*
* For the client:
* 1. Send connect to the broker
* 2. Wait for the broker to return list of peers
* 3. Tell the broker who to connect to
* 4. Select peer
* 4.1 (master) Wait for broker to return peer address
* 4.2 (client) Connect to peer
* 5. Until connected:
* 5.1 Send connection message to peer
* 5.2 Wait for reply from peer
* 6. Test bandwidth
*/
switch(this->network_connection_state)
{
case CONN_CONNECT_TO_BROKER:
{
if (this->ConnectToBroker())
this->network_connection_state = CONN_WAIT_FOR_PEER_LIST;
} break;
case CONN_WAIT_FOR_PEER_ADDRESS:
TheC64->TheDisplay->display_status_string((char*)"WAITING FOR CONNECTION...", 1);
err = this->WaitForPeerAddress();
if (err == OK)
this->network_connection_state = CONN_CONNECT_TO_PEER;
else
return err;
break;
case CONN_WAIT_FOR_PEER_LIST:
/* Also tells the broker that we want to connect */
err = this->WaitForPeerList();
if (err == OK) {
this->network_connection_state = CONN_CONNECT_TO_PEER;
this->is_master = false;
}
else if (err == NO_PEERS_ERROR) {
this->network_connection_state = CONN_WAIT_FOR_PEER_ADDRESS;
this->is_master = true;
}
else
return err;
break;
case CONN_CONNECT_TO_PEER:
if (this->ConnectToPeer() == false)
return AGAIN_ERROR;
/* Allow some transit time */
sleep(1);
if (this->ConnectToPeer() == false)
return AGAIN_ERROR;
this->network_connection_state = CONN_WAIT_FOR_PEER_REPLY;
break;
case CONN_WAIT_FOR_PEER_REPLY:
/* Connect again in case the first sent was dropped on
* its way to the peer */
TheC64->TheDisplay->display_status_string((char*)"CONNECTING TO PEER", 1);
if (this->WaitForPeerReply() == true)
this->network_connection_state = CONN_BANDWIDTH_PING;
else
return AGAIN_ERROR;
break;
case CONN_BANDWIDTH_PING:
this->ResetNetworkUpdate();
this->SendPingAck(this->is_master, BANDWIDTH_PING, 1024);
this->SendUpdate();
this->bandwidth_ping_ms = SDL_GetTicks();
this->ResetNetworkUpdate();
this->network_connection_state = CONN_BANDWIDTH_REPLY;
break;
case CONN_BANDWIDTH_REPLY:
{
network_connection_error_t err = this->WaitForBandWidthReply();
if (err == OK) {
this->network_connection_state = CONN_CONNECTED;
return AGAIN_ERROR;
}
return err;
} break;
case CONN_CONNECTED:
TheC64->TheDisplay->display_status_string((char*)"CONNECTED!", 2);
/* The lowest number is the default master */
default:
return OK;
}
return AGAIN_ERROR;
}
void Network::Disconnect()
{
NetworkUpdate *disconnect = InitNetworkUpdate(this->cur_ud, DISCONNECT,
sizeof(NetworkUpdate));
/* Add a stop at the end of the update */
this->AddNetworkUpdate(disconnect);
this->SendUpdate();
}
bool Network::networking_started = false;
#if defined(GEKKO)
#include "NetworkWii.h"
#else
#include "NetworkUnix.h"
#endif