/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stm32h7xx_hal.h" #include "gw_buttons.h" #include "gw_flash.h" #include "gw_lcd.h" #include "gw_linker.h" #include "githash.h" #include "flashapp.h" #include "odroid_colors.h" #include "odroid_system.h" #include "odroid_overlay.h" #include "bq24072.h" #include #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; DAC_HandleTypeDef hdac1; DAC_HandleTypeDef hdac2; LTDC_HandleTypeDef hltdc; OSPI_HandleTypeDef hospi1; RTC_HandleTypeDef hrtc; SAI_HandleTypeDef hsai_BlockA1; DMA_HandleTypeDef hdma_sai1_a; SPI_HandleTypeDef hspi2; TIM_HandleTypeDef htim1; WWDG_HandleTypeDef hwwdg1; /* USER CODE BEGIN PV */ #define BOOT_MODE_APP 0 #define BOOT_MODE_FLASHAPP 1 char logbuf[1024 * 4] PERSISTENT __attribute__((aligned(4))); uint32_t log_idx PERSISTENT; PERSISTENT volatile uint32_t boot_magic; uint32_t boot_buttons; uint32_t uptime_s; static bool wdog_enabled; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MPU_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_LTDC_Init(void); static void MX_SPI2_Init(void); static void MX_OCTOSPI1_Init(void); static void MX_SAI1_Init(void); static void MX_RTC_Init(void); static void MX_DAC1_Init(void); static void MX_DAC2_Init(void); static void MX_WWDG1_Init(void); static void MX_ADC1_Init(void); static void MX_TIM1_Init(void); static void MX_NVIC_Init(void); /* USER CODE BEGIN PFP */ void app_main(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ const char *fault_list[] = { [BSOD_ABORT] = "Assert", [BSOD_HARDFAULT] = "Hardfault", [BSOD_MEMFAULT] = "Memfault", [BSOD_BUSFAULT] = "Busfault", [BSOD_USAGEFAULT] = "Usagefault", [BSOD_WATCHDOG] = "Watchdog", [BSOD_OTHER] = "Other", }; __attribute__((optimize("-O0"))) void BSOD(BSOD_t fault, void *pc, void *lr) { char msg[256]; size_t i = 0; char *start; char *end; char *line; int y = 2*8; __disable_irq(); snprintf(msg, sizeof(msg), "FATAL EXCEPTION: %s %s\nPC=%p LR=%p\n", fault_list[fault], GIT_HASH, pc, lr); lcd_sync(); lcd_reset_active_buffer(); odroid_display_set_backlight(ODROID_BACKLIGHT_LEVEL6); odroid_overlay_draw_text(0, 0, GW_LCD_WIDTH, msg, C_RED, C_BLUE); // Print each line from the log in reverse end = &logbuf[strnlen(logbuf, sizeof(logbuf)) - 1]; while (y < GW_LCD_HEIGHT) { // Max 28 lines if (i++ >= 28) { break; } // Find the last line start not beyond end (inefficient but simple solution) start = logbuf; while (start < end) { line = start; start = strnstr(start, "\n", end - start); if (start == NULL) { break; } else { // Move past \n start += 1; } } // Terminate the previous line end[0] = '\x00'; end = line; y += odroid_overlay_draw_text(0, y, GW_LCD_WIDTH, line, C_WHITE, C_BLUE); if (line == logbuf) { // No more lines to print break; } } // Wait for a button press (allows a user to hold and release a button when the BSOD occurs) uint32_t old_buttons = buttons_get(); while ((buttons_get() == 0 || (buttons_get() == old_buttons))) { wdog_refresh(); } // Encode the fault type in the boot magic boot_magic = BOOT_MAGIC_BSOD | (fault & 0xffff); HAL_NVIC_SystemReset(); // Does not return while (1) { __NOP(); } } // Used by assert() void abort(void) { BSOD(BSOD_ABORT, 0, 0); } #if 1 int _write(int file, char *ptr, int len) { if (log_idx + len + 1 > sizeof(logbuf)) { log_idx = 0; } memcpy(&logbuf[log_idx], ptr, len); log_idx += len; logbuf[log_idx + 1] = '\0'; return len; } #endif void store_erase(const uint8_t *flash_ptr, uint32_t size) { // Only allow addresses in the areas meant for erasing and writing. assert( ((flash_ptr >= &__SAVEFLASH_START__) && ((flash_ptr + size) <= &__SAVEFLASH_END__)) || ((flash_ptr >= &__configflash_start__) && ((flash_ptr + size) <= &__configflash_end__)) || ((flash_ptr >= &__fbflash_start__) && ((flash_ptr + size) <= &__fbflash_end__)) ); // Convert mem mapped pointer to flash address uint32_t save_address = flash_ptr - &__EXTFLASH_BASE__; // Only allow 4kB aligned pointers assert((save_address & (4*1024 - 1)) == 0); // Round size up to nearest 4K if ((size & 0xfff) != 0) { size += 0x1000 - (size & 0xfff); } OSPI_DisableMemoryMappedMode(); OSPI_EraseSync(save_address, size); OSPI_EnableMemoryMappedMode(); } void store_save(const uint8_t *flash_ptr, const uint8_t *data, size_t size) { // Temporary solution to make things work with flash with 256K erase pages #ifdef DISABLE_STORE return; #endif // Convert mem mapped pointer to flash address uint32_t save_address = flash_ptr - &__EXTFLASH_BASE__; // Only allow 4kB aligned pointers assert((save_address & (4*1024 - 1)) == 0); int diff = memcmp((void*)flash_ptr, data, size); if (diff == 0) { return; } store_erase(flash_ptr, size); OSPI_DisableMemoryMappedMode(); OSPI_Program(save_address, data, size); OSPI_EnableMemoryMappedMode(); } void boot_magic_set(uint32_t magic) { boot_magic = magic; } void uptime_inc(void) { uptime_s++; } uint32_t uptime_get(void) { return uptime_s; } void GW_EnterDeepSleep(void) { // Stop SAI DMA (audio) HAL_SAI_DMAStop(&hsai_BlockA1); // Enable wakup by PIN1, the power button HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1_LOW); lcd_backlight_off(); // Deinit the LCD, save power. lcd_deinit(&hspi2); // Leave a trace in RAM that we entered standby mode boot_magic = BOOT_MAGIC_STANDBY; // Delay 500ms to give us a chance to attach a debugger in case // we end up in a suspend-loop. for (int i = 0; i < 10; i++) { wdog_refresh(); HAL_Delay(50); } HAL_PWR_EnterSTANDBYMode(); // Execution stops here, this function will not return while(1) { // If we for some reason survive until here, let's just reboot HAL_NVIC_SystemReset(); } } // Returns buttons that were pressed at boot uint32_t GW_GetBootButtons(void) { return boot_buttons; } // Workaround for being able to run with -D_FORTIFY_SOURCE=1 static void memcpy_no_check(uint32_t *dst, uint32_t *src, size_t len) { assert((len & 0b11) == 0); uint32_t *end = dst + len / 4; while (dst != end) { *(dst++) = *(src++); } } void wdog_enable() { MX_WWDG1_Init(); wdog_enabled = true; } void wdog_refresh() { if (wdog_enabled) { HAL_WWDG_Refresh(&hwwdg1); } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ uint8_t trigger_wdt_bsod = 0; uint8_t boot_mode = BOOT_MODE_APP; for(int i = 0; i < 1000000; i++) { __NOP(); } // Nullpointer redzone #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnonnull" memset(0x0, '\x41', (size_t)&__NULLPTR_LENGTH__); #pragma GCC diagnostic pop // Don't reset the logbuf when rebooting from a watchdog reset if (boot_magic != BOOT_MAGIC_WATCHDOG) { log_idx = 0; logbuf[0] = '\0'; } switch (boot_magic) { case BOOT_MAGIC_STANDBY: printf("Boot from standby.\nboot_magic=0x%08lx\n", boot_magic); break; case BOOT_MAGIC_RESET: printf("Boot from warm reset.\nboot_magic=0x%08lx\n", boot_magic); break; case BOOT_MAGIC_WATCHDOG: printf("Boot from watchdog reset!\nboot_magic=0x%08lx\n", boot_magic); trigger_wdt_bsod = 1; break; case BOOT_MAGIC_FLASHAPP: boot_mode = BOOT_MODE_FLASHAPP; break; default: if ((boot_magic & BOOT_MAGIC_BSOD_MASK) == BOOT_MAGIC_BSOD) { uint16_t fault_idx = boot_magic & 0xffff; const char *fault = (fault_idx < BSOD_COUNT) ? fault_list[fault_idx] : "UNKOWN"; printf("Boot from BSOD:\nboot_magic=0x%08lx %s\n", boot_magic, fault); } else { printf("Boot from brownout?\nboot_magic=0x%08lx\n", boot_magic); } break; } // Leave a trace that indicates a warm reset boot_magic = BOOT_MAGIC_RESET; // Reset the log write pointer log_idx = 0; /* USER CODE END 1 */ /* MPU Configuration--------------------------------------------------------*/ MPU_Config(); /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ // Power pin as Input HAL_PWR_DisableWakeUpPin(PWR_WAKEUP_PIN1_LOW); /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_LTDC_Init(); MX_SPI2_Init(); MX_OCTOSPI1_Init(); MX_SAI1_Init(); MX_RTC_Init(); MX_DAC1_Init(); MX_DAC2_Init(); MX_ADC1_Init(); MX_TIM1_Init(); /* Initialize interrupts */ MX_NVIC_Init(); /* USER CODE BEGIN 2 */ // Save the button states as early as possible boot_buttons = buttons_get(); // Keep this for (int i = 0; i < 10; i++) { wdog_refresh(); HAL_Delay(50); } lcd_init(&hspi2, &hltdc); if (trigger_wdt_bsod) { BSOD(BSOD_WATCHDOG, 0, 0); } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ SCB_EnableICache(); SCB_EnableDCache(); // Initialize the external flash OSPI_Init(&hospi1); // Copy instructions and data from extflash to axiram void *copy_areas[3]; copy_areas[0] = &_siramdata; // 0x90000000 copy_areas[1] = &__ram_exec_start__; // 0x24000000 copy_areas[2] = &__ram_exec_end__; // 0x24000000 + length memcpy_no_check(copy_areas[1], copy_areas[0], copy_areas[2] - copy_areas[1]); // Copy ITCRAM HOT section static uint32_t copy_areas2[4] __attribute__((used)); copy_areas2[0] = (uint32_t) &_sitcram_hot; copy_areas2[1] = (uint32_t) &__itcram_hot_start__; copy_areas2[2] = (uint32_t) &__itcram_hot_end__; copy_areas2[3] = copy_areas2[2] - copy_areas2[1]; memcpy_no_check((uint32_t *) copy_areas2[1], (uint32_t *) copy_areas2[0], copy_areas2[3]); bq24072_init(); switch (boot_mode) { case BOOT_MODE_APP: wdog_enable(); // Launch the emulator app_main(); break; case BOOT_MODE_FLASHAPP: flashapp_main(); break; default: break; } while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; RCC_CRSInitTypeDef RCC_CRSInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Configure LSE Drive Capability */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_HIGH); /** Macro to configure the PLL clock source */ __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSI); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 140; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_LTDC |RCC_PERIPHCLK_SPI2|RCC_PERIPHCLK_SAI1 |RCC_PERIPHCLK_ADC|RCC_PERIPHCLK_OSPI |RCC_PERIPHCLK_CKPER; PeriphClkInitStruct.PLL2.PLL2M = 25; PeriphClkInitStruct.PLL2.PLL2N = 192; PeriphClkInitStruct.PLL2.PLL2P = 5; PeriphClkInitStruct.PLL2.PLL2Q = 2; PeriphClkInitStruct.PLL2.PLL2R = 5; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_1; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; PeriphClkInitStruct.PLL3.PLL3M = 4; PeriphClkInitStruct.PLL3.PLL3N = 9; PeriphClkInitStruct.PLL3.PLL3P = 2; PeriphClkInitStruct.PLL3.PLL3Q = 2; PeriphClkInitStruct.PLL3.PLL3R = 24; PeriphClkInitStruct.PLL3.PLL3RGE = RCC_PLL3VCIRANGE_3; PeriphClkInitStruct.PLL3.PLL3VCOSEL = RCC_PLL3VCOWIDE; PeriphClkInitStruct.PLL3.PLL3FRACN = 0; PeriphClkInitStruct.OspiClockSelection = RCC_OSPICLKSOURCE_CLKP; PeriphClkInitStruct.CkperClockSelection = RCC_CLKPSOURCE_HSI; PeriphClkInitStruct.Sai1ClockSelection = RCC_SAI1CLKSOURCE_PLL2; PeriphClkInitStruct.Spi123ClockSelection = RCC_SPI123CLKSOURCE_CLKP; PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; PeriphClkInitStruct.TIMPresSelection = RCC_TIMPRES_ACTIVATED; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } /** Enable the SYSCFG APB clock */ __HAL_RCC_CRS_CLK_ENABLE(); /** Configures CRS */ RCC_CRSInitStruct.Prescaler = RCC_CRS_SYNC_DIV1; RCC_CRSInitStruct.Source = RCC_CRS_SYNC_SOURCE_LSE; RCC_CRSInitStruct.Polarity = RCC_CRS_SYNC_POLARITY_RISING; RCC_CRSInitStruct.ReloadValue = __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000,32768); RCC_CRSInitStruct.ErrorLimitValue = 34; RCC_CRSInitStruct.HSI48CalibrationValue = 32; HAL_RCCEx_CRSConfig(&RCC_CRSInitStruct); } /** * @brief NVIC Configuration. * @retval None */ static void MX_NVIC_Init(void) { /* OCTOSPI1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(OCTOSPI1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(OCTOSPI1_IRQn); } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_16B; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; sConfig.OffsetSignedSaturation = DISABLE; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief DAC1 Initialization Function * @param None * @retval None */ static void MX_DAC1_Init(void) { /* USER CODE BEGIN DAC1_Init 0 */ /* USER CODE END DAC1_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC1_Init 1 */ /* USER CODE END DAC1_Init 1 */ /** DAC Initialization */ hdac1.Instance = DAC1; if (HAL_DAC_Init(&hdac1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT2 config */ sConfig.DAC_ConnectOnChipPeripheral = DAC_SAMPLEANDHOLD_DISABLE; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC1_Init 2 */ /* USER CODE END DAC1_Init 2 */ } /** * @brief DAC2 Initialization Function * @param None * @retval None */ static void MX_DAC2_Init(void) { /* USER CODE BEGIN DAC2_Init 0 */ /* USER CODE END DAC2_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC2_Init 1 */ /* USER CODE END DAC2_Init 1 */ /** DAC Initialization */ hdac2.Instance = DAC2; if (HAL_DAC_Init(&hdac2) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac2, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC2_Init 2 */ /* USER CODE END DAC2_Init 2 */ } /** * @brief LTDC Initialization Function * @param None * @retval None */ static void MX_LTDC_Init(void) { /* USER CODE BEGIN LTDC_Init 0 */ /* USER CODE END LTDC_Init 0 */ LTDC_LayerCfgTypeDef pLayerCfg = {0}; /* USER CODE BEGIN LTDC_Init 1 */ /* USER CODE END LTDC_Init 1 */ hltdc.Instance = LTDC; hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL; hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL; hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL; hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IIPC; hltdc.Init.HorizontalSync = 9; hltdc.Init.VerticalSync = 1; hltdc.Init.AccumulatedHBP = 60; hltdc.Init.AccumulatedVBP = 7; hltdc.Init.AccumulatedActiveW = 380; hltdc.Init.AccumulatedActiveH = 247; hltdc.Init.TotalWidth = 392; hltdc.Init.TotalHeigh = 255; hltdc.Init.Backcolor.Blue = 0; hltdc.Init.Backcolor.Green = 0; hltdc.Init.Backcolor.Red = 0; if (HAL_LTDC_Init(&hltdc) != HAL_OK) { Error_Handler(); } pLayerCfg.WindowX0 = 0; pLayerCfg.WindowX1 = 320; pLayerCfg.WindowY0 = 0; pLayerCfg.WindowY1 = 240; #ifdef GW_LCD_MODE_LUT8 pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_L8; #else pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565; #endif pLayerCfg.Alpha = 255; pLayerCfg.Alpha0 = 255; pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA; pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA; pLayerCfg.FBStartAdress = 0x24000000; pLayerCfg.ImageWidth = 320; pLayerCfg.ImageHeight = 240; pLayerCfg.Backcolor.Blue = 0; pLayerCfg.Backcolor.Green = 255; pLayerCfg.Backcolor.Red = 0; if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN LTDC_Init 2 */ /* USER CODE END LTDC_Init 2 */ } /** * @brief OCTOSPI1 Initialization Function * @param None * @retval None */ static void MX_OCTOSPI1_Init(void) { /* USER CODE BEGIN OCTOSPI1_Init 0 */ /* USER CODE END OCTOSPI1_Init 0 */ OSPIM_CfgTypeDef sOspiManagerCfg = {0}; /* USER CODE BEGIN OCTOSPI1_Init 1 */ /* USER CODE END OCTOSPI1_Init 1 */ /* OCTOSPI1 parameter configuration*/ hospi1.Instance = OCTOSPI1; hospi1.Init.FifoThreshold = 4; hospi1.Init.DualQuad = HAL_OSPI_DUALQUAD_DISABLE; hospi1.Init.MemoryType = HAL_OSPI_MEMTYPE_MACRONIX; hospi1.Init.DeviceSize = 28; hospi1.Init.ChipSelectHighTime = 2; hospi1.Init.FreeRunningClock = HAL_OSPI_FREERUNCLK_DISABLE; hospi1.Init.ClockMode = HAL_OSPI_CLOCK_MODE_0; hospi1.Init.WrapSize = HAL_OSPI_WRAP_NOT_SUPPORTED; hospi1.Init.ClockPrescaler = 1; hospi1.Init.SampleShifting = HAL_OSPI_SAMPLE_SHIFTING_NONE; hospi1.Init.DelayHoldQuarterCycle = HAL_OSPI_DHQC_DISABLE; hospi1.Init.ChipSelectBoundary = 0; hospi1.Init.ClkChipSelectHighTime = 0; hospi1.Init.DelayBlockBypass = HAL_OSPI_DELAY_BLOCK_BYPASSED; hospi1.Init.MaxTran = 0; hospi1.Init.Refresh = 0; if (HAL_OSPI_Init(&hospi1) != HAL_OK) { Error_Handler(); } sOspiManagerCfg.ClkPort = 1; sOspiManagerCfg.NCSPort = 1; sOspiManagerCfg.IOLowPort = HAL_OSPIM_IOPORT_1_LOW; if (HAL_OSPIM_Config(&hospi1, &sOspiManagerCfg, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN OCTOSPI1_Init 2 */ /* USER CODE END OCTOSPI1_Init 2 */ } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef sDate = {0}; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; // Recommended value from application note for LSE, the higher the value the better the accuracy and power consumption hrtc.Init.SynchPrediv = 255; // Recommended value from application note for LSE hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ return; // Retain RTC values on boot /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 0x0; sTime.Minutes = 0x0; sTime.Seconds = 0x0; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_JANUARY; sDate.Date = 0x1; sDate.Year = 0x0; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief SAI1 Initialization Function * @param None * @retval None */ static void MX_SAI1_Init(void) { /* USER CODE BEGIN SAI1_Init 0 */ /* USER CODE END SAI1_Init 0 */ /* USER CODE BEGIN SAI1_Init 1 */ /* USER CODE END SAI1_Init 1 */ hsai_BlockA1.Instance = SAI1_Block_A; hsai_BlockA1.Init.AudioMode = SAI_MODEMASTER_TX; hsai_BlockA1.Init.Synchro = SAI_ASYNCHRONOUS; hsai_BlockA1.Init.OutputDrive = SAI_OUTPUTDRIVE_DISABLE; hsai_BlockA1.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE; hsai_BlockA1.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_FULL; hsai_BlockA1.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_48K; hsai_BlockA1.Init.SynchroExt = SAI_SYNCEXT_DISABLE; hsai_BlockA1.Init.MonoStereoMode = SAI_MONOMODE; hsai_BlockA1.Init.CompandingMode = SAI_NOCOMPANDING; hsai_BlockA1.Init.TriState = SAI_OUTPUT_NOTRELEASED; if (HAL_SAI_InitProtocol(&hsai_BlockA1, SAI_I2S_STANDARD, SAI_PROTOCOL_DATASIZE_16BIT, 2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SAI1_Init 2 */ /* USER CODE END SAI1_Init 2 */ } /** * @brief SPI2 Initialization Function * @param None * @retval None */ static void MX_SPI2_Init(void) { /* USER CODE BEGIN SPI2_Init 0 */ /* USER CODE END SPI2_Init 0 */ /* USER CODE BEGIN SPI2_Init 1 */ /* USER CODE END SPI2_Init 1 */ /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES_TXONLY; hspi2.Init.DataSize = SPI_DATASIZE_8BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_SOFT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 0x0; hspi2.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; hspi2.Init.NSSPolarity = SPI_NSS_POLARITY_LOW; hspi2.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA; hspi2.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; hspi2.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; hspi2.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE; hspi2.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE; hspi2.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE; hspi2.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE; hspi2.Init.IOSwap = SPI_IO_SWAP_DISABLE; if (HAL_SPI_Init(&hspi2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI2_Init 2 */ /* USER CODE END SPI2_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 14000; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 20000; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /** * @brief WWDG1 Initialization Function * @param None * @retval None */ static void MX_WWDG1_Init(void) { /* USER CODE BEGIN WWDG1_Init 0 */ /* USER CODE END WWDG1_Init 0 */ /* USER CODE BEGIN WWDG1_Init 1 */ /* USER CODE END WWDG1_Init 1 */ hwwdg1.Instance = WWDG1; hwwdg1.Init.Prescaler = WWDG_PRESCALER_128; hwwdg1.Init.Window = 127; hwwdg1.Init.Counter = 127; hwwdg1.Init.EWIMode = WWDG_EWI_ENABLE; if (HAL_WWDG_Init(&hwwdg1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN WWDG1_Init 2 */ /* USER CODE END WWDG1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIO_Speaker_enable_GPIO_Port, GPIO_Speaker_enable_Pin, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOE, GPIO_PIN_8, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_1|GPIO_PIN_4, GPIO_PIN_RESET); /*Configure GPIO pins : GPIO_Speaker_enable_Pin PE8 */ GPIO_InitStruct.Pin = GPIO_Speaker_enable_Pin|GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pins : BTN_PAUSE_Pin BTN_GAME_Pin BTN_TIME_Pin */ GPIO_InitStruct.Pin = BTN_PAUSE_Pin|BTN_GAME_Pin|BTN_TIME_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : BTN_START_Pin BTN_SELECT_Pin */ GPIO_InitStruct.Pin = BTN_START_Pin|BTN_SELECT_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : BTN_PWR_Pin */ GPIO_InitStruct.Pin = BTN_PWR_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(BTN_PWR_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PA2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PE7 */ GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pin : PB12 */ GPIO_InitStruct.Pin = GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PD8 PD1 PD4 */ GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_1|GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : BTN_A_Pin BTN_Left_Pin BTN_Down_Pin BTN_Right_Pin BTN_Up_Pin BTN_B_Pin */ GPIO_InitStruct.Pin = BTN_A_Pin|BTN_Left_Pin|BTN_Down_Pin|BTN_Right_Pin |BTN_Up_Pin|BTN_B_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI2_IRQn); HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI9_5_IRQn); } /* USER CODE BEGIN 4 */ int __builtin_popcount (unsigned int x); /* USER CODE END 4 */ /* MPU Configuration */ void MPU_Config(void) { MPU_Region_InitTypeDef MPU_InitStruct = {0}; /* Disables the MPU */ HAL_MPU_Disable(); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.BaseAddress = 0x30000000; MPU_InitStruct.Size = MPU_REGION_SIZE_128KB; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); if (__builtin_popcount((size_t)&__NULLPTR_LENGTH__) == 1) { /* Only continue if a single bit set in __NULLPTR_LENGTH__. * The MPU can only handle memory sizes which are a power of 2 */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.BaseAddress = 0x00000000; /* 128B --> 0x06, 256B --> 0x07, 512B --> 0x08, ... */ MPU_InitStruct.Size = ffs((size_t)&__NULLPTR_LENGTH__) - 2; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); } // Stack redzone if (__builtin_popcount((size_t)&_Stack_Redzone_Size) == 1) { /* Only continue if a single bit set in _Stack_Redzone_Size. * The MPU can only handle memory sizes which are a power of 2 */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.BaseAddress = (uint32_t) &_stack_redzone; /* 128B --> 0x06, 256B --> 0x07, 512B --> 0x08, ... */ MPU_InitStruct.Size = ffs((size_t)&_Stack_Redzone_Size) - 2; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); } /* Uncached areas lead to unalignment issues. Only protect the first 256+32+8+4 kB */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER3; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_256KB; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; // 0x24000000 -> +256kB HAL_MPU_ConfigRegion(&MPU_InitStruct); // 0x24000000 + 256kB -> +32kB MPU_InitStruct.Number = MPU_REGION_NUMBER4; MPU_InitStruct.BaseAddress = 0x24000000 + 256 * 1024; MPU_InitStruct.Size = MPU_REGION_SIZE_32KB; HAL_MPU_ConfigRegion(&MPU_InitStruct); // 0x24000000 + 256kB + 32kB -> +8kB MPU_InitStruct.Number = MPU_REGION_NUMBER5; MPU_InitStruct.BaseAddress = 0x24000000 + (256 + 32) * 1024; MPU_InitStruct.Size = MPU_REGION_SIZE_8KB; HAL_MPU_ConfigRegion(&MPU_InitStruct); // 0x24000000 + 256kB + 32kB + 8kB -> +4kB MPU_InitStruct.Number = MPU_REGION_NUMBER6; MPU_InitStruct.BaseAddress = 0x24000000 + (256 + 32 + 8) * 1024; MPU_InitStruct.Size = MPU_REGION_SIZE_4KB; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Enables the MPU */ HAL_MPU_Enable(MPU_HFNMI_PRIVDEF); } /** * @brief This function is executed in case of error occurrence. * @retval None */ __attribute__((optimize("-O0"))) void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ // Hacky way to get the return address uint32_t stack; uint32_t *pStack = &stack; BSOD(BSOD_OTHER, (void *) pStack[3], 0); /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/