/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stm32h7xx_hal.h" #include "buttons.h" // FIXME replace with gw_buttons ??? #include "lcd.h" // FIXME replace with gw_lcd ??? handle dual framebuffer ??? #include "bq24072.h" #include "gw_flash.h" #include "gw_linker.h" // FIXME ??? #include "porting.h" #include "zelda_assets_in_intflash.h" #include "zelda_assets_in_ram.h" #include "zelda_assets_in_extflash.h" #include "zelda3/assets.h" #include "zelda3/config.h" #include "zelda3/snes/ppu.h" #include "zelda3/types.h" #include "zelda3/zelda_rtl.h" #include "zelda3/hud.h" #include "common.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #if !defined(GNW_TARGET_ZELDA) #define GNW_TARGET_ZELDA 0 #endif /* GNW_TARGET_ZELDA */ #define STRINGIZE(x) #x #define STRINGIZE_VALUE_OF(x) STRINGIZE(x) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ bool wdog_enabled = false; ADC_HandleTypeDef hadc1; DAC_HandleTypeDef hdac1; DAC_HandleTypeDef hdac2; LTDC_HandleTypeDef hltdc; OSPI_HandleTypeDef hospi1; SAI_HandleTypeDef hsai_BlockA1; DMA_HandleTypeDef hdma_sai1_a; TIM_HandleTypeDef htim1; SPI_HandleTypeDef hspi2; /* USER CODE BEGIN PV */ char logbuf[1024 * 4] PERSISTENT __attribute__((aligned(4))); uint32_t log_idx PERSISTENT; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_DAC1_Init(void); static void MX_DAC2_Init(void); static void MX_LTDC_Init(void); static void MX_SPI2_Init(void); static void MX_OCTOSPI1_Init(void); static void MX_SAI1_Init(void); static void MX_TIM1_Init(void); static void MX_NVIC_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ WWDG_HandleTypeDef hwwdg1; ingame_overlay_t ingame_overlay = INGAME_OVERLAY_NONE; uint32_t overlay_start_ms = 0; #define OVERLAY_DURATION_MS 5000 #define POWER_BUTTON_DELAY_MS 300 const char *fault_list[] = { [BSOD_ABORT] = "Assert", [BSOD_HARDFAULT] = "Hardfault", [BSOD_MEMFAULT] = "Memfault", [BSOD_BUSFAULT] = "Busfault", [BSOD_USAGEFAULT] = "Usagefault", [BSOD_WATCHDOG] = "Watchdog", [BSOD_OTHER] = "Other", }; /** * @brief WWDG1 Initialization Function * @param None * @retval None */ static void MX_WWDG1_Init(void) { /* USER CODE BEGIN WWDG1_Init 0 */ /* USER CODE END WWDG1_Init 0 */ /* USER CODE BEGIN WWDG1_Init 1 */ /* USER CODE END WWDG1_Init 1 */ hwwdg1.Instance = WWDG1; hwwdg1.Init.Prescaler = WWDG_PRESCALER_128; hwwdg1.Init.Window = 127; hwwdg1.Init.Counter = 127; hwwdg1.Init.EWIMode = WWDG_EWI_ENABLE; if (HAL_WWDG_Init(&hwwdg1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN WWDG1_Init 2 */ /* USER CODE END WWDG1_Init 2 */ } static void wdog_enable() { MX_WWDG1_Init(); wdog_enabled = true; } static void wdog_refresh() { if (wdog_enabled) { HAL_WWDG_Refresh(&hwwdg1); } } __attribute__((optimize("-O0"))) void BSOD(BSOD_t fault, uint32_t pc, uint32_t lr) { char msg[256]; size_t i = 0; char *start; char *end; char *line; int y = 2*8; __disable_irq(); snprintf(msg, sizeof(msg), "FATAL EXCEPTION: %s\nPC=0x%08lx LR=0x%08lx\n", fault_list[fault], pc, lr); lcd_fill_framebuffer(0x00, 0x00, 0x1f); // Blue //lcd_sync(); //lcd_reset_active_buffer(); //odroid_display_set_backlight(ODROID_BACKLIGHT_LEVEL6); lcd_backlight_set(backlightLevels[6]); odroid_overlay_draw_text(framebuffer, 0, 0, GW_LCD_WIDTH, msg, /*C_RED*/0xF800, /*C_BLUE*/0x001F); // Print each line from the log in reverse end = &logbuf[strnlen(logbuf, sizeof(logbuf)) - 1]; while (y < GW_LCD_HEIGHT) { // Max 28 lines if (i++ >= 28) { break; } // Find the last line start not beyond end (inefficient but simple solution) start = logbuf; while (start < end) { line = start; start = strnstr(start, "\n", end - start); if (start == NULL) { break; } else { // Move past \n start += 1; } } // Terminate the previous line end[0] = '\x00'; end = line; y += odroid_overlay_draw_text(framebuffer, 0, y, GW_LCD_WIDTH, line, /*C_WHITE*/0xFFFF, /*C_BLUE*/0x001F); if (line == logbuf) { // No more lines to print break; } } // Wait for a button press (allows a user to hold and release a button when the BSOD occurs) uint32_t old_buttons = buttons_get(); while ((buttons_get() == 0 || (buttons_get() == old_buttons))) { wdog_refresh(); } HAL_NVIC_SystemReset(); // Does not return while (1) { __NOP(); } } // TODO Handle power off / deep sleep void GW_EnterDeepSleep(void) { // Stop SAI DMA (audio) HAL_SAI_DMAStop(&hsai_BlockA1); // Enable wakup by PIN1, the power button HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1_LOW); lcd_backlight_off(); // Deinit the LCD, save power. lcd_deinit(&hspi2); // Leave a trace in RAM that we entered standby mode //boot_magic = BOOT_MAGIC_STANDBY; // Delay 500ms to give us a chance to attach a debugger in case // we end up in a suspend-loop. for (int i = 0; i < 10; i++) { wdog_refresh(); HAL_Delay(50); } HAL_PWR_EnterSTANDBYMode(); // Execution stops here, this function will not return while(1) { // If we for some reason survive until here, let's just reboot HAL_NVIC_SystemReset(); } } int _write(int file, char *ptr, int len) { if (log_idx + len + 1 > sizeof(logbuf)) { log_idx = 0; } memcpy(&logbuf[log_idx], ptr, len); log_idx += len; logbuf[log_idx + 1] = '\0'; return len; } // Workaround for being able to run with -D_FORTIFY_SOURCE=1 static void memcpy_no_check(uint32_t *dst, uint32_t *src, size_t len) { assert((len & 0b11) == 0); uint32_t *end = dst + len / 4; while (dst != end) { *(dst++) = *(src++); } } static uint8 g_paused, g_turbo, g_replay_turbo = true, g_cursor = true; static uint8 g_current_window_scale; static uint8 g_gamepad_buttons; static int g_input1_state; static bool g_display_perf; static int g_curr_fps; #if EXTENDED_SCREEN != 0 static int g_ppu_render_flags = kPpuRenderFlags_NewRenderer | kPpuRenderFlags_Height240; #else static int g_ppu_render_flags = kPpuRenderFlags_NewRenderer; #endif /* EXTENDED_SCREEN */ static int g_snes_width, g_snes_height; //static int g_sdl_audio_mixer_volume = SDL_MIX_MAXVOLUME; //static struct RendererFuncs g_renderer_funcs; static uint32 g_gamepad_modifiers; static uint16 g_gamepad_last_cmd[kGamepadBtn_Count]; static uint32 frameCtr = 0; static uint32 renderedFrameCtr = 0; #define AUDIO_SAMPLE_RATE (16000) // SAI Sample rate #if LIMIT_30FPS != 0 #define FRAMERATE 30 #else #define FRAMERATE 60 #endif /* LIMIT_30FPS */ #define AUDIO_BUFFER_LENGTH 534 // (AUDIO_SAMPLE_RATE / FRAMERATE) // SNES is 60 fps FIXME limited to 30 fps #define AUDIO_BUFFER_LENGTH_DMA (2 * AUDIO_BUFFER_LENGTH) // ((2 * AUDIO_SAMPLE_RATE) / FRAMERATE) // DMA buffer contains 2 frames worth of audio samples in a ring buffer #if ENABLE_SAVESTATE != 0 // Needs to hold 275465 bytes --> 4KB * 68 = 278528 uint8_t SAVESTATE_EXTFLASH[4096 * 68] __attribute__((section (".saveflash"))) __attribute__((aligned(4096))); uint8_t savestateBuffer[4096] __attribute__((section (".savestate_buffer"))); #endif void pcm_submit() { uint8_t volume = settings_Volume_get(); int32_t factor = volume_tbl[volume]; size_t offset = (dma_state == DMA_TRANSFER_STATE_HF) ? 0 : AUDIO_BUFFER_LENGTH; // Handle mute if (volume == AUDIO_VOLUME_MIN) { for (int i = 0; i < AUDIO_BUFFER_LENGTH; i++) { audiobuffer_dma[i + offset] = 0; } } else { for (int i = 0; i < AUDIO_BUFFER_LENGTH; i++) { int32_t sample = audiobuffer[i]; audiobuffer_dma[i + offset] = (sample * factor) >> 8; } } } void NORETURN Die(const char *error) { //#if defined(NDEBUG) && defined(_WIN32) // SDL_ShowSimpleMessageBox(SDL_MESSAGEBOX_ERROR, kWindowTitle, error, NULL); //#endif //printf(stderr, "Error: %s\n", error); printf("Error: %s\n", error); //exit(1); Error_Handler(); } /* set audio frequency */ static void set_audio_frequency(uint32_t frequency) { /** reconfig PLL2 and SAI */ RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SAI1; if (frequency == 16000) { PeriphClkInitStruct.PLL2.PLL2M = 25; PeriphClkInitStruct.PLL2.PLL2N = 128; PeriphClkInitStruct.PLL2.PLL2P = 10; PeriphClkInitStruct.PLL2.PLL2Q = 2; PeriphClkInitStruct.PLL2.PLL2R = 5; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_1; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; } /* Reconfigure on the fly PLL2 */ /* config to get 32768Hz */ /* The audio clock frequency is derived directly */ /* SAI mode is MCKDIV mode */ else if (frequency == 32768) { PeriphClkInitStruct.PLL2.PLL2M = 25; PeriphClkInitStruct.PLL2.PLL2N = 196; PeriphClkInitStruct.PLL2.PLL2P = 10; PeriphClkInitStruct.PLL2.PLL2Q = 2; PeriphClkInitStruct.PLL2.PLL2R = 5; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_1; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 5000; /* config to get 48KHz and multiple */ /* SAI mode is in standard frequency mode */ } else { PeriphClkInitStruct.PLL2.PLL2M = 25; PeriphClkInitStruct.PLL2.PLL2N = 192; PeriphClkInitStruct.PLL2.PLL2P = 5; PeriphClkInitStruct.PLL2.PLL2Q = 2; PeriphClkInitStruct.PLL2.PLL2R = 5; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_1; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; } // keep PLL3 unchanged PeriphClkInitStruct.PLL3.PLL3M = 4; PeriphClkInitStruct.PLL3.PLL3N = 9; PeriphClkInitStruct.PLL3.PLL3P = 2; PeriphClkInitStruct.PLL3.PLL3Q = 2; PeriphClkInitStruct.PLL3.PLL3R = 24; PeriphClkInitStruct.PLL3.PLL3RGE = RCC_PLL3VCIRANGE_3; PeriphClkInitStruct.PLL3.PLL3VCOSEL = RCC_PLL3VCOWIDE; PeriphClkInitStruct.PLL3.PLL3FRACN = 0; PeriphClkInitStruct.Sai1ClockSelection = RCC_SAI1CLKSOURCE_PLL2; PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } /* remove the current configuration */ HAL_SAI_DeInit(&hsai_BlockA1); /* Set Audio sample rate at 32768Hz using MCKDIV mode */ if (frequency == 32768) { hsai_BlockA1.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_MCKDIV; hsai_BlockA1.Init.Mckdiv = 6; /* config to get 48KHz and other standard values */ /* SAI_AUDIO_FREQUENCY_192K 192000U SAI_AUDIO_FREQUENCY_96K 96000U SAI_AUDIO_FREQUENCY_48K 48000U SAI_AUDIO_FREQUENCY_44K 44100U SAI_AUDIO_FREQUENCY_32K 32000U SAI_AUDIO_FREQUENCY_22K 22050U SAI_AUDIO_FREQUENCY_16K 16000U SAI_AUDIO_FREQUENCY_11K 11025U SAI_AUDIO_FREQUENCY_8K 8000U */ /* Set Audio sample rate at various standard frequencies using AudioFrequency mode */ } else { /* default value 48KHz */ hsai_BlockA1.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_48K; /* check from the different possible values */ if ((frequency == SAI_AUDIO_FREQUENCY_192K) || (frequency == SAI_AUDIO_FREQUENCY_96K) || (frequency == SAI_AUDIO_FREQUENCY_48K) || (frequency == SAI_AUDIO_FREQUENCY_44K) || (frequency == SAI_AUDIO_FREQUENCY_32K) || (frequency == SAI_AUDIO_FREQUENCY_22K) || (frequency == SAI_AUDIO_FREQUENCY_16K) || (frequency == SAI_AUDIO_FREQUENCY_11K) || (frequency == SAI_AUDIO_FREQUENCY_8K)) hsai_BlockA1.Init.AudioFrequency = frequency; } /* apply the new configuration */ HAL_SAI_Init(&hsai_BlockA1); } const uint8 *g_asset_ptrs[kNumberOfAssets]; uint32 g_asset_sizes[kNumberOfAssets]; static void LoadAssetsChunk(size_t length, uint8* data) { uint32 number_of_assets = *(uint32 *)(data); uint32 offset = 4 + number_of_assets * 8; for (size_t i = 0; i < number_of_assets; i++) { uint32 index = *(uint32 *)(data + 4 + i * 8); uint32 size = *(uint32 *)(data + 4 + i * 8 + 4); offset = (offset + 3) & ~3; if ((uint64)offset + size > length) Die("Assets file corruption"); g_asset_sizes[index] = size; g_asset_ptrs[index] = data + offset; offset += size; } } static void LoadAssets() { // Load some assets with assets in extflash LoadAssetsChunk(zelda_extflash_assets_length, zelda_extflash_assets); // Load some assets with assets in intflash LoadAssetsChunk(zelda_intflash_assets_length, zelda_intflash_assets); // Load some assets with assets in ram LoadAssetsChunk(zelda_ram_assets_length, zelda_ram_assets); // Make sure all assets were loaded for (size_t i = 0; i < kNumberOfAssets; i++) { if (g_asset_ptrs[i] == 0) { Die("Missing asset"); } } } MemBlk FindInAssetArray(int asset, int idx) { return FindIndexInMemblk((MemBlk) { g_asset_ptrs[asset], g_asset_sizes[asset] }, idx); } static void DrawPpuFrameWithPerf() { /*int render_scale = PpuGetCurrentRenderScale(g_zenv.ppu, g_ppu_render_flags);*/ wdog_refresh(); #if EXTENDED_SCREEN == 2 uint8 *pixel_buffer = framebuffer; #elif EXTENDED_SCREEN == 1 uint8 *pixel_buffer = framebuffer + 32; // Start 32 pixels from left #else uint8 *pixel_buffer = framebuffer + 320*8 + 32; // Start 8 rows from the top, 32 pixels from left #endif /* EXTENDED_SCREEN */ int pitch = 320 * 2; // FIXME WIDTH * BPP; // FIXME 0; //ZeldaDrawPpuFrame(pixel_buffer, pitch, g_ppu_render_flags); // FIXME SHOULD DRAW RGB565 !!! static runtime_stats_t stats; static bool statsInit = false; static float history[64], average; static int history_pos; uint32 before = HAL_GetTick(); ZeldaDrawPpuFrame(pixel_buffer, pitch, g_ppu_render_flags); uint32 after = HAL_GetTick(); // Draw borders #if EXTENDED_SCREEN < 2 draw_border(framebuffer); #endif /* EXTENDED_SCREEN */ if(after - overlay_start_ms < OVERLAY_DURATION_MS){ draw_ingame_overlay(framebuffer, ingame_overlay); } else{ if (ingame_overlay != INGAME_OVERLAY_NONE) { ingame_overlay = INGAME_OVERLAY_NONE; settings_commit(); } } /* PERFORMANCE STUFF */ float v = (double)1000.0f / (after - before); average += v - history[history_pos]; history[history_pos] = v; history_pos = (history_pos + 1) & 63; g_curr_fps = average * (1.0f / 64); #if RENDER_FPS // Render fps with dots for (uint8_t y = 1; y<=60; y++) { framebuffer[y*2*320+300] = (y <= g_curr_fps ? 0x07e0 : 0xf800); } if (!statsInit || (frameCtr % FRAMERATE) == 0) { stats = odroid_system_get_stats(); statsInit = true; } for (uint8_t y = 1; y<=FRAMERATE; y++) { framebuffer[y*2*320+302] = (y <= (stats.totalFPS - stats.skippedFPS) ? 0x07e0 : 0xf800); } for (uint8_t y = 1; y<=stats.skippedFPS; y++) { framebuffer[y*2*320+303] = 0xffff; } // Render audio volume uint8_t volume = settings_Volume_get(); for (uint8_t y = 1; y<=AUDIO_VOLUME_MAX; y++) { framebuffer[y*2*320+305] = (y <= volume ? 0x07e0 : 0x7bef); } // Render brightness level uint8_t brightness = settings_Backlight_get(); for (uint8_t y = 1; y<=BRIGHTNESS_MAX; y++) { framebuffer[y*2*320+310] = (y <= brightness ? 0x07e0 : 0x7bef); } // Render frame counter with dots /*memset(&framebuffer[235*320], 0, sizeof(uint16_t)*320*5); for (uint16_t x = 1; x<=(renderedFrameCtr%(160*5)); x++) { framebuffer[235*320+x*2] = 0x07e0; // FIXME WIDTH }*/ // Render overclocking level with dots for (uint16_t x = 0; x<=OVERCLOCK; x++) { framebuffer[2*320+5+x*2] = 0x07e0; } #endif } void ZeldaApuLock() { } void ZeldaApuUnlock() { } static void HandleCommand(uint32 j, bool pressed) { if (j <= kKeys_Controls_Last) { static const uint8 kKbdRemap[] = { 0, 4, 5, 6, 7, 2, 3, 8, 0, 9, 1, 10, 11 }; if (pressed) g_input1_state |= 1 << kKbdRemap[j]; else g_input1_state &= ~(1 << kKbdRemap[j]); return; } if (j == kKeys_Turbo) { g_turbo = pressed; return; } #if ENABLE_SAVESTATE != 0 // FIXME Support multiple slots? if (j == kKeys_Load) { // Mute for (int i = 0; i < AUDIO_BUFFER_LENGTH_DMA; i++) { audiobuffer_dma[i] = 0; } SaveLoadSlot(kSaveLoad_Load, &SAVESTATE_EXTFLASH); } else if (j == kKeys_Save) { // Mute for (int i = 0; i < AUDIO_BUFFER_LENGTH_DMA; i++) { audiobuffer_dma[i] = 0; } SaveLoadSlot(kSaveLoad_Save, &SAVESTATE_EXTFLASH); } #endif } void store_erase(const uint8_t *flash_ptr, uint32_t size) { // Only allow addresses in the areas meant for erasing and writing. assert( ((flash_ptr >= &__SAVEFLASH_START__) && ((flash_ptr + size) <= &__SAVEFLASH_END__)) || ((flash_ptr >= &__configflash_start__) && ((flash_ptr + size) <= &__configflash_end__)) || ((flash_ptr >= &__fbflash_start__) && ((flash_ptr + size) <= &__fbflash_end__)) ); // Convert mem mapped pointer to flash address uint32_t save_address = flash_ptr - &__EXTFLASH_BASE__; // Only allow 4kB aligned pointers assert((save_address & (4*1024 - 1)) == 0); // Round size up to nearest 4K if ((size & 0xfff) != 0) { size += 0x1000 - (size & 0xfff); } OSPI_DisableMemoryMappedMode(); OSPI_EraseSync(save_address, size); OSPI_EnableMemoryMappedMode(); } void store_save(const uint8_t *flash_ptr, const uint8_t *data, size_t size) { // Convert mem mapped pointer to flash address uint32_t save_address = flash_ptr - &__EXTFLASH_BASE__; // Only allow 4kB aligned pointers assert((save_address & (4*1024 - 1)) == 0); int diff = memcmp((void*)flash_ptr, data, size); if (diff == 0) { return; } store_erase(flash_ptr, size); OSPI_DisableMemoryMappedMode(); OSPI_Program(save_address, data, size); OSPI_EnableMemoryMappedMode(); } // TODO In header file?? uint8_t SAVE_SRAM_EXTFLASH[8192] __attribute__((section (".saveflash"))) __attribute__((aligned(4096))); uint8_t* readSramImpl() { return SAVE_SRAM_EXTFLASH; } void writeSramImpl(uint8_t* sram) { store_save(SAVE_SRAM_EXTFLASH, sram, 8192); } #if ENABLE_SAVESTATE != 0 uint16_t bufferCount = 0; uint32_t dstPos = 0; void writeSaveStateInitImpl() { dstPos = 0; bufferCount = 0; } void writeSaveStateImpl(uint8_t* data, size_t size) { uint32_t srcPos = 0; size_t remaining = size; if (bufferCount > 0) { size_t a = 4096 - bufferCount; size_t b = size; size_t bufferPad = a < b ? a : b; memcpy(savestateBuffer + bufferCount, data, bufferPad); bufferCount += bufferPad; remaining -= bufferPad; srcPos += bufferPad; if (bufferCount == 4096) { store_save(SAVESTATE_EXTFLASH + dstPos, savestateBuffer, 4096); dstPos += 4096; bufferCount = 0; } } while (remaining >= 4096) { store_save(SAVESTATE_EXTFLASH + dstPos, data + srcPos, 4096); dstPos += 4096; srcPos += 4096; remaining -= 4096; wdog_refresh(); } if (remaining > 0) { memcpy(savestateBuffer, data + srcPos, remaining); bufferCount += remaining; } } void writeSaveStateFinalizeImpl() { if (bufferCount > 0) { store_save(SAVESTATE_EXTFLASH + dstPos, savestateBuffer, bufferCount); dstPos += bufferCount; bufferCount = 0; } writeSaveStateInitImpl(); } #endif void app_main(void) { wdog_enable(); LoadAssets(); ZeldaInitialize(); #if EXTENDED_SCREEN == 2 g_zenv.ppu->extraLeftRight = UintMin(32, kPpuExtraLeftRight); #else g_zenv.ppu->extraLeftRight = 0; #endif /* EXTENDED_SCREEN */ g_wanted_zelda_features = FEATURES; ZeldaEnableMsu(false); ZeldaSetLanguage(STRINGIZE_VALUE_OF(DIALOGUES_LANGUAGE)); ZeldaReadSram(); bool running = true; //uint32 lastTick = HAL_GetTick(); //uint32 curTick = 0; //uint32 frameCtr = 0; bool audiopaused = true; // Skip frames uint32 prevFrameTick = 0; uint32 prevTime = 0; //uint32 thisFrameTick = 0; common_emu_state.frame_time_10us = (uint16_t)(100000 / FRAMERATE + 0.5f); settings_init(); uint8_t brightness = settings_Backlight_get(); lcd_backlight_set(backlightLevels[brightness]); uint32_t prev_buttons = 0; uint32_t prev_power_ms = 0; bool prompting_to_save = false; while(running) { if (g_paused != audiopaused) { audiopaused = g_paused; } if (g_paused) { continue; } // Update battery level #if BATTERY_INDICATOR g_battery.level = bq24072_get_percent_filtered(); g_battery.is_charging = ( (bq24072_get_state() == BQ24072_STATE_CHARGING) || (bq24072_get_state() == BQ24072_STATE_FULL) ); #endif // Check inputs uint32_t buttons = buttons_get(); // Handle power off / deep sleep if (buttons & B_POWER) { #if ENABLE_SAVESTATE != 0 // Disable auto-save-on-power-off if PAUSE/SET is pressed if (!(buttons & B_PAUSE)) { // Auto save state on power off HandleCommand(kKeys_Save, true); } GW_EnterDeepSleep(); #else if(prompting_to_save){ if((HAL_GetTick() - prev_power_ms) > POWER_BUTTON_DELAY_MS){ //HAL_SAI_DMAStop(&hsai_BlockA1); GW_EnterDeepSleep(); } } else{ prev_power_ms = HAL_GetTick(); prompting_to_save = true; #if GNW_TARGET_ZELDA != 0 buttons |= B_TIME; // Simulate pressing SELECT #else buttons |= B_GAME | B_TIME; // Simulate pressing SELECT #endif } #endif } else if (buttons){ // If any button except POWER has been pressed prompting_to_save = false; } HandleCommand(1, !(buttons & B_GAME) && (buttons & B_Up)); HandleCommand(2, !(buttons & B_GAME) && (buttons & B_Down)); HandleCommand(3, !(buttons & B_GAME) && (buttons & B_Left)); HandleCommand(4, !(buttons & B_GAME) && (buttons & B_Right)); HandleCommand(7, !(buttons & B_GAME) && (buttons & B_A)); // A (Pegasus Boots/Interacting) HandleCommand(8, !(buttons & B_GAME) && (buttons & B_B)); // B (Sword) #if GNW_TARGET_ZELDA != 0 HandleCommand(9, (buttons & B_PAUSE)); // X (Show Map) HandleCommand(10, !(buttons & B_GAME) && (buttons & B_SELECT)); // Y (Use Item) HandleCommand(5, (buttons & B_TIME)); // Select (Save Screen) HandleCommand(6, !(buttons & B_GAME) && (buttons & B_START)); // Start (Item Selection Screen) // L & R aren't used in Zelda3, but we could enable item quick-swapping. HandleCommand(11, (buttons & B_GAME) && (buttons & B_SELECT)); // L HandleCommand(12, (buttons & B_GAME) && (buttons & B_START)); // R #else HandleCommand(9, !(buttons & B_GAME) && (buttons & B_TIME)); // X HandleCommand(10, !(buttons & B_GAME) && (buttons & B_PAUSE)); // Y HandleCommand(5, (buttons & B_GAME) && (buttons & B_TIME)); // Select HandleCommand(6, (buttons & B_GAME) && (buttons & B_PAUSE)); // Start // No button combinations available for L/R on Mario units... //HandleCommand(11, (buttons & B_GAME) && (buttons & B_B)); // L //HandleCommand(12, (buttons & B_GAME) && (buttons & B_A)); // R #endif /* GNW_TARGET_ZELDA */ #if ENABLE_SAVESTATE != 0 // Save to savestate with Game + A // Load savestate with Game + B if ((buttons & B_GAME) && (buttons & B_A)) { HandleCommand(kKeys_Save, true); } else if ((buttons & B_GAME) && (buttons & B_B)) { HandleCommand(kKeys_Load, true); } #endif #define B_MACRO_CHECK(x, y) ((buttons & x) && (buttons & y) && prev_buttons != buttons) if (B_MACRO_CHECK(B_GAME, B_Left)){ uint8_t volume = settings_Volume_get(); if (volume > AUDIO_VOLUME_MIN) { settings_Volume_set(--volume); } ingame_overlay = INGAME_OVERLAY_VOLUME; overlay_start_ms = HAL_GetTick(); } if (B_MACRO_CHECK(B_GAME, B_Right)){ uint8_t volume = settings_Volume_get(); if (volume < AUDIO_VOLUME_MAX) { settings_Volume_set(++volume); } ingame_overlay = INGAME_OVERLAY_VOLUME; overlay_start_ms = HAL_GetTick(); } if (B_MACRO_CHECK(B_GAME, B_Down)){ uint8_t brightness = settings_Backlight_get(); if (brightness > BRIGHTNESS_MIN) { settings_Backlight_set(--brightness); lcd_backlight_set(backlightLevels[brightness]); } ingame_overlay = INGAME_OVERLAY_BRIGHTNESS; overlay_start_ms = HAL_GetTick(); } if (B_MACRO_CHECK(B_GAME, B_Up)){ uint8_t brightness = settings_Backlight_get(); if (brightness < BRIGHTNESS_MAX) { settings_Backlight_set(++brightness); lcd_backlight_set(backlightLevels[brightness]); } ingame_overlay = INGAME_OVERLAY_BRIGHTNESS; overlay_start_ms = HAL_GetTick(); } // Clear gamepad inputs when joypad directional inputs to avoid wonkiness int inputs = g_input1_state; if (g_input1_state & 0xf0) g_gamepad_buttons = 0; inputs |= g_gamepad_buttons; bool drawFrame = common_emu_frame_loop(); bool is_replay = ZeldaRunFrame(inputs); frameCtr++; /*if ((g_turbo ^ (is_replay & g_replay_turbo)) && (frameCtr & (g_turbo ? 0xf : 0x7f)) != 0) { continue; }*/ #if LIMIT_30FPS != 0 // Render audio to DMA buffer ZeldaRenderAudio(audiobuffer, AUDIO_BUFFER_LENGTH / 2, 1); // FIXME Render two frames worth of gameplay / audio for each screen render ZeldaRunFrame(inputs); ZeldaRenderAudio(audiobuffer + (AUDIO_BUFFER_LENGTH / 2), AUDIO_BUFFER_LENGTH / 2, 1); #else ZeldaRenderAudio(audiobuffer, AUDIO_BUFFER_LENGTH, 1); #endif /* LIMIT_30FPS*/ if (drawFrame) { pcm_submit(); ZeldaDiscardUnusedAudioFrames(); // TODO Cap framerate to 60fps // TODO Render two frames + display only one to achieve consistent 30fps ??? // Skip frames //thisFrameTick = HAL_GetTick(); /*if (prevTime > 34) { prevTime -= 17; continue; }*/ prevFrameTick = HAL_GetTick(); renderedFrameCtr++; DrawPpuFrameWithPerf(); prevTime = HAL_GetTick() - prevFrameTick; } // FIXME if no frame skip //if (prevTime < 17) { if(!common_emu_state.skip_frames) { // odroid_audio_submit(pcm.buf, pcm.pos >> 1); // handled in pcm_submit instead. static dma_transfer_state_t last_dma_state = DMA_TRANSFER_STATE_HF; // FIXME pause frame ??? for(uint8_t p = 0; p < common_emu_state.pause_frames + 1; p++) { // TODO only if audio data ??? while (dma_state == last_dma_state) { cpumon_sleep(); } last_dma_state = dma_state; } } //} prev_buttons = buttons; } return 0; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ // Power pin as Input HAL_PWR_DisableWakeUpPin(PWR_WAKEUP_PIN1_LOW); /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_LTDC_Init(); MX_SPI2_Init(); MX_OCTOSPI1_Init(); MX_SAI1_Init(); MX_DAC1_Init(); MX_DAC2_Init(); MX_ADC1_Init(); MX_TIM1_Init(); /* Initialize interrupts */ MX_NVIC_Init(); /* USER CODE BEGIN 2 */ // Initialize the external flash //SCB_EnableICache(); //SCB_EnableDCache(); OSPI_Init(&hospi1); lcd_init(&hspi2, &hltdc); lcd_fill_framebuffer(0x00, 0x00, 0x00); lcd_backlight_set(backlightLevels[6]); // Copy instructions and data from extflash to axiram static uint32_t copy_areas[4] __attribute__((used)); copy_areas[0] = &_siramdata; // 0x90000000 copy_areas[1] = &__ram_exec_start__; // 0x24000000 copy_areas[2] = &__ram_exec_end__; // 0x24000000 + length copy_areas[3] = copy_areas[2] - copy_areas[1]; memcpy_no_check(copy_areas[1], copy_areas[0], copy_areas[3]); // Copy ITCRAM HOT section copy_areas[0] = (uint32_t) &_sitcram_hot; copy_areas[1] = (uint32_t) &__itcram_hot_start__; copy_areas[2] = (uint32_t) &__itcram_hot_end__; copy_areas[3] = copy_areas[2] - copy_areas[1]; memcpy_no_check((uint32_t *) copy_areas[1], (uint32_t *) copy_areas[0], copy_areas[3]); // Also copy DTCMRAM HOT section copy_areas[0] = (uint32_t) &_sdtcram_hot; copy_areas[1] = (uint32_t) &__dtcram_hot_start__; copy_areas[2] = (uint32_t) &__dtcram_hot_end__; copy_areas[3] = copy_areas[2] - copy_areas[1]; memcpy_no_check((uint32_t *) copy_areas[1], (uint32_t *) copy_areas[0], copy_areas[3]); // Also copy AHBRAM HOT section copy_areas[0] = (uint32_t) &_sahbram_hot; copy_areas[1] = (uint32_t) &__ahbram_hot_start__; copy_areas[2] = (uint32_t) &__ahbram_hot_end__; copy_areas[3] = copy_areas[2] - copy_areas[1]; memcpy_no_check((uint32_t *) copy_areas[1], (uint32_t *) copy_areas[0], copy_areas[3]); // Initialize DTCMRAM BSS section memset((void*) &__dtcram_bss_start__, 0, &__dtcram_bss_end__ - &__dtcram_bss_start__); // Init audio buffers and SAI DMA set_audio_frequency(AUDIO_SAMPLE_RATE); memset(audiobuffer, 0, sizeof(audiobuffer)); memset(audiobuffer_dma, 0, sizeof(audiobuffer_dma)); HAL_SAI_Transmit_DMA(&hsai_BlockA1, (uint8_t *) audiobuffer_dma, AUDIO_BUFFER_LENGTH_DMA); // uint8_t ???? bq24072_init(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ // TODO Make sure QPSI is in memory-mapped mode to enable XIP at 0x90100000 // FIXME Done in OSPI_Init: OSPI_EnableMemoryMappedMode(); //flash_memory_map(&hospi1); // Sanity check, sometimes this is triggered uint32_t add = 0x90000000; uint32_t* ptr = (uint32_t*)add; if(*ptr == 0x88888888) { Error_Handler(); } app_main(); /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Macro to configure the PLL clock source */ __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSI); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; // BOOST 1: PLLM = 16 PLLN=156 PLLP=2 PLLQ=6 PLLR=2 CLOCKPLL >> 312MHz CoreClock and OSPI 104MHz // BOOST 2: PLLM = 38 PLLN=420 PLLP=2 PLLQ=7 PLLR=2 CLOCKPLL >> 3..MHz CoreClock and OSPI 100MHz #if OVERCLOCK == 1 RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 156; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 6; RCC_OscInitStruct.PLL.PLLR = 2; #elif OVERCLOCK == 2 RCC_OscInitStruct.PLL.PLLM = 38; RCC_OscInitStruct.PLL.PLLN = 420; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; #else RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 140; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; #endif RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC|RCC_PERIPHCLK_SPI2 |RCC_PERIPHCLK_SAI1|RCC_PERIPHCLK_OSPI|RCC_PERIPHCLK_ADC |RCC_PERIPHCLK_CKPER; PeriphClkInitStruct.PLL2.PLL2M = 25; PeriphClkInitStruct.PLL2.PLL2N = 192; PeriphClkInitStruct.PLL2.PLL2P = 5; PeriphClkInitStruct.PLL2.PLL2Q = 2; PeriphClkInitStruct.PLL2.PLL2R = 5; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_1; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; PeriphClkInitStruct.PLL3.PLL3M = 4; PeriphClkInitStruct.PLL3.PLL3N = 9; PeriphClkInitStruct.PLL3.PLL3P = 2; PeriphClkInitStruct.PLL3.PLL3Q = 2; PeriphClkInitStruct.PLL3.PLL3R = 24; PeriphClkInitStruct.PLL3.PLL3RGE = RCC_PLL3VCIRANGE_3; PeriphClkInitStruct.PLL3.PLL3VCOSEL = RCC_PLL3VCOWIDE; PeriphClkInitStruct.PLL3.PLL3FRACN = 0; PeriphClkInitStruct.OspiClockSelection = RCC_OSPICLKSOURCE_PLL; //RCC_OSPICLKSOURCE_CLKP; PeriphClkInitStruct.CkperClockSelection = RCC_CLKPSOURCE_HSI; PeriphClkInitStruct.Sai1ClockSelection = RCC_SAI1CLKSOURCE_PLL2; PeriphClkInitStruct.Spi123ClockSelection = RCC_SPI123CLKSOURCE_CLKP; PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief NVIC Configuration. * @retval None */ static void MX_NVIC_Init(void) { /* OCTOSPI1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(OCTOSPI1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(OCTOSPI1_IRQn); } /** * @brief DAC1 Initialization Function * @param None * @retval None */ static void MX_DAC1_Init(void) { /* USER CODE BEGIN DAC1_Init 0 */ /* USER CODE END DAC1_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC1_Init 1 */ /* USER CODE END DAC1_Init 1 */ /** DAC Initialization */ hdac1.Instance = DAC1; if (HAL_DAC_Init(&hdac1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT2 config */ sConfig.DAC_ConnectOnChipPeripheral = DAC_SAMPLEANDHOLD_DISABLE; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC1_Init 2 */ /* USER CODE END DAC1_Init 2 */ } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_16B; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; sConfig.OffsetSignedSaturation = DISABLE; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief DAC2 Initialization Function * @param None * @retval None */ static void MX_DAC2_Init(void) { /* USER CODE BEGIN DAC2_Init 0 */ /* USER CODE END DAC2_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC2_Init 1 */ /* USER CODE END DAC2_Init 1 */ /** DAC Initialization */ hdac2.Instance = DAC2; if (HAL_DAC_Init(&hdac2) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac2, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC2_Init 2 */ /* USER CODE END DAC2_Init 2 */ } /** * @brief LTDC Initialization Function * @param None * @retval None */ static void MX_LTDC_Init(void) { /* USER CODE BEGIN LTDC_Init 0 */ /* USER CODE END LTDC_Init 0 */ LTDC_LayerCfgTypeDef pLayerCfg = {0}; LTDC_LayerCfgTypeDef pLayerCfg1 = {0}; /* USER CODE BEGIN LTDC_Init 1 */ /* USER CODE END LTDC_Init 1 */ hltdc.Instance = LTDC; hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL; hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL; hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL; hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IIPC; hltdc.Init.HorizontalSync = 9; hltdc.Init.VerticalSync = 1; hltdc.Init.AccumulatedHBP = 60; hltdc.Init.AccumulatedVBP = 7; hltdc.Init.AccumulatedActiveW = 380; hltdc.Init.AccumulatedActiveH = 247; hltdc.Init.TotalWidth = 392; hltdc.Init.TotalHeigh = 255; hltdc.Init.Backcolor.Blue = 0; hltdc.Init.Backcolor.Green = 0; hltdc.Init.Backcolor.Red = 0; if (HAL_LTDC_Init(&hltdc) != HAL_OK) { Error_Handler(); } pLayerCfg.WindowX0 = 0; pLayerCfg.WindowX1 = 320; pLayerCfg.WindowY0 = 0; pLayerCfg.WindowY1 = 240; pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565; pLayerCfg.Alpha = 255; pLayerCfg.Alpha0 = 255; pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA; pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA; pLayerCfg.FBStartAdress = 0x24000000; pLayerCfg.ImageWidth = 320; pLayerCfg.ImageHeight = 240; pLayerCfg.Backcolor.Blue = 0; pLayerCfg.Backcolor.Green = 255; pLayerCfg.Backcolor.Red = 0; if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK) { Error_Handler(); } pLayerCfg1.WindowX0 = 0; pLayerCfg1.WindowX1 = 0; pLayerCfg1.WindowY0 = 0; pLayerCfg1.WindowY1 = 0; pLayerCfg1.Alpha = 0; pLayerCfg1.Alpha0 = 0; pLayerCfg1.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA; pLayerCfg1.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA; pLayerCfg1.FBStartAdress = GFXMMU_VIRTUAL_BUFFER0_BASE; pLayerCfg1.ImageWidth = 0; pLayerCfg1.ImageHeight = 0; pLayerCfg1.Backcolor.Blue = 0; pLayerCfg1.Backcolor.Green = 0; pLayerCfg1.Backcolor.Red = 0; if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg1, 1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN LTDC_Init 2 */ /* USER CODE END LTDC_Init 2 */ } /** * @brief OCTOSPI1 Initialization Function * @param None * @retval None */ static void MX_OCTOSPI1_Init(void) { /* USER CODE BEGIN OCTOSPI1_Init 0 */ /* USER CODE END OCTOSPI1_Init 0 */ OSPIM_CfgTypeDef sOspiManagerCfg = {0}; /* USER CODE BEGIN OCTOSPI1_Init 1 */ /* USER CODE END OCTOSPI1_Init 1 */ /* OCTOSPI1 parameter configuration*/ hospi1.Instance = OCTOSPI1; hospi1.Init.FifoThreshold = 4; hospi1.Init.DualQuad = HAL_OSPI_DUALQUAD_DISABLE; hospi1.Init.MemoryType = HAL_OSPI_MEMTYPE_MACRONIX; hospi1.Init.DeviceSize = 28; // 256MB hospi1.Init.ChipSelectHighTime = 2; hospi1.Init.FreeRunningClock = HAL_OSPI_FREERUNCLK_DISABLE; hospi1.Init.ClockMode = HAL_OSPI_CLOCK_MODE_0; hospi1.Init.WrapSize = HAL_OSPI_WRAP_NOT_SUPPORTED; hospi1.Init.ClockPrescaler = 1; hospi1.Init.SampleShifting = HAL_OSPI_SAMPLE_SHIFTING_NONE; hospi1.Init.DelayHoldQuarterCycle = HAL_OSPI_DHQC_DISABLE; hospi1.Init.ChipSelectBoundary = 0; hospi1.Init.ClkChipSelectHighTime = 0; hospi1.Init.DelayBlockBypass = HAL_OSPI_DELAY_BLOCK_BYPASSED; hospi1.Init.MaxTran = 0; hospi1.Init.Refresh = 0; if (HAL_OSPI_Init(&hospi1) != HAL_OK) { Error_Handler(); } sOspiManagerCfg.ClkPort = 1; sOspiManagerCfg.NCSPort = 1; sOspiManagerCfg.IOLowPort = HAL_OSPIM_IOPORT_1_LOW; if (HAL_OSPIM_Config(&hospi1, &sOspiManagerCfg, HAL_OSPI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN OCTOSPI1_Init 2 */ /* USER CODE END OCTOSPI1_Init 2 */ } /** * @brief SAI1 Initialization Function * @param None * @retval None */ static void MX_SAI1_Init(void) { /* USER CODE BEGIN SAI1_Init 0 */ /* USER CODE END SAI1_Init 0 */ /* USER CODE BEGIN SAI1_Init 1 */ /* USER CODE END SAI1_Init 1 */ hsai_BlockA1.Instance = SAI1_Block_A; hsai_BlockA1.Init.AudioMode = SAI_MODEMASTER_TX; hsai_BlockA1.Init.Synchro = SAI_ASYNCHRONOUS; hsai_BlockA1.Init.OutputDrive = SAI_OUTPUTDRIVE_DISABLE; hsai_BlockA1.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE; hsai_BlockA1.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_FULL; hsai_BlockA1.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_16K; hsai_BlockA1.Init.SynchroExt = SAI_SYNCEXT_DISABLE; hsai_BlockA1.Init.MonoStereoMode = SAI_MONOMODE; hsai_BlockA1.Init.CompandingMode = SAI_NOCOMPANDING; hsai_BlockA1.Init.TriState = SAI_OUTPUT_NOTRELEASED; if (HAL_SAI_InitProtocol(&hsai_BlockA1, SAI_I2S_STANDARD, SAI_PROTOCOL_DATASIZE_16BIT, 2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SAI1_Init 2 */ /* USER CODE END SAI1_Init 2 */ } /** * @brief SPI2 Initialization Function * @param None * @retval None */ static void MX_SPI2_Init(void) { /* USER CODE BEGIN SPI2_Init 0 */ /* USER CODE END SPI2_Init 0 */ /* USER CODE BEGIN SPI2_Init 1 */ /* USER CODE END SPI2_Init 1 */ /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES_TXONLY; hspi2.Init.DataSize = SPI_DATASIZE_8BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_SOFT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 0x0; hspi2.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; hspi2.Init.NSSPolarity = SPI_NSS_POLARITY_LOW; hspi2.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA; hspi2.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; hspi2.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; hspi2.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE; hspi2.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE; hspi2.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE; hspi2.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE; hspi2.Init.IOSwap = SPI_IO_SWAP_DISABLE; if (HAL_SPI_Init(&hspi2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI2_Init 2 */ /* USER CODE END SPI2_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 14000; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 20000; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIO_Speaker_enable_GPIO_Port, GPIO_Speaker_enable_Pin, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ //HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOE, GPIO_PIN_8, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_8|GPIO_PIN_4, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_1, GPIO_PIN_RESET); /*Configure GPIO pin : GPIO_Speaker_enable_Pin */ GPIO_InitStruct.Pin = GPIO_Speaker_enable_Pin|GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIO_Speaker_enable_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : BTN_PAUSE_Pin BTN_GAME_Pin BTN_TIME_Pin */ GPIO_InitStruct.Pin = BTN_PAUSE_Pin|BTN_GAME_Pin|BTN_TIME_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : BTN_PWR_Pin */ GPIO_InitStruct.Pin = BTN_PWR_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(BTN_PWR_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : BTN_START_Pin BTN_SELECT_Pin */ GPIO_InitStruct.Pin = BTN_START_Pin|BTN_SELECT_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : PA4 PA5 PA6 */ /*GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);*/ /*Configure GPIO pin : PB12 */ GPIO_InitStruct.Pin = GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PD8 PD1 PD4 */ GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_1|GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : BTN_A_Pin BTN_Left_Pin BTN_Down_Pin BTN_Right_Pin BTN_Up_Pin BTN_B_Pin */ GPIO_InitStruct.Pin = BTN_A_Pin|BTN_Left_Pin|BTN_Down_Pin|BTN_Right_Pin |BTN_Up_Pin|BTN_B_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pin : PA2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PE7 */ GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI2_IRQn); HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI9_5_IRQn); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ uint32_t lr; __ASM volatile( \ "mov %0, lr \n" \ : "=r" (lr) ); BSOD(BSOD_OTHER, 0, lr); /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/