isfshax/stage2/sdhc.c

904 lines
26 KiB
C
Raw Normal View History

2021-05-26 01:53:11 +02:00
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Copyright (c) 2009 Sven Peter <svenpeter@gmail.com>
* Copyright (c) 2016 Daz Jones <daz@dazzozo.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* SD Host Controller driver based on the SD Host Controller Standard
* Simplified Specification Version 1.00 (www.sdcard.com).
*/
#include "bsdtypes.h"
#include "memory.h"
#include "utils.h"
#include "sdmmc.h"
#include "sdhc.h"
#include <string.h>
#include "debug.h"
#ifdef CAN_HAZ_IRQ
#include "irq.h"
#endif
//#define SDHC_DEBUG
#define SDHC_COMMAND_TIMEOUT 500
#define SDHC_TRANSFER_TIMEOUT 5000
#define sdhc_wait_intr(a,b,c) sdhc_wait_intr_debug(__func__, __LINE__, a, b, c)
static inline u32 bus_space_read_4(bus_space_handle_t ioh, u32 reg)
{
return read32(ioh + reg);
}
static inline u16 bus_space_read_2(bus_space_handle_t ioh, u32 reg)
{
if(reg & 3)
return (read32((ioh + reg) & ~3) & 0xffff0000) >> 16;
else
return (read32(ioh + reg) & 0xffff);
}
static inline u8 bus_space_read_1(bus_space_handle_t ioh, u32 reg)
{
u32 mask;
u32 addr;
u8 shift;
shift = (reg & 3) * 8;
mask = (0xFF << shift);
addr = ioh + reg;
return (read32(addr & ~3) & mask) >> shift;
}
static inline void bus_space_write_4(bus_space_handle_t ioh, u32 r, u32 v)
{
write32(ioh + r, v);
}
static inline void bus_space_write_2(bus_space_handle_t ioh, u32 r, u16 v)
{
if(r & 3)
mask32((ioh + r) & ~3, 0xffff0000, v << 16);
else
mask32((ioh + r), 0xffff, ((u32)v));
}
static inline void bus_space_write_1(bus_space_handle_t ioh, u32 r, u8 v)
{
u32 mask;
u32 addr;
u8 shift;
shift = (r & 3) * 8;
mask = (0xFF << shift);
addr = ioh + r;
mask32(addr & ~3, mask, v << shift);
}
/* flag values */
#define SHF_USE_DMA 0x0001
#define HREAD1(hp, reg) \
(bus_space_read_1((hp)->ioh, (reg)))
#define HREAD2(hp, reg) \
(bus_space_read_2((hp)->ioh, (reg)))
#define HREAD4(hp, reg) \
(bus_space_read_4((hp)->ioh, (reg)))
#define HWRITE1(hp, reg, val) \
bus_space_write_1((hp)->ioh, (reg), (val))
#define HWRITE2(hp, reg, val) \
bus_space_write_2((hp)->ioh, (reg), (val))
#define HWRITE4(hp, reg, val) \
bus_space_write_4((hp)->ioh, (reg), (val))
#define HCLR1(hp, reg, bits) \
HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
#define HCLR2(hp, reg, bits) \
HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
#define HSET1(hp, reg, bits) \
HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
#define HSET2(hp, reg, bits) \
HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
int sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t);
int sdhc_soft_reset(struct sdhc_host *, int);
void sdhc_reset_intr_status(struct sdhc_host *hp);
int sdhc_wait_intr_debug(const char *func, int line, struct sdhc_host *, int, int);
void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
void sdhc_read_data(struct sdhc_host *, u_char *, int);
void sdhc_write_data(struct sdhc_host *, u_char *, int);
#ifdef SDHC_DEBUG
int sdhcdebug = 3;
#define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
void sdhc_dump_regs(struct sdhc_host *);
#else
#define DPRINTF(n,s) do {} while(0)
#endif
/*
* Called by attachment driver. For each SD card slot there is one SD
* host controller standard register set. (1.3)
*/
int
sdhc_host_found(struct sdhc_host *hp, struct sdhc_host_params *pa, bus_space_tag_t iot, bus_space_handle_t ioh, int usedma)
{
u_int32_t caps;
int error = 1;
int max_clock;
#ifdef SDHC_DEBUG
u_int16_t version;
version = HREAD2(hp, SDHC_HOST_CTL_VERSION);
DEBUG("sdhc: SD Host Specification/Vendor Version ");
switch(SDHC_SPEC_VERSION(version)) {
case 0x00:
DEBUG("1.0/%u\n", SDHC_VENDOR_VERSION(version));
break;
default:
DEBUG(">1.0/%u\n", SDHC_VENDOR_VERSION(version));
break;
}
#endif
memset(hp, 0, sizeof(struct sdhc_host));
/* Fill in the new host structure. */
hp->iot = iot;
hp->ioh = ioh;
hp->data_command = 0;
memcpy(&hp->pa, pa, sizeof(struct sdhc_host_params));
/* Store specification version. */
hp->version = HREAD2(hp, SDHC_HOST_CTL_VERSION);
/*
* Reset the host controller and enable interrupts.
*/
(void)sdhc_host_reset(hp);
/* Determine host capabilities. */
caps = HREAD4(hp, SDHC_CAPABILITIES);
/* Use DMA if the host system and the controller support it. */
if (usedma && ISSET(caps, SDHC_DMA_SUPPORT))
SET(hp->flags, SHF_USE_DMA);
/*
* Determine the base clock frequency. (2.2.24)
*/
if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
/* SDHC 3.0 supports 10-255 MHz. */
max_clock = 255000;
if (SDHC_BASE_FREQ_KHZ_V3(caps) != 0)
hp->clkbase = SDHC_BASE_FREQ_KHZ_V3(caps);
} else {
/* SDHC 1.0/2.0 supports only 10-63 MHz. */
max_clock = 63000;
if (SDHC_BASE_FREQ_KHZ(caps) != 0)
hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
}
if (hp->clkbase == 0) {
/* The attachment driver must tell us. */
DEBUG("sdhc: base clock frequency unknown\n");
goto err;
} else if (hp->clkbase < 10000 || hp->clkbase > max_clock) {
DEBUG("sdhc: base clock frequency out of range: %u MHz\n",
hp->clkbase / 1000);
goto err;
}
DEBUG("sdhc: SDHC %d.0, %d MHz base clock\n",
SDHC_SPEC_VERSION(hp->version) + 1, hp->clkbase / 1000);
/*
* Determine SD bus voltage levels supported by the controller.
*/
if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
SET(hp->ocr, MMC_OCR_1_9V_2_0V);
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
/*
* Attach the generic SD/MMC bus driver. (The bus driver must
* not invoke any chipset functions before it is attached.)
*/
hp->pa.attach(hp);
return 0;
err:
return (error);
}
#ifndef LOADER
/*
* Shutdown hook established by or called from attachment driver.
*/
void
sdhc_shutdown(struct sdhc_host *hp)
{
/* XXX chip locks up if we don't disable it before reboot. */
(void)sdhc_host_reset(hp);
}
#endif
/*
* Reset the host controller. Called during initialization, when
* cards are removed, upon resume, and during error recovery.
*/
int
sdhc_host_reset(struct sdhc_host *hp)
{
u_int16_t imask;
int error;
/* Disable all interrupts. */
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
/*
* Reset the entire host controller and wait up to 100ms for
* the controller to clear the reset bit.
*/
if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) {
return (error);
}
/* Set data timeout counter value to max for now. */
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
/* Enable interrupts. */
imask =
#ifndef LOADER
SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
#endif
SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask);
HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask);
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
return 0;
}
/*
* Return non-zero if the card is currently inserted.
*/
int
sdhc_card_detect(struct sdhc_host *hp)
{
return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ?
1 : 0;
}
/*
* Set or change SD bus voltage and enable or disable SD bus power.
* Return zero on success.
*/
int
sdhc_bus_power(struct sdhc_host *hp, u_int32_t ocr)
{
u_int8_t vdd;
DEBUG("sdhc_bus_power(0x%lx)\n", ocr);
/* Disable bus power before voltage change. */
HWRITE1(hp, SDHC_POWER_CTL, 0);
/* If power is disabled, reset the host and return now. */
if (ocr == 0) {
(void)sdhc_host_reset(hp);
return 0;
}
/*
* Select the maximum voltage according to capabilities.
*/
ocr &= hp->ocr;
if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
vdd = SDHC_VOLTAGE_3_3V;
else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
vdd = SDHC_VOLTAGE_3_0V;
else if (ISSET(ocr, MMC_OCR_1_9V_2_0V))
vdd = SDHC_VOLTAGE_1_8V;
else {
/* Unsupported voltage level requested. */
return EINVAL;
}
/*
* Enable bus power. Wait at least 1 ms (or 74 clocks) plus
* voltage ramp until power rises.
*/
HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |
SDHC_BUS_POWER);
udelay(10000);
/*
* The host system may not power the bus due to battery low,
* etc. In that case, the host controller should clear the
* bus power bit.
*/
if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
DEBUG("Host controller failed to enable bus power\n");
return ENXIO;
}
return 0;
}
/*
* Return the smallest possible base clock frequency divisor value
* for the CLOCK_CTL register to produce `freq' (KHz).
*/
static int
sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
{
int max_div = 256;
int div;
if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)
max_div = 2046;
for (div = 1; div <= max_div; div *= 2)
if ((hp->clkbase / div) <= freq)
return (div / 2);
/* No divisor found. */
return -1;
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
int
sdhc_bus_clock(struct sdhc_host *hp, int freq, int timing)
{
int div;
int timo;
int sdclk;
DEBUG("%s(%d, %d)\n", __FUNCTION__, freq, timing);
#ifdef DIAGNOSTIC
/* Must not stop the clock if commands are in progress. */
if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
sdhc_card_detect(hp))
DEBUG("sdhc_sdclk_frequency_select: command in progress\n");
#endif
/* Stop SD clock before changing the frequency. */
HWRITE2(hp, SDHC_CLOCK_CTL, 0);
if (freq == SDMMC_SDCLK_OFF)
return 0;
if (timing == SDMMC_TIMING_LEGACY)
HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
else
HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
/* Set the minimum base clock frequency divisor. */
if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
/* Invalid base clock frequency or `freq' value. */
return EINVAL;
}
if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)
sdclk = SDHC_SDCLK_DIV_V3(div);
else
sdclk = SDHC_SDCLK_DIV(div);
HWRITE2(hp, SDHC_CLOCK_CTL, sdclk);
/* Start internal clock. Wait 10ms for stabilization. */
HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
for (timo = 1000; timo > 0; timo--) {
if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
break;
udelay(10);
}
if (timo == 0) {
DEBUG("sdhc: internal clock never stabilized\n");
return ETIMEDOUT;
}
/* Enable SD clock. */
HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
return 0;
}
int
sdhc_bus_width(struct sdhc_host *hp, int width)
{
int reg;
DEBUG("%s(%d)\n", __FUNCTION__, width);
if (width != 1 && width != 4 && width != 8)
return EINVAL;
reg = HREAD1(hp, SDHC_HOST_CTL);
reg &= ~(SDHC_4BIT_MODE | SDHC_8BIT_MODE);
if (width == 4) {
reg |= SDHC_4BIT_MODE;
} else if (width == 8) {
reg |= SDHC_8BIT_MODE;
}
HWRITE1(hp, SDHC_HOST_CTL, reg);
return 0;
}
void
sdhc_card_intr_mask(struct sdhc_host *hp, int enable)
{
if (enable) {
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
} else {
HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
}
void
sdhc_card_intr_ack(struct sdhc_host *hp)
{
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
int
sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value)
{
u_int32_t state;
int timeout;
for (timeout = 500; timeout > 0; timeout--) {
if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask)
== value)
return 0;
udelay(10000);
}
DPRINTF(0,("sdhc: timeout waiting for %x (state=%d)\n", value, state));
return ETIMEDOUT;
}
void
sdhc_exec_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
int error;
if (cmd->c_datalen > 0)
hp->data_command = 1;
if (cmd->c_timeout == 0) {
if (cmd->c_datalen > 0)
cmd->c_timeout = SDHC_TRANSFER_TIMEOUT;
else
cmd->c_timeout = SDHC_COMMAND_TIMEOUT;
}
hp->intr_status = 0;
/*
* Start the MMC command, or mark `cmd' as failed and return.
*/
error = sdhc_start_command(hp, cmd);
if (error != 0) {
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
hp->data_command = 0;
return;
}
/*
* Wait until the command phase is done, or until the command
* is marked done for any other reason.
*/
int status = sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, cmd->c_timeout);
if (!ISSET(status, SDHC_COMMAND_COMPLETE)) {
cmd->c_error = ETIMEDOUT;
DEBUG("timeout dump: error_intr: 0x%x intr: 0x%x\n", hp->intr_error_status, hp->intr_status);
// sdhc_dump_regs(hp);
SET(cmd->c_flags, SCF_ITSDONE);
hp->data_command = 0;
return;
}
// DEBUG("command_complete, continuing...\n");
/*
* The host controller removes bits [0:7] from the response
* data (CRC) and we pass the data up unchanged to the bus
* driver (without padding).
*/
if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
u_char *p = (u_char *)cmd->c_resp;
int i;
for (i = 0; i < 15; i++)
*p++ = HREAD1(hp, SDHC_RESPONSE + i);
} else
cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
}
/*
* If the command has data to transfer in any direction,
* execute the transfer now.
*/
if (cmd->c_error == 0 && cmd->c_datalen > 0)
sdhc_transfer_data(hp, cmd);
DPRINTF(1,("sdhc: cmd %u done (flags=%#x error=%d prev state=%d)\n",
cmd->c_opcode, cmd->c_flags, cmd->c_error, (cmd->c_resp[0] >> 9) & 15));
SET(cmd->c_flags, SCF_ITSDONE);
hp->data_command = 0;
}
int
sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
u_int16_t blksize = 0;
u_int16_t blkcount = 0;
u_int16_t mode;
u_int16_t command;
int error;
DPRINTF(1,("sdhc: start cmd %u arg=%#x data=%p dlen=%d flags=%#x\n",
cmd->c_opcode, cmd->c_arg, cmd->c_data, cmd->c_datalen, cmd->c_flags));
/*
* The maximum block length for commands should be the minimum
* of the host buffer size and the card buffer size. (1.7.2)
*/
/* Fragment the data into proper blocks. */
if (cmd->c_datalen > 0) {
blksize = MIN(cmd->c_datalen, cmd->c_blklen);
blkcount = cmd->c_datalen / blksize;
if (cmd->c_datalen % blksize > 0) {
/* XXX: Split this command. (1.7.4) */
DEBUG("sdhc: data not a multiple of %d bytes\n", blksize);
return EINVAL;
}
}
/* Check limit imposed by 9-bit block count. (1.7.2) */
if (blkcount > SDHC_BLOCK_COUNT_MAX) {
DEBUG("sdhc: too much data\n");
return EINVAL;
}
/* Prepare transfer mode register value. (2.2.5) */
mode = 0;
if (ISSET(cmd->c_flags, SCF_CMD_READ))
mode |= SDHC_READ_MODE;
if (blkcount > 0) {
mode |= SDHC_BLOCK_COUNT_ENABLE;
if (blkcount > 1) {
mode |= SDHC_MULTI_BLOCK_MODE;
/* XXX only for memory commands? */
mode |= SDHC_AUTO_CMD12_ENABLE;
}
}
if (ISSET(hp->flags, SHF_USE_DMA))
mode |= SDHC_DMA_ENABLE;
/*
* Prepare command register value. (2.2.6)
*/
command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) <<
SDHC_COMMAND_INDEX_SHIFT;
if (ISSET(cmd->c_flags, SCF_RSP_CRC))
command |= SDHC_CRC_CHECK_ENABLE;
if (ISSET(cmd->c_flags, SCF_RSP_IDX))
command |= SDHC_INDEX_CHECK_ENABLE;
if (cmd->c_data != NULL)
command |= SDHC_DATA_PRESENT_SELECT;
if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
command |= SDHC_NO_RESPONSE;
else if (ISSET(cmd->c_flags, SCF_RSP_136))
command |= SDHC_RESP_LEN_136;
else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
command |= SDHC_RESP_LEN_48_CHK_BUSY;
else
command |= SDHC_RESP_LEN_48;
/* Wait until command and data inhibit bits are clear. (1.5) */
if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0)
return error;
if (ISSET(hp->flags, SHF_USE_DMA) && cmd->c_datalen > 0) {
cmd->c_resid = blkcount;
cmd->c_buf = cmd->c_data;
if (ISSET(cmd->c_flags, SCF_CMD_READ) == 0) {
dc_flushrange(cmd->c_data, cmd->c_datalen);
ahb_flush_to(hp->pa.rb);
}
HWRITE4(hp, SDHC_DMA_ADDR, (u32)cmd->c_data);
}
DPRINTF(1,("sdhc: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",
command, mode, blksize, blkcount));
/*
* Start a CPU data transfer. Writing to the high order byte
* of the SDHC_COMMAND register triggers the SD command. (1.5)
*/
// HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
HWRITE2(hp, SDHC_BLOCK_SIZE, blksize | 7 << 12);
HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
// http://wiibrew.org/wiki/Reversed_Little_Endian
// HWRITE2(hp, SDHC_COMMAND, command);
HWRITE4(hp, SDHC_TRANSFER_MODE, ((u32)command << 16) | mode);
return 0;
}
void
sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
int error;
int status;
error = 0;
DPRINTF(1,("resp=%#x datalen=%d\n", MMC_R1(cmd->c_resp), cmd->c_datalen));
if (ISSET(hp->flags, SHF_USE_DMA)) {
for(;;) {
status = sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE |
SDHC_DMA_INTERRUPT,
SDHC_TRANSFER_TIMEOUT);
if (!status) {
DEBUG("DMA timeout %08x\n", status);
error = ETIMEDOUT;
break;
}
if (ISSET(status, SDHC_TRANSFER_COMPLETE)) {
// DEBUG("got a TRANSFER_COMPLETE: %08x\n", status);
break;
}
}
} else
DEBUG("fail.\n");
#ifdef SDHC_DEBUG
/* XXX I forgot why I wanted to know when this happens :-( */
if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
ISSET(MMC_R1(cmd->c_resp), 0xcb00))
DEBUG("sdhc: CMD52/53 error response flags %#x\n",
MMC_R1(cmd->c_resp) & 0xff00);
#endif
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
ahb_flush_from(hp->pa.wb);
dc_invalidaterange(cmd->c_data, cmd->c_datalen);
}
if (error != 0)
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("sdhc: data transfer done (error=%d)\n", cmd->c_error));
return;
}
/* Prepare for another command. */
int
sdhc_soft_reset(struct sdhc_host *hp, int mask)
{
int timo;
DPRINTF(1,("sdhc: software reset reg=%#x\n", mask));
HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
for (timo = 10; timo > 0; timo--) {
if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
break;
udelay(10000);
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
}
if (timo == 0) {
DPRINTF(1,("sdhc: timeout reg=%#x\n", HREAD1(hp, SDHC_SOFTWARE_RESET)));
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
return (ETIMEDOUT);
}
return (0);
}
int
sdhc_wait_intr_debug(const char *funcname, int line, struct sdhc_host *hp, int mask, int timo)
{
(void) funcname;
(void) line;
int status;
mask |= SDHC_ERROR_INTERRUPT;
mask |= SDHC_ERROR_TIMEOUT;
status = hp->intr_status & mask;
for (; timo > 0; timo--) {
#ifdef CAN_HAZ_IRQ
if((get_cpsr() & 0b11111) == 0b10010)
#endif
sdhc_intr(hp); // seems backwards but ok
if (hp->intr_status != 0) {
status = hp->intr_status & mask;
break;
}
udelay(1000);
}
if (timo == 0) {
status |= SDHC_ERROR_TIMEOUT;
}
hp->intr_status &= ~status;
DPRINTF(2,("sdhc: funcname=%s, line=%d, timo=%d status=%#x intr status=%#x error %#x\n",
funcname, line, timo, status, hp->intr_status, hp->intr_error_status));
/* Command timeout has higher priority than command complete. */
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
DEBUG("resetting due to error interrupt\n");
// sdhc_dump_regs(hp);
hp->intr_error_status = 0;
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
status = 0;
}
/* Command timeout has higher priority than command complete. */
if (ISSET(status, SDHC_ERROR_TIMEOUT)) {
DEBUG("resetting due to timeout\n");
// sdhc_dump_regs(hp);
hp->intr_error_status = 0;
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
status = 0;
}
return status;
}
/*
* Established by attachment driver at interrupt priority IPL_SDMMC.
*/
int
sdhc_intr(struct sdhc_host *hp)
{
u_int16_t status;
u_int16_t error;
u_int16_t signal;
DPRINTF(1,("sdhc_intr():\n"));
// sdhc_dump_regs(hp);
/* Find out which interrupts are pending. */
status = HREAD2(hp, SDHC_NINTR_STATUS);
if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) {
DPRINTF(1, ("unknown interrupt\n"));
return 0;
}
error = HREAD2(hp, SDHC_EINTR_STATUS);
signal = HREAD2(hp, SDHC_EINTR_SIGNAL_EN);
/* Acknowledge the interrupts we are about to handle. */
HWRITE2(hp, SDHC_NINTR_STATUS, status);
DPRINTF(2,("sdhc: interrupt status=%d\n", status));
/* Service error interrupts. */
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
/* Acknowledge error interrupts. */
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, 0);
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
if (hp->data_command == 1) {
hp->data_command = 0;
hp->pa.abort();
}
HWRITE2(hp, SDHC_EINTR_STATUS, error);
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, signal);
DPRINTF(2,("sdhc: error interrupt, status=0x%x, signal=0x%x\n", error, signal));
if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
SDHC_DATA_TIMEOUT_ERROR)) {
hp->intr_error_status |= error;
hp->intr_status |= status;
}
}
/*
* Wake up the blocking process to service command
* related interrupt(s).
*/
if (ISSET(status, SDHC_BUFFER_READ_READY|
SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
SDHC_TRANSFER_COMPLETE)) {
hp->intr_status |= status;
}
if (ISSET(status, SDHC_DMA_INTERRUPT)) {
DPRINTF(2,("sdhc: dma left:%#x\n", HREAD2(hp, SDHC_BLOCK_COUNT)));
// this works because our virtual memory
// addresses are equal to the physical memory
// addresses and because we require the target
// buffer to be contiguous
HWRITE4(hp, SDHC_DMA_ADDR, HREAD4(hp, SDHC_DMA_ADDR));
}
/* Service SD card interrupts. */
if (ISSET(status, SDHC_CARD_INTERRUPT)) {
DPRINTF(0,("sdhc: card interrupt\n"));
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
/*
* Wake up the sdmmc event thread to scan for cards.
*/
if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
hp->pa.attach(hp);
return 1;
}
#ifdef SDHC_DEBUG
void
sdhc_dump_regs(struct sdhc_host *hp)
{
DEBUG("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
HREAD4(hp, SDHC_PRESENT_STATE));
DEBUG("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
HREAD1(hp, SDHC_POWER_CTL));
DEBUG("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
HREAD2(hp, SDHC_NINTR_STATUS));
DEBUG("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
HREAD2(hp, SDHC_EINTR_STATUS));
DEBUG("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
HREAD2(hp, SDHC_NINTR_STATUS_EN));
DEBUG("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
HREAD2(hp, SDHC_EINTR_STATUS_EN));
DEBUG("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
DEBUG("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
DEBUG("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
HREAD4(hp, SDHC_CAPABILITIES));
DEBUG("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
HREAD4(hp, SDHC_MAX_CAPABILITIES));
}
#endif