libfat/source/cache.c
2008-05-10 19:35:18 +00:00

270 lines
7.9 KiB
C

/*
cache.c
The cache is not visible to the user. It should be flushed
when any file is closed or changes are made to the filesystem.
This cache implements a least-used-page replacement policy. This will
distribute sectors evenly over the pages, so if less than the maximum
pages are used at once, they should all eventually remain in the cache.
This also has the benefit of throwing out old sectors, so as not to keep
too many stale pages around.
Copyright (c) 2006 Michael "Chishm" Chisholm
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2007-11-14 - Chishm
* Fixed _FAT_cache_constructor to return NULL on error, not false
* Fixed _FAT_cache_flush to return false on error. With thanks to xorloser
*/
#include <string.h>
#include "common.h"
#include "cache.h"
#include "disc.h"
#include "mem_allocate.h"
#include "bit_ops.h"
#define CACHE_FREE 0xFFFFFFFF
CACHE* _FAT_cache_constructor (u32 numberOfPages, const IO_INTERFACE* discInterface) {
CACHE* cache;
u32 i;
CACHE_ENTRY* cacheEntries;
if (numberOfPages < 2) {
numberOfPages = 2;
}
cache = (CACHE*) _FAT_mem_allocate (sizeof(CACHE));
if (cache == NULL) {
return NULL;
}
cache->disc = discInterface;
cache->numberOfPages = numberOfPages;
cacheEntries = (CACHE_ENTRY*) _FAT_mem_allocate ( sizeof(CACHE_ENTRY) * numberOfPages);
if (cacheEntries == NULL) {
_FAT_mem_free (cache);
return NULL;
}
for (i = 0; i < numberOfPages; i++) {
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].dirty = false;
}
cache->cacheEntries = cacheEntries;
cache->pages = (u8*) _FAT_mem_allocate ( CACHE_PAGE_SIZE * numberOfPages);
if (cache->pages == NULL) {
_FAT_mem_free (cache->cacheEntries);
_FAT_mem_free (cache);
return NULL;
}
return cache;
}
void _FAT_cache_destructor (CACHE* cache) {
// Clear out cache before destroying it
_FAT_cache_flush(cache);
// Free memory in reverse allocation order
_FAT_mem_free (cache->pages);
_FAT_mem_free (cache->cacheEntries);
_FAT_mem_free (cache);
return;
}
/*
Retrieve a sector's page from the cache. If it is not found in the cache,
load it into the cache and return the page it was loaded to.
Return CACHE_FREE on error.
*/
static u32 _FAT_cache_getSector (CACHE* cache, u32 sector) {
u32 i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
u32 numberOfPages = cache->numberOfPages;
u32 leastUsed = 0;
u32 lowestCount = 0xFFFFFFFF;
for (i = 0; (i < numberOfPages) && (cacheEntries[i].sector != sector); i++) {
// While searching for the desired sector, also search for the leased used page
if ( (cacheEntries[i].sector == CACHE_FREE) || (cacheEntries[i].count < lowestCount) ) {
leastUsed = i;
lowestCount = cacheEntries[i].count;
}
}
// If it found the sector in the cache, return it
if ((i < numberOfPages) && (cacheEntries[i].sector == sector)) {
// Increment usage counter
cacheEntries[i].count += 1;
return i;
}
// If it didn't, replace the least used cache page with the desired sector
if ((cacheEntries[leastUsed].sector != CACHE_FREE) && (cacheEntries[leastUsed].dirty == true)) {
// Write the page back to disc if it has been written to
if (!_FAT_disc_writeSectors (cache->disc, cacheEntries[leastUsed].sector, 1, cache->pages + CACHE_PAGE_SIZE * leastUsed)) {
return CACHE_FREE;
}
cacheEntries[leastUsed].dirty = false;
}
// Load the new sector into the cache
if (!_FAT_disc_readSectors (cache->disc, sector, 1, cache->pages + CACHE_PAGE_SIZE * leastUsed)) {
return CACHE_FREE;
}
cacheEntries[leastUsed].sector = sector;
// Increment the usage count, don't reset it
// This creates a paging policy of least used PAGE, not sector
cacheEntries[leastUsed].count += 1;
return leastUsed;
}
/*
Reads some data from a cache page, determined by the sector number
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, u32 sector, u32 offset, u32 size) {
u32 page;
if (offset + size > BYTES_PER_READ) {
return false;
}
page = _FAT_cache_getSector (cache, sector);
if (page == CACHE_FREE) {
return false;
}
memcpy (buffer, cache->pages + (CACHE_PAGE_SIZE * page) + offset, size);
return true;
}
bool _FAT_cache_readLittleEndianValue (CACHE* cache, u32 *value, u32 sector, u32 offset, u32 num_bytes) {
u8 buf[4];
if (!_FAT_cache_readPartialSector(cache, buf, sector, offset, num_bytes)) return false;
switch(num_bytes) {
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16(buf,0); break;
case 4: *value = u8array_to_u32(buf,0); break;
default: return false;
}
return true;
}
/*
Writes some data to a cache page, making sure it is loaded into memory first.
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, u32 sector, u32 offset, u32 size) {
u32 page;
if (offset + size > BYTES_PER_READ) {
return false;
}
page = _FAT_cache_getSector (cache, sector);
if (page == CACHE_FREE) {
return false;
}
memcpy (cache->pages + (CACHE_PAGE_SIZE * page) + offset, buffer, size);
cache->cacheEntries[page].dirty = true;
return true;
}
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const u32 value, u32 sector, u32 offset, u32 size) {
u8 buf[4] = {0, 0, 0, 0};
switch(size) {
case 1: buf[0] = value; break;
case 2: u16_to_u8array(buf, 0, value); break;
case 4: u32_to_u8array(buf, 0, value); break;
default: return false;
}
return _FAT_cache_writePartialSector(cache, buf, sector, offset, size);
}
/*
Writes some data to a cache page, zeroing out the page first
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, u32 sector, u32 offset, u32 size) {
u32 page;
if (offset + size > BYTES_PER_READ) {
return false;
}
page = _FAT_cache_getSector (cache, sector);
if (page == CACHE_FREE) {
return false;
}
memset (cache->pages + (CACHE_PAGE_SIZE * page), 0, CACHE_PAGE_SIZE);
memcpy (cache->pages + (CACHE_PAGE_SIZE * page) + offset, buffer, size);
cache->cacheEntries[page].dirty = true;
return true;
}
/*
Flushes all dirty pages to disc, clearing the dirty flag.
Also resets all pages' page count to 0.
*/
bool _FAT_cache_flush (CACHE* cache) {
u32 i;
for (i = 0; i < cache->numberOfPages; i++) {
if (cache->cacheEntries[i].dirty) {
if (!_FAT_disc_writeSectors (cache->disc, cache->cacheEntries[i].sector, 1, cache->pages + CACHE_PAGE_SIZE * i)) {
return false;
}
}
cache->cacheEntries[i].count = 0;
cache->cacheEntries[i].dirty = false;
}
return true;
}
void _FAT_cache_invalidate (CACHE* cache) {
int i;
for (i = 0; i < cache->numberOfPages; i++) {
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].count = 0;
cache->cacheEntries[i].dirty = false;
}
}