mirror of
https://github.com/fail0verflow/mini.git
synced 2024-11-05 19:25:12 +01:00
1091 lines
26 KiB
C
1091 lines
26 KiB
C
/* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
|
|
* Copyright (c) 2009 Sven Peter <svenpeter@gmail.com>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* SD Host Controller driver based on the SD Host Controller Standard
|
|
* Simplified Specification Version 1.00 (www.sdcard.com).
|
|
*/
|
|
|
|
|
|
#if 0
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#endif
|
|
|
|
#include "bsdtypes.h"
|
|
#include "sdhcreg.h"
|
|
#include "sdhcvar.h"
|
|
#include "sdmmcchip.h"
|
|
#include "sdmmcreg.h"
|
|
#include "sdmmcvar.h"
|
|
#include "sdmmc.h"
|
|
#include "gecko.h"
|
|
#include "string.h"
|
|
#include "irq.h"
|
|
#include "utils.h"
|
|
#include "ipc.h"
|
|
|
|
#define SDHC_DEBUG 1
|
|
|
|
#define SDHC_COMMAND_TIMEOUT 0
|
|
#define SDHC_BUFFER_TIMEOUT 0
|
|
#define SDHC_TRANSFER_TIMEOUT 0
|
|
|
|
#define HDEVNAME(hp) ((hp)->sc->sc_dev.dv_xname)
|
|
#define sdmmc_delay(t) udelay(t)
|
|
|
|
static inline u32 bus_space_read_4(bus_space_tag_t iot, bus_space_handle_t ioh, u32 reg)
|
|
{
|
|
return read32(ioh + reg);
|
|
}
|
|
|
|
static inline u16 bus_space_read_2(bus_space_tag_t iot, bus_space_handle_t ioh, u32 reg)
|
|
{
|
|
if(reg & 3)
|
|
return (read32((ioh + reg) & ~3) & 0xffff0000) >> 16;
|
|
else
|
|
return (read32(ioh + reg) & 0xffff);
|
|
}
|
|
|
|
static inline u8 bus_space_read_1(bus_space_tag_t iot, bus_space_handle_t ioh, u32 reg)
|
|
{
|
|
u32 mask;
|
|
u32 addr;
|
|
u8 shift;
|
|
|
|
shift = (reg & 3) * 8;
|
|
mask = (0xFF << shift);
|
|
addr = ioh + reg;
|
|
|
|
return (read32(addr & ~3) & mask) >> shift;
|
|
}
|
|
|
|
static inline void bus_space_write_4(bus_space_tag_t iot, bus_space_handle_t ioh, u32 r, u32 v)
|
|
{
|
|
write32(ioh + r, v);
|
|
}
|
|
|
|
static inline void bus_space_write_2(bus_space_tag_t iot, bus_space_handle_t ioh, u32 r, u16 v)
|
|
{
|
|
if(r & 3)
|
|
mask32((ioh + r) & ~3, 0xffff0000, v << 16);
|
|
else
|
|
mask32((ioh + r), 0xffff, ((u32)v));
|
|
}
|
|
|
|
static inline void bus_space_write_1(bus_space_tag_t iot, bus_space_handle_t ioh, u32 r, u8 v)
|
|
{
|
|
u32 mask;
|
|
u32 addr;
|
|
u8 shift;
|
|
|
|
shift = (r & 3) * 8;
|
|
mask = (0xFF << shift);
|
|
addr = ioh + r;
|
|
|
|
mask32(addr & ~3, mask, v << shift);
|
|
}
|
|
|
|
u32 splbio()
|
|
{
|
|
// irq_disable(IRQ_SDHC);
|
|
return 0;
|
|
}
|
|
|
|
void splx(u32 dummy)
|
|
{
|
|
// irq_enable(IRQ_SDHC);
|
|
}
|
|
|
|
/* flag values */
|
|
#define SHF_USE_DMA 0x0001
|
|
|
|
#define HREAD1(hp, reg) \
|
|
(bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
|
|
#define HREAD2(hp, reg) \
|
|
(bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
|
|
#define HREAD4(hp, reg) \
|
|
(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
|
|
#define HWRITE1(hp, reg, val) \
|
|
bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
|
|
#define HWRITE2(hp, reg, val) \
|
|
bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
|
|
#define HWRITE4(hp, reg, val) \
|
|
bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
|
|
#define HCLR1(hp, reg, bits) \
|
|
HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
|
|
#define HCLR2(hp, reg, bits) \
|
|
HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
|
|
#define HSET1(hp, reg, bits) \
|
|
HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
|
|
#define HSET2(hp, reg, bits) \
|
|
HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
|
|
|
|
int sdhc_host_reset(sdmmc_chipset_handle_t);
|
|
u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
|
|
int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
|
|
int sdhc_card_detect(sdmmc_chipset_handle_t);
|
|
int sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t);
|
|
int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
|
|
void sdhc_card_intr_mask(sdmmc_chipset_handle_t, int);
|
|
void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
|
|
void sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
|
|
int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
|
|
int sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t);
|
|
int sdhc_soft_reset(struct sdhc_host *, int);
|
|
int sdhc_wait_intr(struct sdhc_host *, int, int);
|
|
void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
|
|
void sdhc_read_data(struct sdhc_host *, u_char *, int);
|
|
void sdhc_write_data(struct sdhc_host *, u_char *, int);
|
|
|
|
#ifdef SDHC_DEBUG
|
|
int sdhcdebug = 2;
|
|
#define DPRINTF(n,s) do { if ((n) <= sdhcdebug) gecko_printf s; } while (0)
|
|
void sdhc_dump_regs(struct sdhc_host *);
|
|
#else
|
|
#define DPRINTF(n,s) do {} while(0)
|
|
#endif
|
|
|
|
struct sdmmc_chip_functions sdhc_functions = {
|
|
/* host controller reset */
|
|
sdhc_host_reset,
|
|
/* host controller capabilities */
|
|
sdhc_host_ocr,
|
|
sdhc_host_maxblklen,
|
|
/* card detection */
|
|
sdhc_card_detect,
|
|
/* bus power and clock frequency */
|
|
sdhc_bus_power,
|
|
sdhc_bus_clock,
|
|
/* command execution */
|
|
sdhc_exec_command,
|
|
/* card interrupt */
|
|
sdhc_card_intr_mask,
|
|
sdhc_card_intr_ack
|
|
};
|
|
|
|
#if 0
|
|
struct cfdriver sdhc_cd = {
|
|
NULL, "sdhc", DV_DULL
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Called by attachment driver. For each SD card slot there is one SD
|
|
* host controller standard register set. (1.3)
|
|
*/
|
|
int
|
|
sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
|
|
bus_space_handle_t ioh, int usedma)
|
|
{
|
|
struct sdmmcbus_attach_args saa;
|
|
struct sdhc_host *hp;
|
|
u_int32_t caps;
|
|
int error = 1;
|
|
|
|
strcpy(sc->sc_dev.dv_xname, "sdhc");
|
|
#ifdef SDHC_DEBUG
|
|
u_int16_t version;
|
|
|
|
version = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
|
|
gecko_printf("%s: SD Host Specification/Vendor Version ",
|
|
sc->sc_dev.dv_xname);
|
|
switch(SDHC_SPEC_VERSION(version)) {
|
|
case 0x00:
|
|
gecko_printf("1.0/%u\n", SDHC_VENDOR_VERSION(version));
|
|
break;
|
|
default:
|
|
gecko_printf(">1.0/%u\n", SDHC_VENDOR_VERSION(version));
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Allocate one more host structure. */
|
|
if (sc->sc_nhosts < SDHC_MAX_HOSTS) {
|
|
sc->sc_nhosts++;
|
|
hp = &sc->sc_host[sc->sc_nhosts - 1];
|
|
memset(hp, 0, sizeof(*hp));
|
|
}
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* Fill in the new host structure. */
|
|
hp->sc = sc;
|
|
hp->iot = iot;
|
|
hp->ioh = ioh;
|
|
|
|
/*
|
|
* Reset the host controller and enable interrupts.
|
|
*/
|
|
(void)sdhc_host_reset(hp);
|
|
|
|
/* Determine host capabilities. */
|
|
caps = HREAD4(hp, SDHC_CAPABILITIES);
|
|
|
|
/* Use DMA if the host system and the controller support it. */
|
|
if (usedma && ISSET(caps, SDHC_DMA_SUPPORT))
|
|
SET(hp->flags, SHF_USE_DMA);
|
|
|
|
/*
|
|
* Determine the base clock frequency. (2.2.24)
|
|
*/
|
|
if (SDHC_BASE_FREQ_KHZ(caps) != 0)
|
|
hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
|
|
if (hp->clkbase == 0) {
|
|
/* The attachment driver must tell us. */
|
|
gecko_printf("%s: base clock frequency unknown\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto err;
|
|
} else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
|
|
/* SDHC 1.0 supports only 10-63 MHz. */
|
|
gecko_printf("%s: base clock frequency out of range: %u MHz\n",
|
|
sc->sc_dev.dv_xname, hp->clkbase / 1000);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* XXX Set the data timeout counter value according to
|
|
* capabilities. (2.2.15)
|
|
*/
|
|
|
|
/*
|
|
* Determine SD bus voltage levels supported by the controller.
|
|
*/
|
|
if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
|
|
SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
|
|
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
|
|
SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
|
|
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
|
|
SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
|
|
|
|
/*
|
|
* Determine the maximum block length supported by the host
|
|
* controller. (2.2.24)
|
|
*/
|
|
switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
|
|
case SDHC_MAX_BLK_LEN_512:
|
|
hp->maxblklen = 512;
|
|
break;
|
|
case SDHC_MAX_BLK_LEN_1024:
|
|
hp->maxblklen = 1024;
|
|
break;
|
|
case SDHC_MAX_BLK_LEN_2048:
|
|
hp->maxblklen = 2048;
|
|
break;
|
|
default:
|
|
hp->maxblklen = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Attach the generic SD/MMC bus driver. (The bus driver must
|
|
* not invoke any chipset functions before it is attached.)
|
|
*/
|
|
bzero(&saa, sizeof(saa));
|
|
saa.saa_busname = "sdmmc";
|
|
saa.sct = &sdhc_functions;
|
|
saa.sch = hp;
|
|
|
|
hp->sdmmc = sdmmc_attach(&sdhc_functions, hp, "sdhc", ioh);
|
|
/* hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
|
|
if (hp->sdmmc == NULL) {
|
|
error = 0;
|
|
goto err;
|
|
}*/
|
|
|
|
return 0;
|
|
|
|
err:
|
|
// free(hp, M_DEVBUF);
|
|
sc->sc_nhosts--;
|
|
return (error);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Power hook established by or called from attachment driver.
|
|
*/
|
|
void
|
|
sdhc_power(int why, void *arg)
|
|
{
|
|
struct sdhc_softc *sc = arg;
|
|
struct sdhc_host *hp;
|
|
int n, i;
|
|
|
|
switch(why) {
|
|
case PWR_STANDBY:
|
|
case PWR_SUSPEND:
|
|
/* XXX poll for command completion or suspend command
|
|
* in progress */
|
|
|
|
/* Save the host controller state. */
|
|
for (n = 0; n < sc->sc_nhosts; n++) {
|
|
hp = sc->sc_host[n];
|
|
for (i = 0; i < sizeof hp->regs; i++)
|
|
hp->regs[i] = HREAD1(hp, i);
|
|
}
|
|
break;
|
|
|
|
case PWR_RESUME:
|
|
/* Restore the host controller state. */
|
|
for (n = 0; n < sc->sc_nhosts; n++) {
|
|
hp = sc->sc_host[n];
|
|
(void)sdhc_host_reset(hp);
|
|
for (i = 0; i < sizeof hp->regs; i++)
|
|
HWRITE1(hp, i, hp->regs[i]);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Shutdown hook established by or called from attachment driver.
|
|
*/
|
|
void
|
|
sdhc_shutdown(void *arg)
|
|
{
|
|
struct sdhc_softc *sc = arg;
|
|
struct sdhc_host *hp;
|
|
int i;
|
|
|
|
/* XXX chip locks up if we don't disable it before reboot. */
|
|
for (i = 0; i < sc->sc_nhosts; i++) {
|
|
hp = &sc->sc_host[i];
|
|
(void)sdhc_host_reset(hp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the host controller. Called during initialization, when
|
|
* cards are removed, upon resume, and during error recovery.
|
|
*/
|
|
int
|
|
sdhc_host_reset(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
u_int16_t imask;
|
|
int error;
|
|
int s;
|
|
|
|
s = splsdmmc();
|
|
|
|
/* Disable all interrupts. */
|
|
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
|
|
|
|
/*
|
|
* Reset the entire host controller and wait up to 100ms for
|
|
* the controller to clear the reset bit.
|
|
*/
|
|
if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) {
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/* Set data timeout counter value to max for now. */
|
|
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
|
|
|
|
/* Enable interrupts. */
|
|
imask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
|
|
SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
|
|
SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
|
|
SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
|
|
|
|
HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask);
|
|
HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
|
|
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask);
|
|
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
u_int32_t
|
|
sdhc_host_ocr(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
return hp->ocr;
|
|
}
|
|
|
|
int
|
|
sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
return hp->maxblklen;
|
|
}
|
|
|
|
/*
|
|
* Return non-zero if the card is currently inserted.
|
|
*/
|
|
int
|
|
sdhc_card_detect(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ?
|
|
1 : 0;
|
|
}
|
|
|
|
/*
|
|
* Set or change SD bus voltage and enable or disable SD bus power.
|
|
* Return zero on success.
|
|
*/
|
|
int
|
|
sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
u_int8_t vdd;
|
|
int s;
|
|
|
|
s = splsdmmc();
|
|
|
|
/*
|
|
* Disable bus power before voltage change.
|
|
*/
|
|
if (!(hp->sc->sc_flags & SDHC_F_NOPWR0))
|
|
HWRITE1(hp, SDHC_POWER_CTL, 0);
|
|
|
|
/* If power is disabled, reset the host and return now. */
|
|
if (ocr == 0) {
|
|
splx(s);
|
|
(void)sdhc_host_reset(hp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Select the maximum voltage according to capabilities.
|
|
*/
|
|
ocr &= hp->ocr;
|
|
if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
|
|
vdd = SDHC_VOLTAGE_3_3V;
|
|
else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
|
|
vdd = SDHC_VOLTAGE_3_0V;
|
|
else if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
|
|
vdd = SDHC_VOLTAGE_1_8V;
|
|
else {
|
|
/* Unsupported voltage level requested. */
|
|
splx(s);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Enable bus power. Wait at least 1 ms (or 74 clocks) plus
|
|
* voltage ramp until power rises.
|
|
*/
|
|
HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |
|
|
SDHC_BUS_POWER);
|
|
sdmmc_delay(10000);
|
|
|
|
/*
|
|
* The host system may not power the bus due to battery low,
|
|
* etc. In that case, the host controller should clear the
|
|
* bus power bit.
|
|
*/
|
|
if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
|
|
splx(s);
|
|
return ENXIO;
|
|
}
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the smallest possible base clock frequency divisor value
|
|
* for the CLOCK_CTL register to produce `freq' (KHz).
|
|
*/
|
|
static int
|
|
sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
|
|
{
|
|
int div;
|
|
|
|
for (div = 1; div <= 256; div *= 2)
|
|
if ((hp->clkbase / div) <= freq)
|
|
return (div / 2);
|
|
/* No divisor found. */
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Set or change SDCLK frequency or disable the SD clock.
|
|
* Return zero on success.
|
|
*/
|
|
int
|
|
sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
int s;
|
|
int div;
|
|
int timo;
|
|
int error = 0;
|
|
|
|
s = splsdmmc();
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Must not stop the clock if commands are in progress. */
|
|
if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
|
|
sdhc_card_detect(hp))
|
|
gecko_printf("sdhc_sdclk_frequency_select: command in progress\n");
|
|
#endif
|
|
|
|
/*
|
|
* Stop SD clock before changing the frequency.
|
|
*/
|
|
HWRITE2(hp, SDHC_CLOCK_CTL, 0);
|
|
if (freq == SDMMC_SDCLK_OFF)
|
|
goto ret;
|
|
|
|
/*
|
|
* Set the minimum base clock frequency divisor.
|
|
*/
|
|
if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
|
|
/* Invalid base clock frequency or `freq' value. */
|
|
error = EINVAL;
|
|
goto ret;
|
|
}
|
|
HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
|
|
|
|
/*
|
|
* Start internal clock. Wait 10ms for stabilization.
|
|
*/
|
|
HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
|
|
for (timo = 1000; timo > 0; timo--) {
|
|
if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
|
|
break;
|
|
sdmmc_delay(10);
|
|
}
|
|
if (timo == 0) {
|
|
error = ETIMEDOUT;
|
|
goto ret;
|
|
}
|
|
|
|
/*
|
|
* Enable SD clock.
|
|
*/
|
|
HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
|
|
|
|
ret:
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
|
|
if (enable) {
|
|
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
|
|
HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
|
|
} else {
|
|
HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
|
|
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
|
|
}
|
|
}
|
|
|
|
void
|
|
sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
|
|
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
|
|
}
|
|
|
|
int
|
|
sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value)
|
|
{
|
|
u_int32_t state;
|
|
int timeout;
|
|
|
|
for (timeout = 10; timeout > 0; timeout--) {
|
|
if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask)
|
|
== value)
|
|
return 0;
|
|
sdmmc_delay(10000);
|
|
}
|
|
DPRINTF(0,("%s: timeout waiting for %x (state=%d)\n",
|
|
HDEVNAME(hp), value, state));
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
void
|
|
sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
|
|
{
|
|
struct sdhc_host *hp = sch;
|
|
int error;
|
|
|
|
/*
|
|
* Start the MMC command, or mark `cmd' as failed and return.
|
|
*/
|
|
error = sdhc_start_command(hp, cmd);
|
|
if (error != 0) {
|
|
cmd->c_error = error;
|
|
SET(cmd->c_flags, SCF_ITSDONE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Wait until the command phase is done, or until the command
|
|
* is marked done for any other reason.
|
|
*/
|
|
if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE,
|
|
SDHC_COMMAND_TIMEOUT)) {
|
|
cmd->c_error = ETIMEDOUT;
|
|
SET(cmd->c_flags, SCF_ITSDONE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The host controller removes bits [0:7] from the response
|
|
* data (CRC) and we pass the data up unchanged to the bus
|
|
* driver (without padding).
|
|
*/
|
|
if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
|
|
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
|
|
u_char *p = (u_char *)cmd->c_resp;
|
|
int i;
|
|
|
|
for (i = 0; i < 15; i++)
|
|
*p++ = HREAD1(hp, SDHC_RESPONSE + i);
|
|
} else
|
|
cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
|
|
}
|
|
|
|
/*
|
|
* If the command has data to transfer in any direction,
|
|
* execute the transfer now.
|
|
*/
|
|
if (cmd->c_error == 0 && cmd->c_data != NULL)
|
|
sdhc_transfer_data(hp, cmd);
|
|
|
|
/* Turn off the LED. */
|
|
HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
|
|
|
|
DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n",
|
|
HDEVNAME(hp), cmd->c_opcode, cmd->c_flags, cmd->c_error));
|
|
SET(cmd->c_flags, SCF_ITSDONE);
|
|
}
|
|
|
|
int
|
|
sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
|
|
{
|
|
u_int16_t blksize = 0;
|
|
u_int16_t blkcount = 0;
|
|
u_int16_t mode;
|
|
u_int16_t command;
|
|
int error;
|
|
int s;
|
|
|
|
DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x "
|
|
"proc=\"%s\"\n", HDEVNAME(hp), cmd->c_opcode, cmd->c_arg,
|
|
cmd->c_data, cmd->c_datalen, cmd->c_flags, ""));
|
|
|
|
/*
|
|
* The maximum block length for commands should be the minimum
|
|
* of the host buffer size and the card buffer size. (1.7.2)
|
|
*/
|
|
|
|
/* Fragment the data into proper blocks. */
|
|
if (cmd->c_datalen > 0) {
|
|
blksize = MIN(cmd->c_datalen, cmd->c_blklen);
|
|
blkcount = cmd->c_datalen / blksize;
|
|
if (cmd->c_datalen % blksize > 0) {
|
|
/* XXX: Split this command. (1.7.4) */
|
|
gecko_printf("%s: data not a multiple of %d bytes\n",
|
|
HDEVNAME(hp), blksize);
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Check limit imposed by 9-bit block count. (1.7.2) */
|
|
if (blkcount > SDHC_BLOCK_COUNT_MAX) {
|
|
gecko_printf("%s: too much data\n", HDEVNAME(hp));
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Prepare transfer mode register value. (2.2.5) */
|
|
mode = 0;
|
|
if (ISSET(cmd->c_flags, SCF_CMD_READ))
|
|
mode |= SDHC_READ_MODE;
|
|
if (blkcount > 0) {
|
|
mode |= SDHC_BLOCK_COUNT_ENABLE;
|
|
if (blkcount > 1) {
|
|
mode |= SDHC_MULTI_BLOCK_MODE;
|
|
/* XXX only for memory commands? */
|
|
mode |= SDHC_AUTO_CMD12_ENABLE;
|
|
}
|
|
}
|
|
#ifdef notyet
|
|
if (ISSET(hp->flags, SHF_USE_DMA))
|
|
mode |= SDHC_DMA_ENABLE;
|
|
#endif
|
|
|
|
/*
|
|
* Prepare command register value. (2.2.6)
|
|
*/
|
|
command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) <<
|
|
SDHC_COMMAND_INDEX_SHIFT;
|
|
|
|
if (ISSET(cmd->c_flags, SCF_RSP_CRC))
|
|
command |= SDHC_CRC_CHECK_ENABLE;
|
|
if (ISSET(cmd->c_flags, SCF_RSP_IDX))
|
|
command |= SDHC_INDEX_CHECK_ENABLE;
|
|
if (cmd->c_data != NULL)
|
|
command |= SDHC_DATA_PRESENT_SELECT;
|
|
|
|
if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
|
|
command |= SDHC_NO_RESPONSE;
|
|
else if (ISSET(cmd->c_flags, SCF_RSP_136))
|
|
command |= SDHC_RESP_LEN_136;
|
|
else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
|
|
command |= SDHC_RESP_LEN_48_CHK_BUSY;
|
|
else
|
|
command |= SDHC_RESP_LEN_48;
|
|
|
|
/* Wait until command and data inhibit bits are clear. (1.5) */
|
|
if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0)
|
|
return error;
|
|
|
|
s = splsdmmc();
|
|
|
|
/* Alert the user not to remove the card. */
|
|
HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
|
|
|
|
/* XXX: Set DMA start address if SHF_USE_DMA is set. */
|
|
|
|
DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",
|
|
HDEVNAME(hp), command, mode, blksize, blkcount));
|
|
|
|
/*
|
|
* Start a CPU data transfer. Writing to the high order byte
|
|
* of the SDHC_COMMAND register triggers the SD command. (1.5)
|
|
*/
|
|
HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
|
|
if (blkcount > 1)
|
|
HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
|
|
HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
|
|
HWRITE4(hp, SDHC_TRANSFER_MODE, ((u32)command<<16)|mode);
|
|
// HWRITE2(hp, SDHC_COMMAND, command);
|
|
// HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
|
|
{
|
|
u_char *datap = cmd->c_data;
|
|
int i, datalen;
|
|
int mask;
|
|
int error;
|
|
|
|
mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
|
|
SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
|
|
error = 0;
|
|
datalen = cmd->c_datalen;
|
|
|
|
DPRINTF(1,("%s: resp=%#x datalen=%d\n", HDEVNAME(hp),
|
|
MMC_R1(cmd->c_resp), datalen));
|
|
|
|
#ifdef SDHC_DEBUG
|
|
/* XXX I forgot why I wanted to know when this happens :-( */
|
|
if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
|
|
ISSET(MMC_R1(cmd->c_resp), 0xcb00))
|
|
gecko_printf("%s: CMD52/53 error response flags %#x\n",
|
|
HDEVNAME(hp), MMC_R1(cmd->c_resp) & 0xff00);
|
|
#endif
|
|
|
|
while (datalen > 0) {
|
|
if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY|
|
|
SDHC_BUFFER_WRITE_READY, SDHC_BUFFER_TIMEOUT)) {
|
|
error = ETIMEDOUT;
|
|
break;
|
|
}
|
|
|
|
if ((error = sdhc_wait_state(hp, mask, mask)) != 0)
|
|
break;
|
|
|
|
i = MIN(datalen, cmd->c_blklen);
|
|
if (ISSET(cmd->c_flags, SCF_CMD_READ))
|
|
sdhc_read_data(hp, datap, i);
|
|
else
|
|
sdhc_write_data(hp, datap, i);
|
|
|
|
datap += i;
|
|
datalen -= i;
|
|
}
|
|
|
|
if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
|
|
SDHC_TRANSFER_TIMEOUT))
|
|
error = ETIMEDOUT;
|
|
|
|
if (error != 0)
|
|
cmd->c_error = error;
|
|
SET(cmd->c_flags, SCF_ITSDONE);
|
|
|
|
DPRINTF(1,("%s: data transfer done (error=%d)\n",
|
|
HDEVNAME(hp), cmd->c_error));
|
|
}
|
|
|
|
void
|
|
sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen)
|
|
{
|
|
while (datalen > 3) {
|
|
*(u_int32_t *)datap = HREAD4(hp, SDHC_DATA);
|
|
datap += 4;
|
|
datalen -= 4;
|
|
}
|
|
if (datalen > 0) {
|
|
u_int32_t rv = HREAD4(hp, SDHC_DATA);
|
|
do {
|
|
*datap++ = rv & 0xff;
|
|
rv = rv >> 8;
|
|
} while (--datalen > 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen)
|
|
{
|
|
while (datalen > 3) {
|
|
DPRINTF(3,("%08x\n", *(u_int32_t *)datap));
|
|
HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap));
|
|
datap += 4;
|
|
datalen -= 4;
|
|
}
|
|
if (datalen > 0) {
|
|
u_int32_t rv = *datap++;
|
|
if (datalen > 1)
|
|
rv |= *datap++ << 8;
|
|
if (datalen > 2)
|
|
rv |= *datap++ << 16;
|
|
DPRINTF(3,("rv %08x\n", rv));
|
|
HWRITE4(hp, SDHC_DATA, rv);
|
|
}
|
|
}
|
|
|
|
/* Prepare for another command. */
|
|
int
|
|
sdhc_soft_reset(struct sdhc_host *hp, int mask)
|
|
{
|
|
int timo;
|
|
|
|
DPRINTF(1,("%s: software reset reg=%#x\n", HDEVNAME(hp), mask));
|
|
|
|
HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
|
|
for (timo = 10; timo > 0; timo--) {
|
|
if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
|
|
break;
|
|
sdmmc_delay(10000);
|
|
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
|
|
}
|
|
if (timo == 0) {
|
|
DPRINTF(1,("%s: timeout reg=%#x\n", HDEVNAME(hp),
|
|
HREAD1(hp, SDHC_SOFTWARE_RESET)));
|
|
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
|
|
{
|
|
int status;
|
|
int s;
|
|
|
|
mask |= SDHC_ERROR_INTERRUPT;
|
|
|
|
s = splsdmmc();
|
|
status = hp->intr_status & mask;
|
|
|
|
|
|
for (timo = 1000; timo > 0; timo--) {
|
|
if (hp->intr_status != 0) {
|
|
status = hp->intr_status & mask;
|
|
break;
|
|
}
|
|
sdmmc_delay(10);
|
|
}
|
|
if (timo == 0) {
|
|
status |= SDHC_ERROR_INTERRUPT;
|
|
}
|
|
hp->intr_status &= ~status;
|
|
|
|
DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
|
|
hp->intr_error_status));
|
|
|
|
/* Command timeout has higher priority than command complete. */
|
|
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
|
|
hp->intr_error_status = 0;
|
|
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
|
|
status = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Established by attachment driver at interrupt priority IPL_SDMMC.
|
|
*/
|
|
int
|
|
sdhc_intr(void *arg)
|
|
{
|
|
struct sdhc_softc *sc = arg;
|
|
int host;
|
|
int done = 0;
|
|
|
|
/* We got an interrupt, but we don't know from which slot. */
|
|
for (host = 0; host < sc->sc_nhosts; host++) {
|
|
struct sdhc_host *hp = &sc->sc_host[host];
|
|
u_int16_t status;
|
|
|
|
if (hp == NULL)
|
|
continue;
|
|
|
|
/* Find out which interrupts are pending. */
|
|
status = HREAD2(hp, SDHC_NINTR_STATUS);
|
|
if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
|
|
continue; /* no interrupt for us */
|
|
|
|
/* Acknowledge the interrupts we are about to handle. */
|
|
HWRITE2(hp, SDHC_NINTR_STATUS, status);
|
|
// DPRINTF(2,("%s: interrupt status=%d\n", HDEVNAME(hp),
|
|
// status));
|
|
|
|
|
|
/* Claim this interrupt. */
|
|
done = 1;
|
|
|
|
/*
|
|
* Service error interrupts.
|
|
*/
|
|
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
|
|
u_int16_t error;
|
|
|
|
/* Acknowledge error interrupts. */
|
|
error = HREAD2(hp, SDHC_EINTR_STATUS);
|
|
HWRITE2(hp, SDHC_EINTR_STATUS, error);
|
|
// DPRINTF(2,("%s: error interrupt, status=%d\n",
|
|
// HDEVNAME(hp), error));
|
|
|
|
if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
|
|
SDHC_DATA_TIMEOUT_ERROR)) {
|
|
hp->intr_error_status |= error;
|
|
hp->intr_status |= status;
|
|
wakeup(&hp->intr_status);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wake up the sdmmc event thread to scan for cards.
|
|
* TODO: move request to slow queue to make sure that
|
|
* we're not blocking other IRQs
|
|
*/
|
|
if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
|
|
ipc_request req;
|
|
memset(&req, 0, sizeof(req));
|
|
req.device = IPC_DEV_SD;
|
|
req.req = IPC_SD_DISCOVER;
|
|
req.args[0] = hp->sdmmc;
|
|
ipc_add_slow(&req);
|
|
}
|
|
|
|
/*
|
|
* Wake up the blocking process to service command
|
|
* related interrupt(s).
|
|
*/
|
|
if (ISSET(status, SDHC_BUFFER_READ_READY|
|
|
SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
|
|
SDHC_TRANSFER_COMPLETE)) {
|
|
hp->intr_status |= status;
|
|
wakeup(&hp->intr_status);
|
|
}
|
|
|
|
/*
|
|
* Service SD card interrupts.
|
|
*/
|
|
if (ISSET(status, SDHC_CARD_INTERRUPT)) {
|
|
// DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
|
|
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
|
|
// sdmmc_card_intr(hp->sdmmc);
|
|
}
|
|
}
|
|
return done;
|
|
}
|
|
|
|
#ifdef SDHC_DEBUG
|
|
void
|
|
sdhc_dump_regs(struct sdhc_host *hp)
|
|
{
|
|
gecko_printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
|
|
HREAD4(hp, SDHC_PRESENT_STATE));
|
|
gecko_printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
|
|
HREAD1(hp, SDHC_POWER_CTL));
|
|
gecko_printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
|
|
HREAD2(hp, SDHC_NINTR_STATUS));
|
|
gecko_printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
|
|
HREAD2(hp, SDHC_EINTR_STATUS));
|
|
gecko_printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
|
|
HREAD2(hp, SDHC_NINTR_STATUS_EN));
|
|
gecko_printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
|
|
HREAD2(hp, SDHC_EINTR_STATUS_EN));
|
|
gecko_printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
|
|
HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
|
|
gecko_printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
|
|
HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
|
|
gecko_printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
|
|
HREAD4(hp, SDHC_CAPABILITIES));
|
|
gecko_printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
|
|
HREAD4(hp, SDHC_MAX_CAPABILITIES));
|
|
}
|
|
#endif
|
|
|
|
#include "hollywood.h"
|
|
static struct sdhc_softc __softc MEM2_BSS;
|
|
|
|
void sdhc_irq(void)
|
|
{
|
|
sdhc_intr(&__softc);
|
|
}
|
|
|
|
void sdhc_init(void)
|
|
{
|
|
irq_enable(IRQ_SDHC);
|
|
memset(&__softc, 0, sizeof(__softc));
|
|
sdhc_host_found(&__softc, 0, SDHC_REG_BASE, 1);
|
|
// sdhc_host_found(&__softc, 0, SDHC_REG_BASE + 0x100, 1);
|
|
// sdhc_host_found(&__softc, 0, 0x0d080000, 1);
|
|
}
|
|
|
|
void sdhc_ipc(volatile ipc_request *req)
|
|
{
|
|
switch (req->req) {
|
|
case IPC_SD_DISCOVER:
|
|
sdmmc_needs_discover((struct device *)req->args[0]);
|
|
break;
|
|
}
|
|
}
|