mini/sdhc.c
2009-05-15 05:33:11 -07:00

1143 lines
27 KiB
C

/* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Copyright (c) 2009 Sven Peter <svenpeter@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* SD Host Controller driver based on the SD Host Controller Standard
* Simplified Specification Version 1.00 (www.sdcard.com).
*/
#if 0
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#endif
#include "bsdtypes.h"
#include "sdhcreg.h"
#include "sdhcvar.h"
#include "sdmmcchip.h"
#include "sdmmcreg.h"
#include "sdmmcvar.h"
#include "sdmmc.h"
#include "gecko.h"
#include "string.h"
#include "irq.h"
#include "utils.h"
#include "ipc.h"
#include "memory.h"
//#define SDHC_DEBUG 1
#define SDHC_COMMAND_TIMEOUT 0
#define SDHC_BUFFER_TIMEOUT 0
#define SDHC_TRANSFER_TIMEOUT 0
#define HDEVNAME(hp) ((hp)->sc->sc_dev.dv_xname)
#define sdmmc_delay(t) udelay(t)
static inline u32 bus_space_read_4(bus_space_handle_t ioh, u32 reg)
{
return read32(ioh + reg);
}
static inline u16 bus_space_read_2(bus_space_handle_t ioh, u32 reg)
{
if(reg & 3)
return (read32((ioh + reg) & ~3) & 0xffff0000) >> 16;
else
return (read32(ioh + reg) & 0xffff);
}
static inline u8 bus_space_read_1(bus_space_handle_t ioh, u32 reg)
{
u32 mask;
u32 addr;
u8 shift;
shift = (reg & 3) * 8;
mask = (0xFF << shift);
addr = ioh + reg;
return (read32(addr & ~3) & mask) >> shift;
}
static inline void bus_space_write_4(bus_space_handle_t ioh, u32 r, u32 v)
{
write32(ioh + r, v);
}
static inline void bus_space_write_2(bus_space_handle_t ioh, u32 r, u16 v)
{
if(r & 3)
mask32((ioh + r) & ~3, 0xffff0000, v << 16);
else
mask32((ioh + r), 0xffff, ((u32)v));
}
static inline void bus_space_write_1(bus_space_handle_t ioh, u32 r, u8 v)
{
u32 mask;
u32 addr;
u8 shift;
shift = (r & 3) * 8;
mask = (0xFF << shift);
addr = ioh + r;
mask32(addr & ~3, mask, v << shift);
}
u32 splbio(void)
{
// irq_disable(IRQ_SDHC);
return 0;
}
void splx(u32 dummy)
{
(void)dummy;
// irq_enable(IRQ_SDHC);
}
/* flag values */
#define SHF_USE_DMA 0x0001
#define HREAD1(hp, reg) \
(bus_space_read_1((hp)->ioh, (reg)))
#define HREAD2(hp, reg) \
(bus_space_read_2((hp)->ioh, (reg)))
#define HREAD4(hp, reg) \
(bus_space_read_4((hp)->ioh, (reg)))
#define HWRITE1(hp, reg, val) \
bus_space_write_1((hp)->ioh, (reg), (val))
#define HWRITE2(hp, reg, val) \
bus_space_write_2((hp)->ioh, (reg), (val))
#define HWRITE4(hp, reg, val) \
bus_space_write_4((hp)->ioh, (reg), (val))
#define HCLR1(hp, reg, bits) \
HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
#define HCLR2(hp, reg, bits) \
HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
#define HSET1(hp, reg, bits) \
HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
#define HSET2(hp, reg, bits) \
HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
int sdhc_host_reset(sdmmc_chipset_handle_t);
u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
int sdhc_card_detect(sdmmc_chipset_handle_t);
int sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t);
int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
void sdhc_card_intr_mask(sdmmc_chipset_handle_t, int);
void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
void sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
int sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t);
int sdhc_soft_reset(struct sdhc_host *, int);
int sdhc_wait_intr(struct sdhc_host *, int, int);
void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
void sdhc_read_data(struct sdhc_host *, u_char *, int);
void sdhc_write_data(struct sdhc_host *, u_char *, int);
#ifdef SDHC_DEBUG
int sdhcdebug = 2;
#define DPRINTF(n,s) do { if ((n) <= sdhcdebug) gecko_printf s; } while (0)
void sdhc_dump_regs(struct sdhc_host *);
#else
#define DPRINTF(n,s) do {} while(0)
#endif
struct sdmmc_chip_functions sdhc_functions = {
/* host controller reset */
sdhc_host_reset,
/* host controller capabilities */
sdhc_host_ocr,
sdhc_host_maxblklen,
/* card detection */
sdhc_card_detect,
/* bus power and clock frequency */
sdhc_bus_power,
sdhc_bus_clock,
/* command execution */
sdhc_exec_command,
/* card interrupt */
sdhc_card_intr_mask,
sdhc_card_intr_ack
};
#if 0
struct cfdriver sdhc_cd = {
NULL, "sdhc", DV_DULL
};
#endif
/*
* Called by attachment driver. For each SD card slot there is one SD
* host controller standard register set. (1.3)
*/
int
sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
bus_space_handle_t ioh, int usedma)
{
struct sdmmcbus_attach_args saa;
struct sdhc_host *hp;
u_int32_t caps;
int error = 1;
strcpy(sc->sc_dev.dv_xname, "sdhc");
#ifdef SDHC_DEBUG
u_int16_t version;
version = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
gecko_printf("%s: SD Host Specification/Vendor Version ",
sc->sc_dev.dv_xname);
switch(SDHC_SPEC_VERSION(version)) {
case 0x00:
gecko_printf("1.0/%u\n", SDHC_VENDOR_VERSION(version));
break;
default:
gecko_printf(">1.0/%u\n", SDHC_VENDOR_VERSION(version));
break;
}
#endif
/* Allocate one more host structure. */
if (sc->sc_nhosts < SDHC_MAX_HOSTS) {
sc->sc_nhosts++;
hp = &sc->sc_host[sc->sc_nhosts - 1];
memset(hp, 0, sizeof(*hp));
}
else
return -EINVAL;
/* Fill in the new host structure. */
hp->sc = sc;
hp->iot = iot;
hp->ioh = ioh;
/*
* Reset the host controller and enable interrupts.
*/
(void)sdhc_host_reset(hp);
/* Determine host capabilities. */
caps = HREAD4(hp, SDHC_CAPABILITIES);
/* Use DMA if the host system and the controller support it. */
if (usedma && ISSET(caps, SDHC_DMA_SUPPORT))
SET(hp->flags, SHF_USE_DMA);
/*
* Determine the base clock frequency. (2.2.24)
*/
if (SDHC_BASE_FREQ_KHZ(caps) != 0)
hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
if (hp->clkbase == 0) {
/* The attachment driver must tell us. */
gecko_printf("%s: base clock frequency unknown\n",
sc->sc_dev.dv_xname);
goto err;
} else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
/* SDHC 1.0 supports only 10-63 MHz. */
gecko_printf("%s: base clock frequency out of range: %u MHz\n",
sc->sc_dev.dv_xname, hp->clkbase / 1000);
goto err;
}
/*
* XXX Set the data timeout counter value according to
* capabilities. (2.2.15)
*/
/*
* Determine SD bus voltage levels supported by the controller.
*/
if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
/*
* Determine the maximum block length supported by the host
* controller. (2.2.24)
*/
switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
case SDHC_MAX_BLK_LEN_512:
hp->maxblklen = 512;
break;
case SDHC_MAX_BLK_LEN_1024:
hp->maxblklen = 1024;
break;
case SDHC_MAX_BLK_LEN_2048:
hp->maxblklen = 2048;
break;
default:
hp->maxblklen = 1;
break;
}
/*
* Attach the generic SD/MMC bus driver. (The bus driver must
* not invoke any chipset functions before it is attached.)
*/
bzero(&saa, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.sct = &sdhc_functions;
saa.sch = hp;
hp->sdmmc = sdmmc_attach(&sdhc_functions, hp, "sdhc", ioh);
/* hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
if (hp->sdmmc == NULL) {
error = 0;
goto err;
}*/
return 0;
err:
// free(hp, M_DEVBUF);
sc->sc_nhosts--;
return (error);
}
#if 0
/*
* Power hook established by or called from attachment driver.
*/
void
sdhc_power(int why, void *arg)
{
struct sdhc_softc *sc = arg;
struct sdhc_host *hp;
int n, i;
switch(why) {
case PWR_STANDBY:
case PWR_SUSPEND:
/* XXX poll for command completion or suspend command
* in progress */
/* Save the host controller state. */
for (n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
for (i = 0; i < sizeof hp->regs; i++)
hp->regs[i] = HREAD1(hp, i);
}
break;
case PWR_RESUME:
/* Restore the host controller state. */
for (n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
(void)sdhc_host_reset(hp);
for (i = 0; i < sizeof hp->regs; i++)
HWRITE1(hp, i, hp->regs[i]);
}
break;
}
}
#endif
/*
* Shutdown hook established by or called from attachment driver.
*/
void
sdhc_shutdown(void *arg)
{
struct sdhc_softc *sc = arg;
struct sdhc_host *hp;
int i;
/* XXX chip locks up if we don't disable it before reboot. */
for (i = 0; i < sc->sc_nhosts; i++) {
hp = &sc->sc_host[i];
(void)sdhc_host_reset(hp);
}
}
/*
* Reset the host controller. Called during initialization, when
* cards are removed, upon resume, and during error recovery.
*/
int
sdhc_host_reset(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = sch;
u_int16_t imask;
int error;
int s;
s = splsdmmc();
/* Disable all interrupts. */
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
/*
* Reset the entire host controller and wait up to 100ms for
* the controller to clear the reset bit.
*/
if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) {
splx(s);
return (error);
}
/* Set data timeout counter value to max for now. */
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
/* Enable interrupts. */
imask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask);
HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask);
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
splx(s);
return 0;
}
u_int32_t
sdhc_host_ocr(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = sch;
return hp->ocr;
}
int
sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = sch;
return hp->maxblklen;
}
/*
* Return non-zero if the card is currently inserted.
*/
int
sdhc_card_detect(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = sch;
return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ?
1 : 0;
}
/*
* Set or change SD bus voltage and enable or disable SD bus power.
* Return zero on success.
*/
int
sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
{
struct sdhc_host *hp = sch;
u_int8_t vdd;
int s;
s = splsdmmc();
/*
* Disable bus power before voltage change.
*/
if (!(hp->sc->sc_flags & SDHC_F_NOPWR0))
HWRITE1(hp, SDHC_POWER_CTL, 0);
/* If power is disabled, reset the host and return now. */
if (ocr == 0) {
splx(s);
(void)sdhc_host_reset(hp);
return 0;
}
/*
* Select the maximum voltage according to capabilities.
*/
ocr &= hp->ocr;
if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
vdd = SDHC_VOLTAGE_3_3V;
else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
vdd = SDHC_VOLTAGE_3_0V;
else if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
vdd = SDHC_VOLTAGE_1_8V;
else {
/* Unsupported voltage level requested. */
splx(s);
return EINVAL;
}
/*
* Enable bus power. Wait at least 1 ms (or 74 clocks) plus
* voltage ramp until power rises.
*/
HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |
SDHC_BUS_POWER);
sdmmc_delay(10000);
/*
* The host system may not power the bus due to battery low,
* etc. In that case, the host controller should clear the
* bus power bit.
*/
if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
splx(s);
return ENXIO;
}
splx(s);
return 0;
}
/*
* Return the smallest possible base clock frequency divisor value
* for the CLOCK_CTL register to produce `freq' (KHz).
*/
static int
sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
{
int div;
for (div = 1; div <= 256; div *= 2)
if ((hp->clkbase / div) <= freq)
return (div / 2);
/* No divisor found. */
return -1;
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
int
sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
struct sdhc_host *hp = sch;
int s;
int div;
int timo;
int error = 0;
s = splsdmmc();
#ifdef DIAGNOSTIC
/* Must not stop the clock if commands are in progress. */
if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
sdhc_card_detect(hp))
gecko_printf("sdhc_sdclk_frequency_select: command in progress\n");
#endif
/*
* Stop SD clock before changing the frequency.
*/
HWRITE2(hp, SDHC_CLOCK_CTL, 0);
if (freq == SDMMC_SDCLK_OFF)
goto ret;
/*
* Set the minimum base clock frequency divisor.
*/
if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
/* Invalid base clock frequency or `freq' value. */
error = EINVAL;
goto ret;
}
HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
/*
* Start internal clock. Wait 10ms for stabilization.
*/
HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
for (timo = 1000; timo > 0; timo--) {
if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
break;
sdmmc_delay(10);
}
if (timo == 0) {
error = ETIMEDOUT;
goto ret;
}
/*
* Enable SD clock.
*/
HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
ret:
splx(s);
return error;
}
void
sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable)
{
struct sdhc_host *hp = sch;
if (enable) {
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
} else {
HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
}
void
sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = sch;
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
int
sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value)
{
u_int32_t state;
int timeout;
for (timeout = 10; timeout > 0; timeout--) {
if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask)
== value)
return 0;
sdmmc_delay(10000);
}
DPRINTF(0,("%s: timeout waiting for %x (state=%d)\n",
HDEVNAME(hp), value, state));
return ETIMEDOUT;
}
void
sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct sdhc_host *hp = sch;
int error;
/*
* Start the MMC command, or mark `cmd' as failed and return.
*/
error = sdhc_start_command(hp, cmd);
if (error != 0) {
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
return;
}
/*
* Wait until the command phase is done, or until the command
* is marked done for any other reason.
*/
if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE,
SDHC_COMMAND_TIMEOUT)) {
cmd->c_error = ETIMEDOUT;
SET(cmd->c_flags, SCF_ITSDONE);
return;
}
/*
* The host controller removes bits [0:7] from the response
* data (CRC) and we pass the data up unchanged to the bus
* driver (without padding).
*/
if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
u_char *p = (u_char *)cmd->c_resp;
int i;
for (i = 0; i < 15; i++)
*p++ = HREAD1(hp, SDHC_RESPONSE + i);
} else
cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
}
/*
* If the command has data to transfer in any direction,
* execute the transfer now.
*/
if (cmd->c_error == 0 && cmd->c_datalen > 0)
sdhc_transfer_data(hp, cmd);
/* Turn off the LED. */
HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n",
HDEVNAME(hp), cmd->c_opcode, cmd->c_flags, cmd->c_error));
SET(cmd->c_flags, SCF_ITSDONE);
}
int
sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
u_int16_t blksize = 0;
u_int16_t blkcount = 0;
u_int16_t mode;
u_int16_t command;
int error;
int s;
DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x "
"proc=\"%s\"\n", HDEVNAME(hp), cmd->c_opcode, cmd->c_arg,
cmd->c_data, cmd->c_datalen, cmd->c_flags, ""));
/*
* The maximum block length for commands should be the minimum
* of the host buffer size and the card buffer size. (1.7.2)
*/
/* Fragment the data into proper blocks. */
if (cmd->c_datalen > 0) {
blksize = MIN(cmd->c_datalen, cmd->c_blklen);
blkcount = cmd->c_datalen / blksize;
if (cmd->c_datalen % blksize > 0) {
/* XXX: Split this command. (1.7.4) */
gecko_printf("%s: data not a multiple of %d bytes\n",
HDEVNAME(hp), blksize);
return EINVAL;
}
}
/* Check limit imposed by 9-bit block count. (1.7.2) */
if (blkcount > SDHC_BLOCK_COUNT_MAX) {
gecko_printf("%s: too much data\n", HDEVNAME(hp));
return EINVAL;
}
/* Prepare transfer mode register value. (2.2.5) */
mode = 0;
if (ISSET(cmd->c_flags, SCF_CMD_READ))
mode |= SDHC_READ_MODE;
if (blkcount > 0) {
mode |= SDHC_BLOCK_COUNT_ENABLE;
// if (blkcount > 1) {
mode |= SDHC_MULTI_BLOCK_MODE;
/* XXX only for memory commands? */
mode |= SDHC_AUTO_CMD12_ENABLE;
// }
}
if (ISSET(hp->flags, SHF_USE_DMA))
mode |= SDHC_DMA_ENABLE;
/*
* Prepare command register value. (2.2.6)
*/
command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) <<
SDHC_COMMAND_INDEX_SHIFT;
if (ISSET(cmd->c_flags, SCF_RSP_CRC))
command |= SDHC_CRC_CHECK_ENABLE;
if (ISSET(cmd->c_flags, SCF_RSP_IDX))
command |= SDHC_INDEX_CHECK_ENABLE;
if (cmd->c_data != NULL)
command |= SDHC_DATA_PRESENT_SELECT;
if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
command |= SDHC_NO_RESPONSE;
else if (ISSET(cmd->c_flags, SCF_RSP_136))
command |= SDHC_RESP_LEN_136;
else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
command |= SDHC_RESP_LEN_48_CHK_BUSY;
else
command |= SDHC_RESP_LEN_48;
/* Wait until command and data inhibit bits are clear. (1.5) */
if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0)
return error;
s = splsdmmc();
/* Alert the user not to remove the card. */
HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
if (ISSET(hp->flags, SHF_USE_DMA) && cmd->c_datalen > 0) {
cmd->c_resid = blkcount;
cmd->c_buf = cmd->c_data;
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
dc_invalidaterange(cmd->c_data, cmd->c_datalen);
} else {
dc_flushrange(cmd->c_data, cmd->c_datalen);
ahb_flush_to(AHB_SDHC);
}
HWRITE4(hp, SDHC_DMA_ADDR, dma_addr(cmd->c_data));
}
DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",
HDEVNAME(hp), command, mode, blksize, blkcount));
/*
* Start a CPU data transfer. Writing to the high order byte
* of the SDHC_COMMAND register triggers the SD command. (1.5)
*/
HWRITE2(hp, SDHC_BLOCK_SIZE, blksize | 7<<12);
if (blkcount > 0)
HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
HWRITE4(hp, SDHC_TRANSFER_MODE, ((u32)command<<16)|mode);
// HWRITE2(hp, SDHC_COMMAND, command);
// HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
splx(s);
return 0;
}
void
sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
int datalen;
int mask;
int error;
int status;
int left, blkcnt;
mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
error = 0;
datalen = cmd->c_datalen;
blkcnt = (datalen / 512);
DPRINTF(1,("%s: resp=%#x datalen=%d\n", HDEVNAME(hp),
MMC_R1(cmd->c_resp), datalen));
if (ISSET(hp->flags, SHF_USE_DMA)) {
for(;;) {
status = sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE |
SDHC_DMA_INTERRUPT,
SDHC_TRANSFER_TIMEOUT);
if (!status) {
error = ETIMEDOUT;
break;
}
if (ISSET(status, SDHC_DMA_INTERRUPT)) {
left = HREAD2(hp, SDHC_BLOCK_COUNT);
DPRINTF(2,("%s: dma left:%#x\n", HDEVNAME(hp),
left));
// FIXME: why do we need -0x200 here?
cmd->c_buf = cmd->c_data + cmd->c_datalen - left*512 - 0x200;
HWRITE4(hp, SDHC_DMA_ADDR,
dma_addr(cmd->c_buf));
continue;
}
if (ISSET(status, SDHC_TRANSFER_COMPLETE)) {
break;
}
}
} else
gecko_printf("fail.\n");
#ifdef SDHC_DEBUG
/* XXX I forgot why I wanted to know when this happens :-( */
if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
ISSET(MMC_R1(cmd->c_resp), 0xcb00))
gecko_printf("%s: CMD52/53 error response flags %#x\n",
HDEVNAME(hp), MMC_R1(cmd->c_resp) & 0xff00);
#endif
if (ISSET(cmd->c_flags, SCF_CMD_READ))
ahb_flush_from(AHB_SDHC);
if (error != 0)
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("%s: data transfer done (error=%d)\n",
HDEVNAME(hp), cmd->c_error));
return;
#if 0
while (datalen > 0) {
if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY|
SDHC_BUFFER_WRITE_READY, SDHC_BUFFER_TIMEOUT)) {
error = ETIMEDOUT;
break;
}
if ((error = sdhc_wait_state(hp, mask, mask)) != 0)
break;
i = MIN(datalen, cmd->c_blklen);
if (ISSET(cmd->c_flags, SCF_CMD_READ))
sdhc_read_data(hp, datap, i);
else
sdhc_write_data(hp, datap, i);
datap += i;
datalen -= i;
}
if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
SDHC_TRANSFER_TIMEOUT))
error = ETIMEDOUT;
if (error != 0)
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("%s: data transfer done (error=%d)\n",
HDEVNAME(hp), cmd->c_error));
#endif
}
void
sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen)
{
while (datalen > 3) {
*(u_int32_t *)datap = HREAD4(hp, SDHC_DATA);
gecko_printf("next_data: %08x\n", *datap);
datap += 4;
datalen -= 4;
udelay(1000);
}
if (datalen > 0) {
u_int32_t rv = HREAD4(hp, SDHC_DATA);
do {
*datap++ = rv & 0xff;
rv = rv >> 8;
} while (--datalen > 0);
}
}
void
sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen)
{
while (datalen > 3) {
DPRINTF(3,("%08x\n", *(u_int32_t *)datap));
HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap));
datap += 4;
datalen -= 4;
}
if (datalen > 0) {
u_int32_t rv = *datap++;
if (datalen > 1)
rv |= *datap++ << 8;
if (datalen > 2)
rv |= *datap++ << 16;
DPRINTF(3,("rv %08x\n", rv));
HWRITE4(hp, SDHC_DATA, rv);
}
}
/* Prepare for another command. */
int
sdhc_soft_reset(struct sdhc_host *hp, int mask)
{
int timo;
DPRINTF(1,("%s: software reset reg=%#x\n", HDEVNAME(hp), mask));
HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
for (timo = 10; timo > 0; timo--) {
if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
break;
sdmmc_delay(10000);
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
}
if (timo == 0) {
DPRINTF(1,("%s: timeout reg=%#x\n", HDEVNAME(hp),
HREAD1(hp, SDHC_SOFTWARE_RESET)));
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
return (ETIMEDOUT);
}
return (0);
}
int
sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
{
int status;
int s;
mask |= SDHC_ERROR_INTERRUPT;
s = splsdmmc();
status = hp->intr_status & mask;
for (timo = 500; timo > 0; timo--) {
if (hp->intr_status != 0) {
status = hp->intr_status & mask;
break;
}
sdmmc_delay(1000);
}
if (timo == 0) {
status |= SDHC_ERROR_INTERRUPT;
}
hp->intr_status &= ~status;
DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
hp->intr_error_status));
/* Command timeout has higher priority than command complete. */
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
hp->intr_error_status = 0;
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
status = 0;
}
splx(s);
return status;
}
/*
* Established by attachment driver at interrupt priority IPL_SDMMC.
*/
int
sdhc_intr(void *arg)
{
struct sdhc_softc *sc = arg;
int host;
int done = 0;
/* We got an interrupt, but we don't know from which slot. */
for (host = 0; host < sc->sc_nhosts; host++) {
struct sdhc_host *hp = &sc->sc_host[host];
u_int16_t status;
if (hp == NULL)
continue;
/* Find out which interrupts are pending. */
status = HREAD2(hp, SDHC_NINTR_STATUS);
if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
continue; /* no interrupt for us */
/* Acknowledge the interrupts we are about to handle. */
HWRITE2(hp, SDHC_NINTR_STATUS, status);
// DPRINTF(2,("%s: interrupt status=%d\n", HDEVNAME(hp),
// status));
/* Claim this interrupt. */
done = 1;
/*
* Service error interrupts.
*/
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
u_int16_t error;
/* Acknowledge error interrupts. */
error = HREAD2(hp, SDHC_EINTR_STATUS);
HWRITE2(hp, SDHC_EINTR_STATUS, error);
// DPRINTF(2,("%s: error interrupt, status=%d\n",
// HDEVNAME(hp), error));
if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
SDHC_DATA_TIMEOUT_ERROR)) {
hp->intr_error_status |= error;
hp->intr_status |= status;
wakeup(&hp->intr_status);
}
}
/*
* Wake up the sdmmc event thread to scan for cards.
*/
if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
ipc_request req;
memset(&req, 0, sizeof(req));
req.device = IPC_DEV_SDHC;
req.req = IPC_SDHC_DISCOVER;
req.args[0] = (u32)hp->sdmmc;
ipc_add_slow(&req);
}
/*
* Wake up the blocking process to service command
* related interrupt(s).
*/
if (ISSET(status, SDHC_BUFFER_READ_READY|
SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
hp->intr_status |= status;
wakeup(&hp->intr_status);
}
/*
* Service SD card interrupts.
*/
if (ISSET(status, SDHC_CARD_INTERRUPT)) {
// DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
// sdmmc_card_intr(hp->sdmmc);
}
}
return done;
}
#ifdef SDHC_DEBUG
void
sdhc_dump_regs(struct sdhc_host *hp)
{
gecko_printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
HREAD4(hp, SDHC_PRESENT_STATE));
gecko_printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
HREAD1(hp, SDHC_POWER_CTL));
gecko_printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
HREAD2(hp, SDHC_NINTR_STATUS));
gecko_printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
HREAD2(hp, SDHC_EINTR_STATUS));
gecko_printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
HREAD2(hp, SDHC_NINTR_STATUS_EN));
gecko_printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
HREAD2(hp, SDHC_EINTR_STATUS_EN));
gecko_printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
gecko_printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
gecko_printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
HREAD4(hp, SDHC_CAPABILITIES));
gecko_printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
HREAD4(hp, SDHC_MAX_CAPABILITIES));
}
#endif
#include "hollywood.h"
static struct sdhc_softc __softc MEM2_BSS;
void sdhc_irq(void)
{
sdhc_intr(&__softc);
}
void sdhc_init(void)
{
irq_enable(IRQ_SDHC);
memset(&__softc, 0, sizeof(__softc));
sdhc_host_found(&__softc, 0, SDHC_REG_BASE, 1);
// sdhc_host_found(&__softc, 0, SDHC_REG_BASE + 0x100, 1);
// sdhc_host_found(&__softc, 0, 0x0d080000, 1);
}
void sdhc_ipc(volatile ipc_request *req)
{
switch (req->req) {
case IPC_SDHC_DISCOVER:
sdmmc_needs_discover((struct device *)req->args[0]);
break;
}
}