mini/sdhc.c
Sven Peter 320f255a5c response for CID fixed
CSD does not seem to work yet :s
2009-05-15 05:28:51 -07:00

1142 lines
29 KiB
C

/* parts based on:
* * "SD Host Controller driver based on the SD Host Controller Standard" copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* * Simplified SD Host Controller Standard
*/
#include "hollywood.h"
#include "sdhc.h"
#include "utils.h"
#include "string.h"
#include "start.h"
#include "memory.h"
#define _READONLY 1
#define SDHC_PRINT_ERROR 1
//#define SDHC_DEBUG 1
//#define SDHC_DEBUG_V 1
#if defined(SDHC_DEBUG_V) && !defined(SDHC_DEBUG)
# define SDHC_DEBUG 1
#endif
#ifdef SDHC_DEBUG
# include "gecko.h"
# define sdhc_debug(reg, f, arg...) do { gecko_printf("sdhc%d: " f "\n", ((reg - SD_REG_BASE) / 0x100), ##arg); } while(0)
#else
# define sdhc_debug(reg, f, arg...) udelay(100);
#endif
#ifdef SDHC_PRINT_ERROR
# include "gecko.h"
# define sdhc_error(reg, f, arg...) do { gecko_printf("sdhc%d: " f "\n", ((reg - SD_REG_BASE) / 0x100), ##arg); } while(0)
#else
# define sdhc_error(reg, f, arg...)
#endif
#define SDHC_SOFTWARE_RESET_DAT (1 << 2)
#define SDHC_SOFTWARE_RESET_CMD (1 << 1)
#define SDHC_SOFTWARE_RESET_ALL (7)
#define SDHC_TIMEOUT_MAX (0x0e)
#define SDHC_BFREQ_KHZ(c) ((((c) >> 8) & 0x3f) * 1000)
#define SDHC_CAP_VOLTAGE_33 (1 << 24)
#define SDHC_CAP_VOLTAGE_30 (1 << 25)
#define SDHC_CAP_VOLTAGE_18 (1 << 26)
#define SDHC_CAP_SDMA (1 << 22)
#define SDHC_PCTRL_VOLTAGE_SHIFT 1
#define SDHC_PCTRL_VOLTAGE_33 (0x07 << SDHC_PCTRL_VOLTAGE_SHIFT)
#define SDHC_PCTRL_VOLTAGE_30 (0x06 << SDHC_PCTRL_VOLTAGE_SHIFT)
#define SDHC_PCTRL_VOLTAGE_18 (0x05 << SDHC_PCTRL_VOLTAGE_SHIFT)
#define SDHC_PCTRL_ENABLE 1
#define SDHC_CLOCK_INTERNAL_ENABLE (1 << 0)
#define SDHC_CLOCK_INTERNAL_STABLE (1 << 1)
#define SDHC_CLOCK_SD_ENABLE (1 << 2)
#define SDHC_CARD_INSERTED (1 << 16)
#define SDHC_WRITE_PROTECT (1 << 19)
#define SDHC_BLOCKS_MAX 65535
#define SDHC_CMDMODE_MULTIBLOCK (1 << 5)
#define SDHC_CMDMODE_READ (1 << 4)
#define SDHC_CMDMODE_WRITE (0 << 4)
#define SDHC_CMDMODE_ACMD12_ENABLE (1 << 2)
#define SDHC_CMDMODE_BLOCKCNT_ENABLE (1 << 1)
#define SDHC_CMDMODE_DMA_ENABLE (1 << 0)
#define SDHC_CMD_DATA (1 << 5)
#define SDHC_CMD_IDXCHECK (1 << 4)
#define SDHC_CMD_CRC (1 << 3)
#define SDHC_CMDTEST_READ 0x40
#define SDHC_CMD_MASK 0xff
#define SDHC_CMD_SHIFT 8
#define SDHC_CMD_NORESP 0
#define SDHC_CMD_RESP_136 1
#define SDHC_CMD_RESP_48 2
#define SDHC_CMD_RESP_BUSY 3
#define SDHC_PRESENT_CMD_INHIBIT_CMD 1
#define SDHC_PRESENT_CMD_INHIBIT_DAT 2
#define SDHC_PRESENT_CMD_INHIBIT_BOTH 3
#define SDHC_BFR_READ_ENABLE (1 << 11)
#define SDHC_BFR_WRITE_ENABLE (1 << 10)
#define SDHC_WAIT_TIMEOUT 10000
#define SDHC_WAIT_TIMEOUT_MULTIPLY 50
#define SDHC_WAIT_TIMEOUT_OUTER 50000
#define SDHC_WAIT_TIMEOUT_OUTER_MULTIPLY 5
#define SDHC_INTERRUPT_DMA (1 << 3)
#define SDHC_INTERRUPT_TRANSF_COMPLETE (1 << 1)
#define SD_RSP_BUSY 0x0100
#define SD_RSP_136 0x0200
#define SD_RSP_CRC 0x0400
#define SD_RSP_IDX 0x0800
#define SD_RSP_PRESENT 0x1000
#define SD_R0 0
#define SD_R1 (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_IDX)
#define SD_R1B (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_IDX | SD_RSP_BUSY)
#define SD_R2 (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_136)
#define SD_R3 SD_RSP_PRESENT
#define SD_R4 SD_RSP_PRESENT
#define SD_R5 (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_IDX)
#define SD_R5B (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_IDX | SD_RSP_BUSY)
#define SD_R6 (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_IDX)
#define SD_R7 (SD_RSP_PRESENT | SD_RSP_CRC | SD_RSP_IDX)
#define SD_READ 0x10000
#define SD_CMD_ACMD 0xC0
#define SD_CMD_RESET_CARD 0
#define SD_CMD_ALL_SEND_CID 2
#define SD_CMD_SEND_RELATIVE_ADDR 3
#define SD_CMD_SELECT_CARD 7
#define SD_CMD_SEND_IF_COND 8
#define SD_CMD_SEND_CSD 9
#define SD_CMD_SEND_STATUS 13
#define SD_CMD_SET_BLOCKLEN 16
#define SD_CMD_READ_MULTIPLE_BLOCK 18
#define SD_CMD_WRITE_MULTIPLE_BLOCK 25
#define SD_CMD_APP 55
#define SD_CMD_READ_OCR 58
#define SD_CMD_APP_SET_BUS_WIDTH (SD_CMD_ACMD + 6)
#define SD_CMD_APP_SEND_OP_COND (SD_CMD_ACMD + 41)
#define SDHC_HCR_BUSWIDTH_4 2
#define BLOCK_SIZE 512
#define BLOCK_SIZE_512K 7 /* SDMA block size */
#define SDMA_BLOCK_SIZE (512 * 1024)
#define MMC_VDD_32_33 0x00100000 /* VDD voltage 3.2 ~ 3.3 */
#define MMC_VDD_33_34 0x00200000 /* VDD voltage 3.3 ~ 3.4 */
#define MMC_VDD_29_30 0x00020000 /* VDD voltage 2.9 ~ 3.0 */
#define MMC_VDD_30_31 0x00040000 /* VDD voltage 3.0 ~ 3.1 */
#define MMC_VDD_165_195 0x00000080
#define OCR_POWERUP_STATUS (1 << 31)
#define OCR_HCS (1 << 30)
#define OCR_CCS OCR_HCS
#define INTERRUPT_ERROR (1 << 15)
#define INTERRUPT_CARD (1 << 8)
#define INTERRUPT_CARD_REMOVAL (1 << 7)
#define INTERRUPT_CARD_INSERTION (1 << 6)
#define INTERRUPT_BUFFER_READ_READY (1 << 5)
#define INTERRUPT_BUFFER_WRITE_READY (1 << 4)
#define INTERRUPT_DMA (1 << 3)
#define INTERRUPT_BLOCK_GAP_EVENT (1 << 2)
#define INTERRUPT_TRANSFER_COMPLETE (1 << 1)
#define INTERRUPT_COMMAND_COMPLETE (1 << 0)
#define INTERRUPT_ALL 0x81ff
#define EINTERRUPT_ADMA (1 << 9)
#define EINTERRUPT_ACMD12 (1 << 8)
#define EINTERRUPT_CURRENT_LIMIT (1 << 7)
#define EINTERRUPT_DATA_END_BIT (1 << 6)
#define EINTERRUPT_DATA_CRC (1 << 5)
#define EINTERRUPT_DATA_TIMEOUT (1 << 4)
#define EINTERRUPT_CMD_INDEX (1 << 3)
#define EINTERRUPT_CMD_END_BIT (1 << 2)
#define EINTERRUPT_CMD_CRC (1 << 1)
#define EINTERRUPT_CMD_TIMEOUT (1 << 0)
#define EINTERRUPT_ALL 0x3ff
static int ipc_code = 0;
static int ipc_tag = 0;
static sdhci_t sdhci;
// not currently used :(
void sd_irq(void)
{
int code, tag;
if (ipc_code != 0) {
code = ipc_code;
tag = ipc_tag;
ipc_code = ipc_tag = 0;
ipc_post(code, tag, 0);
}
}
u8 __sd_read8(u32 addr)
{
u32 mask;
u8 shift;
shift = (addr & 3) * 8;
mask = (0xFF << shift);
return (read32(addr & ~3) & mask) >> shift;
}
u16 __sd_read16(u32 addr)
{
if(addr & 3)
return (read32(addr & ~3) & 0xffff0000) >> 16;
else
return (read32(addr) & 0xffff);
}
inline u32 __sd_read32(u32 addr)
{
return read32(addr);
}
void __sd_write8(u32 addr, u8 data)
{
u32 mask;
u8 shift;
shift = (addr & 3) * 8;
mask = (0xFF << shift);
mask32(addr & ~3, mask, data << shift);
}
void __sd_write16(u32 addr, u16 data)
{
if(addr & 3)
mask32(addr & ~3, 0xffff0000, data << 16);
else
mask32(addr, 0xffff, ((u32)data));
}
inline void __sd_write32(u32 addr, u32 data)
{
write32(addr, data);
}
#if 0
static int __sd_wait8(u32 addr, u8 mask)
{
u8 timeout = SDHC_WAIT_TIMEOUT_MULTIPLY;
do
{
if(__sd_read8(addr) & mask)
return 0;
udelay(SDHC_WAIT_TIMEOUT);
}
while(timeout--);
return SDHC_ETIMEDOUT;
}
#endif
static int __sd_wait16(u32 addr, u16 mask)
{
u8 timeout = SDHC_WAIT_TIMEOUT_MULTIPLY;
do
{
if(__sd_read16(addr) & mask)
return 0;
udelay(SDHC_WAIT_TIMEOUT);
}
while(timeout--);
return SDHC_ETIMEDOUT;
}
#if 0
static int __sd_wait32(u32 addr, u32 mask)
{
u8 timeout = SDHC_WAIT_TIMEOUT_MULTIPLY;
do
{
if(__sd_read32(addr) & mask)
return 0;
udelay(SDHC_WAIT_TIMEOUT);
}
while(timeout--);
return SDHC_ETIMEDOUT;
}
#endif
static int __sd_wait8_r(u32 addr, u8 mask)
{
u8 timeout = SDHC_WAIT_TIMEOUT_MULTIPLY;
do
{
if(!(__sd_read8(addr) & mask))
return 0;
udelay(SDHC_WAIT_TIMEOUT);
}
while(timeout--);
return SDHC_ETIMEDOUT;
}
#if 0
static int __sd_wait16_r(u32 addr, u16 mask)
{
u8 timeout = SDHC_WAIT_TIMEOUT_MULTIPLY;
do
{
if(!(__sd_read16(addr) & mask))
return 0;
udelay(SDHC_WAIT_TIMEOUT);
}
while(timeout--);
return SDHC_ETIMEDOUT;
}
#endif
static int __sd_wait32_r(u32 addr, u32 mask)
{
u8 timeout = SDHC_WAIT_TIMEOUT_MULTIPLY;
do
{
if(!(__sd_read32(addr) & mask))
return 0;
udelay(SDHC_WAIT_TIMEOUT);
}
while(timeout--);
return SDHC_ETIMEDOUT;
}
#ifdef SDHC_DEBUG_V
static void __sd_dumpregs(sdhci_t *sdhci)
{
sdhc_debug(sdhci->reg_base, " register dump:");
sdhc_debug(sdhci->reg_base, " sys addr: 0x%08x", __sd_read32(sdhci->reg_base + SDHC_SDMA_ADDR));
sdhc_debug(sdhci->reg_base, " version: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_VERSION));
sdhc_debug(sdhci->reg_base, " bsize: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_BLOCK_SIZE));
sdhc_debug(sdhci->reg_base, " bcount: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_BLOCK_COUNT));
sdhc_debug(sdhci->reg_base, " argument: 0x%08x", __sd_read32(sdhci->reg_base + SDHC_CMD_ARG));
sdhc_debug(sdhci->reg_base, " trans mode: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_CMD_TRANSFER_MODE));
sdhc_debug(sdhci->reg_base, " pres state: 0x%08x", __sd_read32(sdhci->reg_base + SDHC_PRESENT_STATE));
sdhc_debug(sdhci->reg_base, " hc: 0x%08x", __sd_read8(sdhci->reg_base + SDHC_HOST_CONTROL));
sdhc_debug(sdhci->reg_base, " pwr ctrl: 0x%08x", __sd_read8(sdhci->reg_base + SDHC_POWER_CONTROL));
sdhc_debug(sdhci->reg_base, " gap ctrl: 0x%08x", __sd_read8(sdhci->reg_base + SDHC_BLOCK_GAP_CONTROL));
sdhc_debug(sdhci->reg_base, " wup ctrl: 0x%08x", __sd_read8(sdhci->reg_base + SDHC_WAKEUP_CONTROL));
sdhc_debug(sdhci->reg_base, " clk ctrl: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_CLOCK_CONTROL));
sdhc_debug(sdhci->reg_base, " to ctrl: 0x%08x", __sd_read8(sdhci->reg_base + SDHC_TIMEOUT_CONTROL));
sdhc_debug(sdhci->reg_base, " int status: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS));
sdhc_debug(sdhci->reg_base, " int enable: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_ENABLE));
sdhc_debug(sdhci->reg_base, " eint status: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_STATUS));
sdhc_debug(sdhci->reg_base, " eint enable: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_ENABLE));
sdhc_debug(sdhci->reg_base, " caps: 0x%08x", __sd_read32(sdhci->reg_base + SDHC_CAPABILITIES));
sdhc_debug(sdhci->reg_base, " max caps: 0x%08x", __sd_read32(sdhci->reg_base + SDHC_MAX_CAPABILITIES));
sdhc_debug(sdhci->reg_base, " soft reset: 0x%08x", __sd_read8(sdhci->reg_base + SDHC_SOFTWARE_RESET));
sdhc_debug(sdhci->reg_base, " command: 0x%08x", __sd_read16(sdhci->reg_base + SDHC_CMD));
}
#else
#define __sd_dumpregs(s) while(0) { }
#endif
static int __sd_reset(sdhci_t *sdhci, int all)
{
int retval;
u32 mask;
sdhci->is_sdhc = 0;
sdhci->is_selected = 0;
sdhci->is_mounted = 0;
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_ENABLE, 0);
__sd_write16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_ENABLE, 0);
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_SIGNAL_ENABLE, 0);
__sd_write16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_SIGNAL_ENABLE, 0);
if(all)
mask = SDHC_SOFTWARE_RESET_ALL;
else
mask = SDHC_SOFTWARE_RESET_CMD | SDHC_SOFTWARE_RESET_DAT;
sdhc_error(sdhci->reg_base, "resetting card (mask = %x)", mask);
__sd_write8(sdhci->reg_base + SDHC_SOFTWARE_RESET, mask);
retval = __sd_wait8_r(sdhci->reg_base + SDHC_SOFTWARE_RESET, mask);
if(retval < 0)
{
sdhc_debug(sdhci->reg_base, "reset failed, bits were never unset");
sdhc_debug(sdhci->reg_base, "software reset register: %02x", __sd_read8(sdhci->reg_base + SDHC_SOFTWARE_RESET));
return retval;
}
sdhc_debug(sdhci->reg_base, "reset done");
__sd_dumpregs(sdhci);
__sd_write8(sdhci->reg_base + SDHC_TIMEOUT_CONTROL, SDHC_TIMEOUT_MAX);
return 0;
}
static int __sd_clock_div(u32 base, u32 target)
{
int d;
for(d = 1; d <= 256; d *= 2)
{
if((base / d) <= target)
return (d/2);
}
return 256 / 2;
}
static int __sd_clock(sdhci_t *sdhci, u8 enable, u32 freq)
{
u32 caps;
int d, retval;
__sd_write16(sdhci->reg_base + SDHC_CLOCK_CONTROL, 0);
if(!enable)
return 0;
caps = read32(sdhci->reg_base + SDHC_CAPABILITIES);
if(SDHC_BFREQ_KHZ(caps) != 0)
d = __sd_clock_div(SDHC_BFREQ_KHZ(caps), freq);
else
d = 256 / 2;
__sd_write16(sdhci->reg_base + SDHC_CLOCK_CONTROL, (d << 8) | SDHC_CLOCK_INTERNAL_ENABLE);
__sd_dumpregs(sdhci);
sdhc_debug(sdhci->reg_base, "waiting for internal clock to become stable");
retval = __sd_wait16(sdhci->reg_base + SDHC_CLOCK_CONTROL, SDHC_CLOCK_INTERNAL_STABLE);
if(retval < 0)
{
sdhc_debug(sdhci->reg_base, "clock didn't become stable :/");
__sd_dumpregs(sdhci);
return retval;
}
sdhc_debug(sdhci->reg_base, "clock is stable; enabling sd clock");
__sd_write16(sdhci->reg_base + SDHC_CLOCK_CONTROL, (d << 8) | SDHC_CLOCK_SD_ENABLE | SDHC_CLOCK_INTERNAL_ENABLE);
return 0;
}
static int __sd_power(sdhci_t *sdhci, int vdd)
{
u32 caps;
u8 pwr;
caps = __sd_read32(sdhci->reg_base + SDHC_CAPABILITIES);
if(vdd == -1)
{
if(caps & SDHC_CAP_VOLTAGE_33)
vdd = SDHC_CAP_VOLTAGE_33;
else if(caps & SDHC_CAP_VOLTAGE_30)
vdd = SDHC_CAP_VOLTAGE_30;
else if(caps & SDHC_CAP_VOLTAGE_18)
vdd = SDHC_CAP_VOLTAGE_18;
else
{
sdhc_error(sdhci->reg_base, "no voltage supported by the host? this should never happen...");
return SDHC_ESTRANGE;
}
}
if(!(caps & vdd))
{
sdhc_error(sdhci->reg_base, "voltage %x not supported by the hc", vdd);
return SDHC_EINVAL;
}
pwr = 0;
switch(vdd)
{
case SDHC_CAP_VOLTAGE_33:
pwr |= SDHC_PCTRL_VOLTAGE_33;
break;
case SDHC_CAP_VOLTAGE_30:
pwr |= SDHC_PCTRL_VOLTAGE_30;
break;
case SDHC_CAP_VOLTAGE_18:
pwr |= SDHC_PCTRL_VOLTAGE_18;
break;
default:
sdhc_error(sdhci->reg_base, "invalid vdd: %x", vdd);
return SDHC_EINVAL;
}
__sd_write8(sdhci->reg_base + SDHC_POWER_CONTROL, pwr);
pwr |= SDHC_PCTRL_ENABLE;
__sd_write8(sdhci->reg_base + SDHC_POWER_CONTROL, pwr);
__sd_dumpregs(sdhci);
sdhc_debug(sdhci->reg_base, "card should get voltage now");
if(!(__sd_read8(sdhci->reg_base + SDHC_POWER_CONTROL) & SDHC_PCTRL_ENABLE))
{
sdhc_error(sdhci->reg_base, "pctrl = 0 again");
return SDHC_ESTRANGE;
}
return 0;
}
static s32 __sd_cmd(sdhci_t *sdhci, u32 cmd, u32 type, u32 arg, u32 blk_cnt, void *buffer, u32 *response, u8 rlen)
{
int mode;
int command;
int mask;
int use_dma;
int retval;
int i, imax;
u32 caps;
if(cmd & SD_CMD_ACMD)
{
sdhc_debug(sdhci->reg_base, " cmd %X is ACMD%d, sending CMD55 first", cmd, cmd - SD_CMD_ACMD);
retval = __sd_cmd(sdhci, SD_CMD_APP, SD_R1, sdhci->rca << 16, 0, NULL, NULL, 0);
// TODO: also check the response here?
if(retval < 0)
return retval;
cmd -= SD_CMD_ACMD;
}
__sd_write16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_STATUS, 0);
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS, 0);
sdhc_debug(sdhci->reg_base, "__sd_cmd: cmd = %X, type = %X, arg = %X, blk_cnt = %d, rlen = %d", cmd, type, arg, blk_cnt, rlen);
if(blk_cnt > SDHC_BLOCKS_MAX)
{
sdhc_error(sdhci->reg_base, "%d blocks are too much...", blk_cnt);
return SDHC_EOVERFLOW;
}
caps = __sd_read32(sdhci->reg_base + SDHC_CAPABILITIES);
if(caps & SDHC_CAP_SDMA && ((u32)buffer % 32 == 0) && blk_cnt > 0 && buffer != NULL)
use_dma = 1;
else
use_dma = 0;
sdhc_debug(sdhci->reg_base, "enable DMA: %d (buffer mod 32: %d)", use_dma, (u32)buffer % 32);
mode = mask = 0;
command = (cmd & SDHC_CMD_MASK) << SDHC_CMD_SHIFT;
if(blk_cnt > 0)
{
if(use_dma == 1)
mode |= SDHC_CMDMODE_DMA_ENABLE;
mode |= SDHC_CMDMODE_MULTIBLOCK;
mode |= SDHC_CMDMODE_ACMD12_ENABLE;
mode |= SDHC_CMDMODE_BLOCKCNT_ENABLE;
if(type & SD_READ)
{
mask = SDHC_BFR_READ_ENABLE;
mode |= SDHC_CMDMODE_READ;
}
else
{
mask = SDHC_BFR_WRITE_ENABLE;
mode |= SDHC_CMDMODE_WRITE;
}
command |= SDHC_CMD_DATA;
}
if(!(type & SD_RSP_PRESENT))
command |= SDHC_CMD_NORESP;
else if(type & SD_RSP_136)
command |= SDHC_CMD_RESP_136;
else if(type & SD_RSP_BUSY)
command |= SDHC_CMD_RESP_BUSY;
else
command |= SDHC_CMD_RESP_48;
if(type & SD_RSP_CRC)
command |= SDHC_CMD_CRC;
if(type & SD_RSP_IDX)
command |= SDHC_CMD_IDXCHECK;
sdhc_debug(sdhci->reg_base, "waiting for command inhibit bits to be cleared..");
retval = __sd_wait32_r(sdhci->reg_base + SDHC_PRESENT_STATE, SDHC_PRESENT_CMD_INHIBIT_BOTH);
if(retval < 0)
{
sdhc_error(sdhci->reg_base, "command inhibit bits were never cleared");
__sd_reset(sdhci, 0);
return retval;
}
sdhc_debug(sdhci->reg_base, "command inhibit bits cleared, sending command");
if(use_dma == 1)
{
sdhc_debug(sdhci->reg_base, "preparing buffer for SDMA transfer");
if(mask == SDHC_BFR_WRITE_ENABLE) {
dc_flushrange(buffer, blk_cnt * BLOCK_SIZE);
ahb_flush_to(AHB_SDHC);
} else {
dc_invalidaterange(buffer, blk_cnt * BLOCK_SIZE);
}
__sd_write32(sdhci->reg_base + SDHC_SDMA_ADDR, dma_addr(buffer));
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS, 0);
__sd_write16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_STATUS, 0);
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_ENABLE, INTERRUPT_ALL);
__sd_write16(sdhci->reg_base + SDHC_ERROR_INTERRUPT_ENABLE, EINTERRUPT_ALL);
__sd_write32(sdhci->reg_base + SDHC_SDMA_ADDR, dma_addr(buffer));
}
__sd_dumpregs(sdhci);
if(blk_cnt > 0)
{
__sd_write16(sdhci->reg_base + SDHC_BLOCK_SIZE, (BLOCK_SIZE_512K << 12) | BLOCK_SIZE);
__sd_write16(sdhci->reg_base + SDHC_BLOCK_COUNT, blk_cnt);
}
sdhc_debug(sdhci->reg_base, "writing mode = %x, arg = %x, cmd = %x", mode, arg, command);
__sd_write32(sdhci->reg_base + SDHC_CMD_ARG, arg);
__sd_write32(sdhci->reg_base + SDHC_CMD_TRANSFER_MODE, ((u32)command << 16) | mode);
__sd_dumpregs(sdhci);
sdhc_debug(sdhci->reg_base, "waiting until command phase is done");
retval = __sd_wait32_r(sdhci->reg_base + SDHC_PRESENT_STATE, SDHC_PRESENT_CMD_INHIBIT_CMD);
if(retval < 0)
{
sdhc_error(sdhci->reg_base, "error: command phase not completed");
__sd_dumpregs(sdhci);
__sd_reset(sdhci, 0);
return retval;
}
sdhc_debug(sdhci->reg_base, "command phase is done");
__sd_dumpregs(sdhci);
for(i = 0; i < 4; i++)
sdhc_debug(sdhci->reg_base, "response %d: %X", i, __sd_read32(sdhci->reg_base + SDHC_RESPONSE + 4*i));
if(rlen < 4 && type & SD_RSP_PRESENT)
{
sdhc_debug(sdhci->reg_base, "response buffer not big enough for response...");
}
else if(type & SD_RSP_PRESENT)
{
if(type & SD_RSP_136)
{
u8 *p = (u8 *)response;
imax = 15 > rlen ? rlen : 15;
for(i = 0; i < imax; i++)
*p++ = __sd_read8(sdhci->reg_base + SDHC_RESPONSE + i);
for(i = 0; i < 4; i++)
sdhc_debug(sdhci->reg_base, "response %d: %X", i, __sd_read32(sdhci->reg_base + SDHC_RESPONSE + 4*i));
}
else
{
response[0] = __sd_read32(sdhci->reg_base + SDHC_RESPONSE);
sdhc_debug(sdhci->reg_base, "response = %08X", response[0]);
}
}
// FIXME: check response and abort on errors?
if(blk_cnt > 0)
{
sdhc_debug(sdhci->reg_base, "starting transfer of %d %d byte blocks", blk_cnt, BLOCK_SIZE);
if(use_dma == 0)
{
gecko_printf("sdhci: PIO mode is broken, align your buffer and use DMA.\n");
__sd_reset(sdhci, 0);
return SDHC_EIO;
}
else /* SDMA; transfer data in 512 KB blocks (i.e. 1024 512 byte blocks */
{
u8 *ptr = (u8 *)buffer;
sdhc_debug(sdhci->reg_base, "using SDMA to transfer data");
while(1)
{
sdhc_debug(sdhci->reg_base, "waiting for interrupts...");
retval = __sd_wait16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS, INTERRUPT_DMA | INTERRUPT_TRANSFER_COMPLETE);
if(retval < 0)
{
sdhc_error(sdhci->reg_base, "failed while waiting for transfer complete or DMA interrupts...");
__sd_reset(sdhci, 0);
return retval;
}
retval = __sd_read16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS);
if(retval & INTERRUPT_TRANSFER_COMPLETE)
{
__sd_dumpregs(sdhci);
sdhc_debug(sdhci->reg_base, "transfer completed. disabling interrupts again and returning.");
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS, INTERRUPT_TRANSFER_COMPLETE | INTERRUPT_DMA);
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_ENABLE, 0);
if(mask == SDHC_BFR_READ_ENABLE)
ahb_flush_from(AHB_SDHC);
return 0;
}
else if(retval & INTERRUPT_DMA)
{
u32 blk_left = __sd_read16(sdhci->reg_base + SDHC_BLOCK_COUNT);
blk_left = blk_cnt - blk_left;
ptr = buffer + blk_cnt * SDHC_BLOCK_SIZE;
__sd_dumpregs(sdhci);
sdhc_debug(sdhci->reg_base, "DMA interrupt set, updating next SDMA address");
sdhc_debug(sdhci->reg_base, "sd blocks left: %d, addr: %p -> %p", blk_cnt, ptr, ptr + SDMA_BLOCK_SIZE);
if(blk_cnt == 0)
{
sdhc_error(sdhci->reg_base, "FATAL ERROR: hc wants to transfer more DMA data but no more blocks are left.");
__sd_reset(sdhci, 0);
return SDHC_EIO;
}
__sd_write16(sdhci->reg_base + SDHC_NORMAL_INTERRUPT_STATUS, INTERRUPT_DMA);
__sd_write32(sdhci->reg_base + SDHC_SDMA_ADDR, dma_addr(ptr));
sdhc_debug(sdhci->reg_base, "next DMA transfer started.");
__sd_dumpregs(sdhci);
}
}
}
}
return 0;
}
void __sd_print_status(sdhci_t *sdhci)
{
#ifdef SDHC_DEBUG
u32 status;
u32 state;
int retval;
#if 0
// FIXME: doesn't work for some reason ?!?
// sdhc0: Card status: 00000900 [|ò¦|ó¦L]
char *state_name[] = {
"IDLE",
"READY",
"IDENT",
"STANDBY",
"TRANSFER",
"DATA (SEND)",
"RECEIVE",
"PROGRAM",
"DISCONNECT"
};
sdhc_debug(sdhci->reg_base, "Card status %08x [%s]", status, state_name[state]);
#endif
retval = __sd_cmd(sdhci, SD_CMD_SEND_STATUS, SD_R1, (u32)sdhci->rca << 16, 0, NULL, &status, sizeof(status));
state = (status >> 9) & 0x0f;
gecko_printf("sdhc%d: Card status: %08x [", ((sdhci->reg_base - SD_REG_BASE) / 0x100), status);
switch(state)
{
case 0:
gecko_printf("IDLE]\n");
break;
case 1:
gecko_printf("READY]\n");
break;
case 2:
gecko_printf("IDENT]\n");
break;
case 3:
gecko_printf("STANDBY]\n");
break;
case 4:
gecko_printf("TRANSFER]\n");
break;
case 5:
gecko_printf("DATA (SEND)]\n");
break;
case 6:
gecko_printf("DATA (RECEIVE)]\n");
break;
case 7:
gecko_printf("PROGRAM]\n");
break;
case 8:
gecko_printf("DISCONNECT]\n");
break;
default:
gecko_printf("Reserved]\n");
}
#endif
return;
}
int sd_mount(sdhci_t *sdhci)
{
u32 caps;
s32 retval;
u32 resp[5];
int tries;
__sd_dumpregs(sdhci);
retval = __sd_reset(sdhci, 1);
if(retval < 0)
return retval;
if(!sd_inserted(sdhci))
return SDHC_ENOCARD;
caps = __sd_read32(sdhci->reg_base + SDHC_CAPABILITIES);
retval = __sd_power(sdhci, -1);
if(retval < 0)
return retval;
retval = __sd_clock(sdhci, 1, 25000);
if(retval < 0)
return retval;
retval = __sd_cmd(sdhci, SD_CMD_RESET_CARD, SD_R0, 0x0, 0, NULL, NULL, 0);
if(retval < 0)
return retval;
// check for SDHC
retval = __sd_cmd(sdhci, SD_CMD_SEND_IF_COND, SD_R7, 0x1AA, 0, NULL, resp, 6);
if(retval < 0 || (resp[0] & 0xff) != 0xAA)
{
// SDv1 low-capacity card#
sdhc_error(sdhci->reg_base, "SDv1 low-capacity card deteced. resetting controller and card again.");
__sd_reset(sdhci, 1);
retval = __sd_power(sdhci, -1);
if(retval < 0)
return retval;
retval = __sd_clock(sdhci, 1, 25000);
if(retval < 0)
return retval;
retval = __sd_cmd(sdhci, SD_CMD_RESET_CARD, SD_R0, 0x0, 0, NULL, NULL, 0);
if(retval < 0)
return retval;
sdhci->is_sdhc = 0;
sdhci->ocr = 0;
}
else
{
// SDHC card deteced
sdhc_error(sdhci->reg_base, "SDv2 card detected.");
sdhci->is_sdhc = 1;
sdhci->ocr = OCR_HCS;
}
if(caps & SDHC_CAP_VOLTAGE_33)
sdhci->ocr |= MMC_VDD_32_33|MMC_VDD_33_34;
if(caps & SDHC_CAP_VOLTAGE_30)
sdhci->ocr |= MMC_VDD_29_30|MMC_VDD_30_31;
if(caps & SDHC_CAP_VOLTAGE_18)
sdhci->ocr |= MMC_VDD_165_195;
sdhc_debug(sdhci->reg_base, "waiting for card to finalize power up");
tries = 0;
resp[0] = 0;
while(tries++ <= SDHC_WAIT_TIMEOUT_OUTER_MULTIPLY)
{
retval = __sd_cmd(sdhci, SD_CMD_APP_SEND_OP_COND, SD_R3, sdhci->ocr, 0, NULL, resp, 6);
if(resp[0] & OCR_POWERUP_STATUS)
{
sdhc_error(sdhci->reg_base, "card power up is done.");
break;
}
udelay(SDHC_WAIT_TIMEOUT_OUTER);
}
if(!(resp[0] & OCR_POWERUP_STATUS))
{
sdhc_error(sdhci->reg_base, "powerup failed, resetting controller.");
__sd_reset(sdhci, 1);
return SDHC_EIO;
}
sdhci->ocr = resp[0];
if(sdhci->ocr & OCR_CCS)
{
sdhc_debug(sdhci->reg_base, "SDHC card detected, using block instead of byte offset address mode");
sdhci->is_sdhc = 1;
}
else
{
sdhc_debug(sdhci->reg_base, "low-capacity SD card detected. using byte offset address mode.");
sdhci->is_sdhc = 0;
}
sdhc_debug(sdhci->reg_base, "sending ALL_SEND_CID command to get connected card");
retval = __sd_cmd(sdhci, SD_CMD_ALL_SEND_CID, SD_R3, 0, 0, NULL, resp, 16);
if(retval < 0)
{
sdhc_error(sdhci->reg_base, "__sd_cmd returned %d, resetting controller.", retval);
__sd_reset(sdhci, 1);
return SDHC_EIO;
}
memcpy(sdhci->cid, resp, 128/8);
sdhc_debug(sdhci->reg_base, "CID: %08X%08x%08x%08x, requesting RCA",
sdhci->cid[0],
sdhci->cid[1],
sdhci->cid[2],
sdhci->cid[3]);
retval = __sd_cmd(sdhci, SD_CMD_SEND_RELATIVE_ADDR, SD_R6, 0, 0, NULL, resp, 6);
if(retval < 0)
{
sdhc_error(sdhci->reg_base, "failed at getting RCA (%d), resetting controller.", retval);
__sd_reset(sdhci, 1);
return SDHC_EIO;
}
sdhci->rca = (resp[0] >> 16) & 0xffff;
sdhc_debug(sdhci->reg_base, "RCA: %04X", sdhci->rca);
__sd_print_status(sdhci);
sd_select(sdhci);
__sd_print_status(sdhci);
retval = __sd_cmd(sdhci, SD_CMD_SET_BLOCKLEN, SD_R1, BLOCK_SIZE, 0, NULL, NULL, 0);
if(retval < 0)
{
sdhc_debug(sdhci->reg_base, "failed to set the block length to 512bytes (%d)", retval);
return retval;
}
__sd_print_status(sdhci);
sd_select(sdhci);
#if 0
sdhc_debug(sdhci->reg_base, "requesting CSD noW!!");
retval = __sd_cmd(sdhci, SD_CMD_SEND_CSD, SD_R2, sdhci->rca << 16, 0, NULL, resp,
16);
if (retval < 0) {
sdhc_error(sdhci->reg_base, "failed to get CSD register (%d)", retval);
__sd_reset(sdhci, 1);
}
memcpy(sdhci->csd, resp, 128/8);
sdhc_debug(sdhci->reg_base, "CSD: %08X%08x%08x%08x",
sdhci->csd[0],
sdhci->csd[1],
sdhci->csd[2],
sdhci->csd[3]);
#endif
sdhc_debug(sdhci->reg_base, "setting bus width to 4");
__sd_write8(sdhci->reg_base + SDHC_HOST_CONTROL, __sd_read8(sdhci->reg_base + SDHC_HOST_CONTROL) | SDHC_HCR_BUSWIDTH_4);
retval = __sd_cmd(sdhci, SD_CMD_APP_SET_BUS_WIDTH, SD_R1, 2, 0, NULL, NULL, 0);
if(retval < 0)
{
sdhc_debug(sdhci->reg_base, "failed to set bus width to 4: %d", retval);
return retval;
}
sdhci->is_mounted = 1;
return 0;
}
int sd_inserted(sdhci_t *sdhci)
{
return (__sd_read32(sdhci->reg_base + SDHC_PRESENT_STATE) & SDHC_CARD_INSERTED) == SDHC_CARD_INSERTED;
}
#ifndef _READONLY
int sd_protected(sdhci_t *sdhci)
{
return (__sd_read32(sdhci->reg_base + SDHC_PRESENT_STATE) & SDHC_WRITE_PROTECT) == SDHC_WRITE_PROTECT;
}
#endif
int sd_init(sdhci_t *sdhci, int slot)
{
memset(sdhci, 0, sizeof *sdhci);
if(slot > 1)
return SDHC_EINVAL;
sdhci->reg_base = SD_REG_BASE + slot * 0x100;
return 0;
}
int sd_cmd(sdhci_t *sdhci, u32 cmd, u32 type, u32 arg, u32 blk_cnt, void *buffer, u32 *response, u8 rlen)
{
return __sd_cmd(sdhci, cmd, type, arg, blk_cnt, buffer, response, rlen);
}
int sd_select(sdhci_t *sdhci)
{
int retval;
if(sdhci->is_selected == 1)
return 0;
retval = __sd_cmd(sdhci, SD_CMD_SELECT_CARD, SD_R1B, (u32)sdhci->rca << 16, 0, NULL, NULL, 0);
if(retval < 0)
{
sdhc_debug(sdhci->reg_base, "selecting card failed with %d", retval);
return retval;
}
sdhci->is_selected = 1;
sdhc_debug(sdhci->reg_base, "card selected");
return 0;
}
int sd_read(sdhci_t *sdhci, u32 start_block, u32 blk_cnt, void *buffer)
{
int retval;
u32 response;
if(sdhci->is_mounted != 1)
return SDHC_EINVAL;
retval = sd_select(sdhci);
if(retval < 0)
return retval;
__sd_print_status(sdhci);
if(sdhci->is_sdhc == 0)
start_block *= 512;
dc_invalidaterange(buffer, blk_cnt * 512);
retval = __sd_cmd(sdhci, SD_CMD_READ_MULTIPLE_BLOCK, SD_R1 | SD_READ, start_block, blk_cnt, buffer, &response, sizeof(response));
if(retval < 0)
sdhc_debug(sdhci->reg_base, "reading blocks failed with %d.", retval);
__sd_print_status(sdhci);
return retval;
}
#if _READONLY == 1
int sd_write(sdhci_t *sdhci, u32 start_block, u32 blk_cnt, const void *buffer)
{
int retval;
u32 response;
if(sdhci->is_mounted != 1)
return SDHC_EINVAL;
retval = sd_select(sdhci);
if(retval < 0)
return retval;
__sd_print_status(sdhci);
if(sdhci->is_sdhc == 0)
start_block *= 512;
dc_flushrange(buffer, blk_cnt * 512);
retval = __sd_cmd(sdhci, SD_CMD_WRITE_MULTIPLE_BLOCK, SD_R1, start_block, blk_cnt, (void *)buffer, &response, sizeof(response));
if(retval < 0)
sdhc_debug(sdhci->reg_base, "writing blocks failed with %d.", retval);
__sd_print_status(sdhci);
return retval;
}
#endif
void sd_initialize(void)
{
ipc_code = ipc_tag = 0;
sd_init(&sdhci, 0);
// irq_enable(IRQ_NAND); ??
}
void sd_ipc(volatile ipc_request *req)
{
int retval = 0;
if (ipc_code != 0 || ipc_tag != 0) {
gecko_printf("SDHC: previous IPC request is not done yet.");
ipc_post(req->code, req->tag, 1, -1);
return;
}
switch (req->req) {
case IPC_SD_MOUNT:
retval = sd_mount(&sdhci);
ipc_post(req->code, req->tag, 1, retval);
break;
case IPC_SD_SELECT:
retval = sd_select(&sdhci);
ipc_post(req->code, req->tag, 1, retval);
break;
case IPC_SD_GETSTATE:
retval = __sd_read32(sdhci.reg_base + SDHC_PRESENT_STATE);
ipc_post(req->code, req->tag, 1, retval);
break;
case IPC_SD_READ:
retval = sd_read(&sdhci, req->args[0], req->args[1],
(void *)req->args[2]);
ipc_post(req->code, req->tag, 1, retval);
break;
case IPC_SD_WRITE:
retval = sd_write(&sdhci, req->args[0], req->args[1],
(void *)req->args[2]);
ipc_post(req->code, req->tag, 1, retval);
break;
default:
gecko_printf("IPC: unknown SLOW SDHC request %04x\n",
req->req);
}
}