mirror of
https://github.com/jbop1626/ninty-233.git
synced 2025-02-20 02:02:45 +01:00
Rewrite everything in C99
- Replace BigInteger with GNU MP - Update README
This commit is contained in:
parent
230103a15d
commit
2473e19f73
12
README.md
12
README.md
@ -1,9 +1,15 @@
|
||||
### ninty-233
|
||||
|
||||
ninty-233 is a library for [ECC](https://en.wikipedia.org/wiki/Elliptic-curve_cryptography) operations using sect233r1 / NIST B-233, the curve used in the [iQue Player](https://en.wikipedia.org/wiki/IQue_Player) and [Nintendo Wii](https://en.wikipedia.org/wiki/Wii).
|
||||
ninty-233 is a C99 library for [ECC](https://en.wikipedia.org/wiki/Elliptic-curve_cryptography) operations using sect233r1 / NIST B-233, the curve used in the [iQue Player](https://en.wikipedia.org/wiki/IQue_Player) and [Nintendo Wii](https://en.wikipedia.org/wiki/Wii).
|
||||
|
||||
It can be used for [ECDH](https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman) (used to create some encryption keys on the iQue Player) and [ECDSA](https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm) signing/verification (used to sign game saves on both consoles and to sign recrypt.sys on the iQue Player).
|
||||
|
||||
Arbitrary-precision arithmetic is done using the public domain [C++ Big Integer Library](https://mattmccutchen.net/bigint/) by Matt McCutchen.
|
||||
ninty-233 should **NOT** be expected to be secure; it is intended to be used as a tool for working with keys and/or data that are **already known** (made obvious by the fact that there is no function provided for generating keys). In its current state, I expect it to be vulnerable to various attacks (e.g. the GF(2^m) element and elliptic curve point arithmetic operations are not resistant to timing analysis). The ``generate_k()`` function in particular is not cryptographically secure, and is simply a trivial implementation that will allow, for example, signing homebrew apps.
|
||||
|
||||
SHA1 implementation is from the public domain [WjCryptLib](https://github.com/WaterJuice/WjCryptLib) by [WaterJuice](https://github.com/WaterJuice).
|
||||
ninty-233 currently requires an architecture with unsigned integer types of exactly 8 and 32 bits - that is, both ``uint8_t`` and ``uint32_t`` must be defined. This likely isn't a problem for literally anyone, but it's probably good to know before compiling for a calculator or something.
|
||||
|
||||
Arbitrary-precision arithmetic is done using the [GNU MP library](https://gmplib.org/) in the form of mini-gmp, a standalone subset of GMP.
|
||||
|
||||
The SHA1 implementation is a slightly modified version of the public domain [WjCryptLib](https://github.com/WaterJuice/WjCryptLib) implementation from [WaterJuice](https://github.com/WaterJuice) et al.
|
||||
|
||||
ninty-233 is licensed under the GPLv3 or (at your option) any later version (and I've opted to use GMP under the same license).
|
||||
|
@ -1,215 +0,0 @@
|
||||
#ifndef BIGINTEGER_H
|
||||
#define BIGINTEGER_H
|
||||
|
||||
#include "BigUnsigned.hpp"
|
||||
|
||||
/* A BigInteger object represents a signed integer of size limited only by
|
||||
* available memory. BigUnsigneds support most mathematical operators and can
|
||||
* be converted to and from most primitive integer types.
|
||||
*
|
||||
* A BigInteger is just an aggregate of a BigUnsigned and a sign. (It is no
|
||||
* longer derived from BigUnsigned because that led to harmful implicit
|
||||
* conversions.) */
|
||||
class BigInteger {
|
||||
|
||||
public:
|
||||
typedef BigUnsigned::Blk Blk;
|
||||
typedef BigUnsigned::Index Index;
|
||||
typedef BigUnsigned::CmpRes CmpRes;
|
||||
static const CmpRes
|
||||
less = BigUnsigned::less ,
|
||||
equal = BigUnsigned::equal ,
|
||||
greater = BigUnsigned::greater;
|
||||
// Enumeration for the sign of a BigInteger.
|
||||
enum Sign { negative = -1, zero = 0, positive = 1 };
|
||||
|
||||
protected:
|
||||
Sign sign;
|
||||
BigUnsigned mag;
|
||||
|
||||
public:
|
||||
// Constructs zero.
|
||||
BigInteger() : sign(zero), mag() {}
|
||||
|
||||
// Copy constructor
|
||||
BigInteger(const BigInteger &x) : sign(x.sign), mag(x.mag) {};
|
||||
|
||||
// Assignment operator
|
||||
void operator=(const BigInteger &x);
|
||||
|
||||
// Constructor that copies from a given array of blocks with a sign.
|
||||
BigInteger(const Blk *b, Index blen, Sign s);
|
||||
|
||||
// Nonnegative constructor that copies from a given array of blocks.
|
||||
BigInteger(const Blk *b, Index blen) : mag(b, blen) {
|
||||
sign = mag.isZero() ? zero : positive;
|
||||
}
|
||||
|
||||
// Constructor from a BigUnsigned and a sign
|
||||
BigInteger(const BigUnsigned &x, Sign s);
|
||||
|
||||
// Nonnegative constructor from a BigUnsigned
|
||||
BigInteger(const BigUnsigned &x) : mag(x) {
|
||||
sign = mag.isZero() ? zero : positive;
|
||||
}
|
||||
|
||||
// Constructors from primitive integer types
|
||||
BigInteger(unsigned long x);
|
||||
BigInteger( long x);
|
||||
BigInteger(unsigned int x);
|
||||
BigInteger( int x);
|
||||
BigInteger(unsigned short x);
|
||||
BigInteger( short x);
|
||||
|
||||
/* Converters to primitive integer types
|
||||
* The implicit conversion operators caused trouble, so these are now
|
||||
* named. */
|
||||
unsigned long toUnsignedLong () const;
|
||||
long toLong () const;
|
||||
unsigned int toUnsignedInt () const;
|
||||
int toInt () const;
|
||||
unsigned short toUnsignedShort() const;
|
||||
short toShort () const;
|
||||
protected:
|
||||
// Helper
|
||||
template <class X> X convertToUnsignedPrimitive() const;
|
||||
template <class X, class UX> X convertToSignedPrimitive() const;
|
||||
public:
|
||||
|
||||
// ACCESSORS
|
||||
Sign getSign() const { return sign; }
|
||||
/* The client can't do any harm by holding a read-only reference to the
|
||||
* magnitude. */
|
||||
const BigUnsigned &getMagnitude() const { return mag; }
|
||||
|
||||
// Some accessors that go through to the magnitude
|
||||
Index getLength() const { return mag.getLength(); }
|
||||
Index getCapacity() const { return mag.getCapacity(); }
|
||||
Blk getBlock(Index i) const { return mag.getBlock(i); }
|
||||
bool isZero() const { return sign == zero; } // A bit special
|
||||
|
||||
// COMPARISONS
|
||||
|
||||
// Compares this to x like Perl's <=>
|
||||
CmpRes compareTo(const BigInteger &x) const;
|
||||
|
||||
// Ordinary comparison operators
|
||||
bool operator ==(const BigInteger &x) const {
|
||||
return sign == x.sign && mag == x.mag;
|
||||
}
|
||||
bool operator !=(const BigInteger &x) const { return !operator ==(x); };
|
||||
bool operator < (const BigInteger &x) const { return compareTo(x) == less ; }
|
||||
bool operator <=(const BigInteger &x) const { return compareTo(x) != greater; }
|
||||
bool operator >=(const BigInteger &x) const { return compareTo(x) != less ; }
|
||||
bool operator > (const BigInteger &x) const { return compareTo(x) == greater; }
|
||||
|
||||
// OPERATORS -- See the discussion in BigUnsigned.hh.
|
||||
void add (const BigInteger &a, const BigInteger &b);
|
||||
void subtract(const BigInteger &a, const BigInteger &b);
|
||||
void multiply(const BigInteger &a, const BigInteger &b);
|
||||
/* See the comment on BigUnsigned::divideWithRemainder. Semantics
|
||||
* differ from those of primitive integers when negatives and/or zeros
|
||||
* are involved. */
|
||||
void divideWithRemainder(const BigInteger &b, BigInteger &q);
|
||||
void negate(const BigInteger &a);
|
||||
|
||||
/* Bitwise operators are not provided for BigIntegers. Use
|
||||
* getMagnitude to get the magnitude and operate on that instead. */
|
||||
|
||||
BigInteger operator +(const BigInteger &x) const;
|
||||
BigInteger operator -(const BigInteger &x) const;
|
||||
BigInteger operator *(const BigInteger &x) const;
|
||||
BigInteger operator /(const BigInteger &x) const;
|
||||
BigInteger operator %(const BigInteger &x) const;
|
||||
BigInteger operator -() const;
|
||||
|
||||
void operator +=(const BigInteger &x);
|
||||
void operator -=(const BigInteger &x);
|
||||
void operator *=(const BigInteger &x);
|
||||
void operator /=(const BigInteger &x);
|
||||
void operator %=(const BigInteger &x);
|
||||
void flipSign();
|
||||
|
||||
// INCREMENT/DECREMENT OPERATORS
|
||||
void operator ++( );
|
||||
void operator ++(int);
|
||||
void operator --( );
|
||||
void operator --(int);
|
||||
};
|
||||
|
||||
// NORMAL OPERATORS
|
||||
/* These create an object to hold the result and invoke
|
||||
* the appropriate put-here operation on it, passing
|
||||
* this and x. The new object is then returned. */
|
||||
inline BigInteger BigInteger::operator +(const BigInteger &x) const {
|
||||
BigInteger ans;
|
||||
ans.add(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigInteger BigInteger::operator -(const BigInteger &x) const {
|
||||
BigInteger ans;
|
||||
ans.subtract(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigInteger BigInteger::operator *(const BigInteger &x) const {
|
||||
BigInteger ans;
|
||||
ans.multiply(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigInteger BigInteger::operator /(const BigInteger &x) const {
|
||||
if (x.isZero()) throw "BigInteger::operator /: division by zero";
|
||||
BigInteger q, r;
|
||||
r = *this;
|
||||
r.divideWithRemainder(x, q);
|
||||
return q;
|
||||
}
|
||||
inline BigInteger BigInteger::operator %(const BigInteger &x) const {
|
||||
if (x.isZero()) throw "BigInteger::operator %: division by zero";
|
||||
BigInteger q, r;
|
||||
r = *this;
|
||||
r.divideWithRemainder(x, q);
|
||||
return r;
|
||||
}
|
||||
inline BigInteger BigInteger::operator -() const {
|
||||
BigInteger ans;
|
||||
ans.negate(*this);
|
||||
return ans;
|
||||
}
|
||||
|
||||
/*
|
||||
* ASSIGNMENT OPERATORS
|
||||
*
|
||||
* Now the responsibility for making a temporary copy if necessary
|
||||
* belongs to the put-here operations. See Assignment Operators in
|
||||
* BigUnsigned.hh.
|
||||
*/
|
||||
inline void BigInteger::operator +=(const BigInteger &x) {
|
||||
add(*this, x);
|
||||
}
|
||||
inline void BigInteger::operator -=(const BigInteger &x) {
|
||||
subtract(*this, x);
|
||||
}
|
||||
inline void BigInteger::operator *=(const BigInteger &x) {
|
||||
multiply(*this, x);
|
||||
}
|
||||
inline void BigInteger::operator /=(const BigInteger &x) {
|
||||
if (x.isZero()) throw "BigInteger::operator /=: division by zero";
|
||||
/* The following technique is slightly faster than copying *this first
|
||||
* when x is large. */
|
||||
BigInteger q;
|
||||
divideWithRemainder(x, q);
|
||||
// *this contains the remainder, but we overwrite it with the quotient.
|
||||
*this = q;
|
||||
}
|
||||
inline void BigInteger::operator %=(const BigInteger &x) {
|
||||
if (x.isZero()) throw "BigInteger::operator %=: division by zero";
|
||||
BigInteger q;
|
||||
// Mods *this by x. Don't care about quotient left in q.
|
||||
divideWithRemainder(x, q);
|
||||
}
|
||||
// This one is trivial
|
||||
inline void BigInteger::flipSign() {
|
||||
sign = Sign(-sign);
|
||||
}
|
||||
|
||||
#endif
|
@ -1,25 +0,0 @@
|
||||
#ifndef BIGINTEGERALGORITHMS_H
|
||||
#define BIGINTEGERALGORITHMS_H
|
||||
|
||||
#include "BigInteger.hpp"
|
||||
|
||||
/* Some mathematical algorithms for big integers.
|
||||
* This code is new and, as such, experimental. */
|
||||
|
||||
// Returns the greatest common divisor of a and b.
|
||||
BigUnsigned gcd(BigUnsigned a, BigUnsigned b);
|
||||
|
||||
/* Extended Euclidean algorithm.
|
||||
* Given m and n, finds gcd g and numbers r, s such that r*m + s*n == g. */
|
||||
void extendedEuclidean(BigInteger m, BigInteger n,
|
||||
BigInteger &g, BigInteger &r, BigInteger &s);
|
||||
|
||||
/* Returns the multiplicative inverse of x modulo n, or throws an exception if
|
||||
* they have a common factor. */
|
||||
BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n);
|
||||
|
||||
// Returns (base ^ exponent) % modulus.
|
||||
BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent,
|
||||
const BigUnsigned &modulus);
|
||||
|
||||
#endif
|
@ -1,8 +0,0 @@
|
||||
// This header file includes all of the library header files.
|
||||
|
||||
#include "NumberlikeArray.hpp"
|
||||
#include "BigUnsigned.hpp"
|
||||
#include "BigInteger.hpp"
|
||||
#include "BigIntegerAlgorithms.hpp"
|
||||
#include "BigUnsignedInABase.hpp"
|
||||
#include "BigIntegerUtils.hpp"
|
@ -1,72 +0,0 @@
|
||||
#ifndef BIGINTEGERUTILS_H
|
||||
#define BIGINTEGERUTILS_H
|
||||
|
||||
#include "BigInteger.hpp"
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
|
||||
/* This file provides:
|
||||
* - Convenient std::string <-> BigUnsigned/BigInteger conversion routines
|
||||
* - std::ostream << operators for BigUnsigned/BigInteger */
|
||||
|
||||
// std::string conversion routines. Base 10 only.
|
||||
std::string bigUnsignedToString(const BigUnsigned &x);
|
||||
std::string bigIntegerToString(const BigInteger &x);
|
||||
BigUnsigned stringToBigUnsigned(const std::string &s);
|
||||
BigInteger stringToBigInteger(const std::string &s);
|
||||
|
||||
// Creates a BigInteger from data such as `char's; read below for details.
|
||||
template <class T>
|
||||
BigInteger dataToBigInteger(const T* data, BigInteger::Index length, BigInteger::Sign sign);
|
||||
|
||||
// Outputs x to os, obeying the flags `dec', `hex', `bin', and `showbase'.
|
||||
std::ostream &operator <<(std::ostream &os, const BigUnsigned &x);
|
||||
|
||||
// Outputs x to os, obeying the flags `dec', `hex', `bin', and `showbase'.
|
||||
// My somewhat arbitrary policy: a negative sign comes before a base indicator (like -0xFF).
|
||||
std::ostream &operator <<(std::ostream &os, const BigInteger &x);
|
||||
|
||||
// BEGIN TEMPLATE DEFINITIONS.
|
||||
|
||||
/*
|
||||
* Converts binary data to a BigInteger.
|
||||
* Pass an array `data', its length, and the desired sign.
|
||||
*
|
||||
* Elements of `data' may be of any type `T' that has the following
|
||||
* two properties (this includes almost all integral types):
|
||||
*
|
||||
* (1) `sizeof(T)' correctly gives the amount of binary data in one
|
||||
* value of `T' and is a factor of `sizeof(Blk)'.
|
||||
*
|
||||
* (2) When a value of `T' is casted to a `Blk', the low bytes of
|
||||
* the result contain the desired binary data.
|
||||
*/
|
||||
template <class T>
|
||||
BigInteger dataToBigInteger(const T* data, BigInteger::Index length, BigInteger::Sign sign) {
|
||||
// really ceiling(numBytes / sizeof(BigInteger::Blk))
|
||||
unsigned int pieceSizeInBits = 8 * sizeof(T);
|
||||
unsigned int piecesPerBlock = sizeof(BigInteger::Blk) / sizeof(T);
|
||||
unsigned int numBlocks = (length + piecesPerBlock - 1) / piecesPerBlock;
|
||||
|
||||
// Allocate our block array
|
||||
BigInteger::Blk *blocks = new BigInteger::Blk[numBlocks];
|
||||
|
||||
BigInteger::Index blockNum, pieceNum, pieceNumHere;
|
||||
|
||||
// Convert
|
||||
for (blockNum = 0, pieceNum = 0; blockNum < numBlocks; blockNum++) {
|
||||
BigInteger::Blk curBlock = 0;
|
||||
for (pieceNumHere = 0; pieceNumHere < piecesPerBlock && pieceNum < length;
|
||||
pieceNumHere++, pieceNum++)
|
||||
curBlock |= (BigInteger::Blk(data[pieceNum]) << (pieceSizeInBits * pieceNumHere));
|
||||
blocks[blockNum] = curBlock;
|
||||
}
|
||||
|
||||
// Create the BigInteger.
|
||||
BigInteger x(blocks, numBlocks, sign);
|
||||
|
||||
delete [] blocks;
|
||||
return x;
|
||||
}
|
||||
|
||||
#endif
|
@ -1,418 +0,0 @@
|
||||
#ifndef BIGUNSIGNED_H
|
||||
#define BIGUNSIGNED_H
|
||||
|
||||
#include "NumberlikeArray.hpp"
|
||||
|
||||
/* A BigUnsigned object represents a nonnegative integer of size limited only by
|
||||
* available memory. BigUnsigneds support most mathematical operators and can
|
||||
* be converted to and from most primitive integer types.
|
||||
*
|
||||
* The number is stored as a NumberlikeArray of unsigned longs as if it were
|
||||
* written in base 256^sizeof(unsigned long). The least significant block is
|
||||
* first, and the length is such that the most significant block is nonzero. */
|
||||
class BigUnsigned : protected NumberlikeArray<unsigned long> {
|
||||
|
||||
public:
|
||||
// Enumeration for the result of a comparison.
|
||||
enum CmpRes { less = -1, equal = 0, greater = 1 };
|
||||
|
||||
// BigUnsigneds are built with a Blk type of unsigned long.
|
||||
typedef unsigned long Blk;
|
||||
|
||||
typedef NumberlikeArray<Blk>::Index Index;
|
||||
NumberlikeArray<Blk>::N;
|
||||
|
||||
protected:
|
||||
// Creates a BigUnsigned with a capacity; for internal use.
|
||||
BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}
|
||||
|
||||
// Decreases len to eliminate any leading zero blocks.
|
||||
void zapLeadingZeros() {
|
||||
while (len > 0 && blk[len - 1] == 0)
|
||||
len--;
|
||||
}
|
||||
|
||||
public:
|
||||
// Constructs zero.
|
||||
BigUnsigned() : NumberlikeArray<Blk>() {}
|
||||
|
||||
// Copy constructor
|
||||
BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}
|
||||
|
||||
// Assignment operator
|
||||
void operator=(const BigUnsigned &x) {
|
||||
NumberlikeArray<Blk>::operator =(x);
|
||||
}
|
||||
|
||||
// Constructor that copies from a given array of blocks.
|
||||
BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
|
||||
// Eliminate any leading zeros we may have been passed.
|
||||
zapLeadingZeros();
|
||||
}
|
||||
|
||||
// Destructor. NumberlikeArray does the delete for us.
|
||||
~BigUnsigned() {}
|
||||
|
||||
// Constructors from primitive integer types
|
||||
BigUnsigned(unsigned long x);
|
||||
BigUnsigned( long x);
|
||||
BigUnsigned(unsigned int x);
|
||||
BigUnsigned( int x);
|
||||
BigUnsigned(unsigned short x);
|
||||
BigUnsigned( short x);
|
||||
protected:
|
||||
// Helpers
|
||||
template <class X> void initFromPrimitive (X x);
|
||||
template <class X> void initFromSignedPrimitive(X x);
|
||||
public:
|
||||
|
||||
/* Converters to primitive integer types
|
||||
* The implicit conversion operators caused trouble, so these are now
|
||||
* named. */
|
||||
unsigned long toUnsignedLong () const;
|
||||
long toLong () const;
|
||||
unsigned int toUnsignedInt () const;
|
||||
int toInt () const;
|
||||
unsigned short toUnsignedShort() const;
|
||||
short toShort () const;
|
||||
protected:
|
||||
// Helpers
|
||||
template <class X> X convertToSignedPrimitive() const;
|
||||
template <class X> X convertToPrimitive () const;
|
||||
public:
|
||||
|
||||
// BIT/BLOCK ACCESSORS
|
||||
|
||||
// Expose these from NumberlikeArray directly.
|
||||
NumberlikeArray<Blk>::getCapacity;
|
||||
NumberlikeArray<Blk>::getLength;
|
||||
|
||||
/* Returns the requested block, or 0 if it is beyond the length (as if
|
||||
* the number had 0s infinitely to the left). */
|
||||
Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
|
||||
/* Sets the requested block. The number grows or shrinks as necessary. */
|
||||
void setBlock(Index i, Blk newBlock);
|
||||
|
||||
// The number is zero if and only if the canonical length is zero.
|
||||
bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }
|
||||
|
||||
/* Returns the length of the number in bits, i.e., zero if the number
|
||||
* is zero and otherwise one more than the largest value of bi for
|
||||
* which getBit(bi) returns true. */
|
||||
Index bitLength() const;
|
||||
/* Get the state of bit bi, which has value 2^bi. Bits beyond the
|
||||
* number's length are considered to be 0. */
|
||||
bool getBit(Index bi) const {
|
||||
return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
|
||||
}
|
||||
/* Sets the state of bit bi to newBit. The number grows or shrinks as
|
||||
* necessary. */
|
||||
void setBit(Index bi, bool newBit);
|
||||
|
||||
// COMPARISONS
|
||||
|
||||
// Compares this to x like Perl's <=>
|
||||
CmpRes compareTo(const BigUnsigned &x) const;
|
||||
|
||||
// Ordinary comparison operators
|
||||
bool operator ==(const BigUnsigned &x) const {
|
||||
return NumberlikeArray<Blk>::operator ==(x);
|
||||
}
|
||||
bool operator !=(const BigUnsigned &x) const {
|
||||
return NumberlikeArray<Blk>::operator !=(x);
|
||||
}
|
||||
bool operator < (const BigUnsigned &x) const { return compareTo(x) == less ; }
|
||||
bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
|
||||
bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less ; }
|
||||
bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }
|
||||
|
||||
/*
|
||||
* BigUnsigned and BigInteger both provide three kinds of operators.
|
||||
* Here ``big-integer'' refers to BigInteger or BigUnsigned.
|
||||
*
|
||||
* (1) Overloaded ``return-by-value'' operators:
|
||||
* +, -, *, /, %, unary -, &, |, ^, <<, >>.
|
||||
* Big-integer code using these operators looks identical to code using
|
||||
* the primitive integer types. These operators take one or two
|
||||
* big-integer inputs and return a big-integer result, which can then
|
||||
* be assigned to a BigInteger variable or used in an expression.
|
||||
* Example:
|
||||
* BigInteger a(1), b = 1;
|
||||
* BigInteger c = a + b;
|
||||
*
|
||||
* (2) Overloaded assignment operators:
|
||||
* +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
|
||||
* Again, these are used on big integers just like on ints. They take
|
||||
* one writable big integer that both provides an operand and receives a
|
||||
* result. Most also take a second read-only operand.
|
||||
* Example:
|
||||
* BigInteger a(1), b(1);
|
||||
* a += b;
|
||||
*
|
||||
* (3) Copy-less operations: `add', `subtract', etc.
|
||||
* These named methods take operands as arguments and store the result
|
||||
* in the receiver (*this), avoiding unnecessary copies and allocations.
|
||||
* `divideWithRemainder' is special: it both takes the dividend from and
|
||||
* stores the remainder into the receiver, and it takes a separate
|
||||
* object in which to store the quotient. NOTE: If you are wondering
|
||||
* why these don't return a value, you probably mean to use the
|
||||
* overloaded return-by-value operators instead.
|
||||
*
|
||||
* Examples:
|
||||
* BigInteger a(43), b(7), c, d;
|
||||
*
|
||||
* c = a + b; // Now c == 50.
|
||||
* c.add(a, b); // Same effect but without the two copies.
|
||||
*
|
||||
* c.divideWithRemainder(b, d);
|
||||
* // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
|
||||
*
|
||||
* // ``Aliased'' calls now do the right thing using a temporary
|
||||
* // copy, but see note on `divideWithRemainder'.
|
||||
* a.add(a, b);
|
||||
*/
|
||||
|
||||
// COPY-LESS OPERATIONS
|
||||
|
||||
// These 8: Arguments are read-only operands, result is saved in *this.
|
||||
void add(const BigUnsigned &a, const BigUnsigned &b);
|
||||
void subtract(const BigUnsigned &a, const BigUnsigned &b);
|
||||
void multiply(const BigUnsigned &a, const BigUnsigned &b);
|
||||
void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
|
||||
void bitOr(const BigUnsigned &a, const BigUnsigned &b);
|
||||
void bitXor(const BigUnsigned &a, const BigUnsigned &b);
|
||||
/* Negative shift amounts translate to opposite-direction shifts,
|
||||
* except for -2^(8*sizeof(int)-1) which is unimplemented. */
|
||||
void bitShiftLeft(const BigUnsigned &a, int b);
|
||||
void bitShiftRight(const BigUnsigned &a, int b);
|
||||
|
||||
/* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
|
||||
* / and % use semantics similar to Knuth's, which differ from the
|
||||
* primitive integer semantics under division by zero. See the
|
||||
* implementation in BigUnsigned.cc for details.
|
||||
* `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
|
||||
* sense to write quotient and remainder into the same variable. */
|
||||
void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);
|
||||
|
||||
/* `divide' and `modulo' are no longer offered. Use
|
||||
* `divideWithRemainder' instead. */
|
||||
|
||||
// OVERLOADED RETURN-BY-VALUE OPERATORS
|
||||
BigUnsigned operator +(const BigUnsigned &x) const;
|
||||
BigUnsigned operator -(const BigUnsigned &x) const;
|
||||
BigUnsigned operator *(const BigUnsigned &x) const;
|
||||
BigUnsigned operator /(const BigUnsigned &x) const;
|
||||
BigUnsigned operator %(const BigUnsigned &x) const;
|
||||
/* OK, maybe unary minus could succeed in one case, but it really
|
||||
* shouldn't be used, so it isn't provided. */
|
||||
BigUnsigned operator &(const BigUnsigned &x) const;
|
||||
BigUnsigned operator |(const BigUnsigned &x) const;
|
||||
BigUnsigned operator ^(const BigUnsigned &x) const;
|
||||
BigUnsigned operator <<(int b) const;
|
||||
BigUnsigned operator >>(int b) const;
|
||||
|
||||
// OVERLOADED ASSIGNMENT OPERATORS
|
||||
void operator +=(const BigUnsigned &x);
|
||||
void operator -=(const BigUnsigned &x);
|
||||
void operator *=(const BigUnsigned &x);
|
||||
void operator /=(const BigUnsigned &x);
|
||||
void operator %=(const BigUnsigned &x);
|
||||
void operator &=(const BigUnsigned &x);
|
||||
void operator |=(const BigUnsigned &x);
|
||||
void operator ^=(const BigUnsigned &x);
|
||||
void operator <<=(int b);
|
||||
void operator >>=(int b);
|
||||
|
||||
/* INCREMENT/DECREMENT OPERATORS
|
||||
* To discourage messy coding, these do not return *this, so prefix
|
||||
* and postfix behave the same. */
|
||||
void operator ++( );
|
||||
void operator ++(int);
|
||||
void operator --( );
|
||||
void operator --(int);
|
||||
|
||||
// Helper function that needs access to BigUnsigned internals
|
||||
friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
|
||||
unsigned int y);
|
||||
|
||||
// See BigInteger.cc.
|
||||
template <class X>
|
||||
friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
|
||||
};
|
||||
|
||||
/* Implementing the return-by-value and assignment operators in terms of the
|
||||
* copy-less operations. The copy-less operations are responsible for making
|
||||
* any necessary temporary copies to work around aliasing. */
|
||||
|
||||
inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
|
||||
BigUnsigned ans;
|
||||
ans.add(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
|
||||
BigUnsigned ans;
|
||||
ans.subtract(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
|
||||
BigUnsigned ans;
|
||||
ans.multiply(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
|
||||
if (x.isZero()) throw "BigUnsigned::operator /: division by zero";
|
||||
BigUnsigned q, r;
|
||||
r = *this;
|
||||
r.divideWithRemainder(x, q);
|
||||
return q;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
|
||||
if (x.isZero()) throw "BigUnsigned::operator %: division by zero";
|
||||
BigUnsigned q, r;
|
||||
r = *this;
|
||||
r.divideWithRemainder(x, q);
|
||||
return r;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
|
||||
BigUnsigned ans;
|
||||
ans.bitAnd(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
|
||||
BigUnsigned ans;
|
||||
ans.bitOr(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
|
||||
BigUnsigned ans;
|
||||
ans.bitXor(*this, x);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator <<(int b) const {
|
||||
BigUnsigned ans;
|
||||
ans.bitShiftLeft(*this, b);
|
||||
return ans;
|
||||
}
|
||||
inline BigUnsigned BigUnsigned::operator >>(int b) const {
|
||||
BigUnsigned ans;
|
||||
ans.bitShiftRight(*this, b);
|
||||
return ans;
|
||||
}
|
||||
|
||||
inline void BigUnsigned::operator +=(const BigUnsigned &x) {
|
||||
add(*this, x);
|
||||
}
|
||||
inline void BigUnsigned::operator -=(const BigUnsigned &x) {
|
||||
subtract(*this, x);
|
||||
}
|
||||
inline void BigUnsigned::operator *=(const BigUnsigned &x) {
|
||||
multiply(*this, x);
|
||||
}
|
||||
inline void BigUnsigned::operator /=(const BigUnsigned &x) {
|
||||
if (x.isZero()) throw "BigUnsigned::operator /=: division by zero";
|
||||
/* The following technique is slightly faster than copying *this first
|
||||
* when x is large. */
|
||||
BigUnsigned q;
|
||||
divideWithRemainder(x, q);
|
||||
// *this contains the remainder, but we overwrite it with the quotient.
|
||||
*this = q;
|
||||
}
|
||||
inline void BigUnsigned::operator %=(const BigUnsigned &x) {
|
||||
if (x.isZero()) throw "BigUnsigned::operator %=: division by zero";
|
||||
BigUnsigned q;
|
||||
// Mods *this by x. Don't care about quotient left in q.
|
||||
divideWithRemainder(x, q);
|
||||
}
|
||||
inline void BigUnsigned::operator &=(const BigUnsigned &x) {
|
||||
bitAnd(*this, x);
|
||||
}
|
||||
inline void BigUnsigned::operator |=(const BigUnsigned &x) {
|
||||
bitOr(*this, x);
|
||||
}
|
||||
inline void BigUnsigned::operator ^=(const BigUnsigned &x) {
|
||||
bitXor(*this, x);
|
||||
}
|
||||
inline void BigUnsigned::operator <<=(int b) {
|
||||
bitShiftLeft(*this, b);
|
||||
}
|
||||
inline void BigUnsigned::operator >>=(int b) {
|
||||
bitShiftRight(*this, b);
|
||||
}
|
||||
|
||||
/* Templates for conversions of BigUnsigned to and from primitive integers.
|
||||
* BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
|
||||
* BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
|
||||
* instead of generating linkable instantiations. So for consistency, I put
|
||||
* all the templates here. */
|
||||
|
||||
// CONSTRUCTION FROM PRIMITIVE INTEGERS
|
||||
|
||||
/* Initialize this BigUnsigned from the given primitive integer. The same
|
||||
* pattern works for all primitive integer types, so I put it into a template to
|
||||
* reduce code duplication. (Don't worry: this is protected and we instantiate
|
||||
* it only with primitive integer types.) Type X could be signed, but x is
|
||||
* known to be nonnegative. */
|
||||
template <class X>
|
||||
void BigUnsigned::initFromPrimitive(X x) {
|
||||
if (x == 0)
|
||||
; // NumberlikeArray already initialized us to zero.
|
||||
else {
|
||||
// Create a single block. blk is NULL; no need to delete it.
|
||||
cap = 1;
|
||||
blk = new Blk[1];
|
||||
len = 1;
|
||||
blk[0] = Blk(x);
|
||||
}
|
||||
}
|
||||
|
||||
/* Ditto, but first check that x is nonnegative. I could have put the check in
|
||||
* initFromPrimitive and let the compiler optimize it out for unsigned-type
|
||||
* instantiations, but I wanted to avoid the warning stupidly issued by g++ for
|
||||
* a condition that is constant in *any* instantiation, even if not in all. */
|
||||
template <class X>
|
||||
void BigUnsigned::initFromSignedPrimitive(X x) {
|
||||
if (x < 0)
|
||||
throw "BigUnsigned constructor: "
|
||||
"Cannot construct a BigUnsigned from a negative number";
|
||||
else
|
||||
initFromPrimitive(x);
|
||||
}
|
||||
|
||||
// CONVERSION TO PRIMITIVE INTEGERS
|
||||
|
||||
/* Template with the same idea as initFromPrimitive. This might be slightly
|
||||
* slower than the previous version with the masks, but it's much shorter and
|
||||
* clearer, which is the library's stated goal. */
|
||||
template <class X>
|
||||
X BigUnsigned::convertToPrimitive() const {
|
||||
if (len == 0)
|
||||
// The number is zero; return zero.
|
||||
return 0;
|
||||
else if (len == 1) {
|
||||
// The single block might fit in an X. Try the conversion.
|
||||
X x = X(blk[0]);
|
||||
// Make sure the result accurately represents the block.
|
||||
if (Blk(x) == blk[0])
|
||||
// Successful conversion.
|
||||
return x;
|
||||
// Otherwise fall through.
|
||||
}
|
||||
throw "BigUnsigned::to<Primitive>: "
|
||||
"Value is too big to fit in the requested type";
|
||||
}
|
||||
|
||||
/* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
|
||||
* not a negative one that happened to convert back into the correct nonnegative
|
||||
* one. (E.g., catch incorrect conversion of 2^31 to the long -2^31.) Again,
|
||||
* separated to avoid a g++ warning. */
|
||||
template <class X>
|
||||
X BigUnsigned::convertToSignedPrimitive() const {
|
||||
X x = convertToPrimitive<X>();
|
||||
if (x >= 0)
|
||||
return x;
|
||||
else
|
||||
throw "BigUnsigned::to(Primitive): "
|
||||
"Value is too big to fit in the requested type";
|
||||
}
|
||||
|
||||
#endif
|
@ -1,122 +0,0 @@
|
||||
#ifndef BIGUNSIGNEDINABASE_H
|
||||
#define BIGUNSIGNEDINABASE_H
|
||||
|
||||
#include "NumberlikeArray.hpp"
|
||||
#include "BigUnsigned.hpp"
|
||||
#include <string>
|
||||
|
||||
/*
|
||||
* A BigUnsignedInABase object represents a nonnegative integer of size limited
|
||||
* only by available memory, represented in a user-specified base that can fit
|
||||
* in an `unsigned short' (most can, and this saves memory).
|
||||
*
|
||||
* BigUnsignedInABase is intended as an intermediary class with little
|
||||
* functionality of its own. BigUnsignedInABase objects can be constructed
|
||||
* from, and converted to, BigUnsigneds (requiring multiplication, mods, etc.)
|
||||
* and `std::string's (by switching digit values for appropriate characters).
|
||||
*
|
||||
* BigUnsignedInABase is similar to BigUnsigned. Note the following:
|
||||
*
|
||||
* (1) They represent the number in exactly the same way, except that
|
||||
* BigUnsignedInABase uses ``digits'' (or Digit) where BigUnsigned uses
|
||||
* ``blocks'' (or Blk).
|
||||
*
|
||||
* (2) Both use the management features of NumberlikeArray. (In fact, my desire
|
||||
* to add a BigUnsignedInABase class without duplicating a lot of code led me to
|
||||
* introduce NumberlikeArray.)
|
||||
*
|
||||
* (3) The only arithmetic operation supported by BigUnsignedInABase is an
|
||||
* equality test. Use BigUnsigned for arithmetic.
|
||||
*/
|
||||
|
||||
class BigUnsignedInABase : protected NumberlikeArray<unsigned short> {
|
||||
|
||||
public:
|
||||
// The digits of a BigUnsignedInABase are unsigned shorts.
|
||||
typedef unsigned short Digit;
|
||||
// That's also the type of a base.
|
||||
typedef Digit Base;
|
||||
|
||||
protected:
|
||||
// The base in which this BigUnsignedInABase is expressed
|
||||
Base base;
|
||||
|
||||
// Creates a BigUnsignedInABase with a capacity; for internal use.
|
||||
BigUnsignedInABase(int, Index c) : NumberlikeArray<Digit>(0, c) {}
|
||||
|
||||
// Decreases len to eliminate any leading zero digits.
|
||||
void zapLeadingZeros() {
|
||||
while (len > 0 && blk[len - 1] == 0)
|
||||
len--;
|
||||
}
|
||||
|
||||
public:
|
||||
// Constructs zero in base 2.
|
||||
BigUnsignedInABase() : NumberlikeArray<Digit>(), base(2) {}
|
||||
|
||||
// Copy constructor
|
||||
BigUnsignedInABase(const BigUnsignedInABase &x) : NumberlikeArray<Digit>(x), base(x.base) {}
|
||||
|
||||
// Assignment operator
|
||||
void operator =(const BigUnsignedInABase &x) {
|
||||
NumberlikeArray<Digit>::operator =(x);
|
||||
base = x.base;
|
||||
}
|
||||
|
||||
// Constructor that copies from a given array of digits.
|
||||
BigUnsignedInABase(const Digit *d, Index l, Base base);
|
||||
|
||||
// Destructor. NumberlikeArray does the delete for us.
|
||||
~BigUnsignedInABase() {}
|
||||
|
||||
// LINKS TO BIGUNSIGNED
|
||||
BigUnsignedInABase(const BigUnsigned &x, Base base);
|
||||
operator BigUnsigned() const;
|
||||
|
||||
/* LINKS TO STRINGS
|
||||
*
|
||||
* These use the symbols ``0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'' to
|
||||
* represent digits of 0 through 35. When parsing strings, lowercase is
|
||||
* also accepted.
|
||||
*
|
||||
* All string representations are big-endian (big-place-value digits
|
||||
* first). (Computer scientists have adopted zero-based counting; why
|
||||
* can't they tolerate little-endian numbers?)
|
||||
*
|
||||
* No string representation has a ``base indicator'' like ``0x''.
|
||||
*
|
||||
* An exception is made for zero: it is converted to ``0'' and not the
|
||||
* empty string.
|
||||
*
|
||||
* If you want different conventions, write your own routines to go
|
||||
* between BigUnsignedInABase and strings. It's not hard.
|
||||
*/
|
||||
operator std::string() const;
|
||||
BigUnsignedInABase(const std::string &s, Base base);
|
||||
|
||||
public:
|
||||
|
||||
// ACCESSORS
|
||||
Base getBase() const { return base; }
|
||||
|
||||
// Expose these from NumberlikeArray directly.
|
||||
NumberlikeArray<Digit>::getCapacity;
|
||||
NumberlikeArray<Digit>::getLength;
|
||||
|
||||
/* Returns the requested digit, or 0 if it is beyond the length (as if
|
||||
* the number had 0s infinitely to the left). */
|
||||
Digit getDigit(Index i) const { return i >= len ? 0 : blk[i]; }
|
||||
|
||||
// The number is zero if and only if the canonical length is zero.
|
||||
bool isZero() const { return NumberlikeArray<Digit>::isEmpty(); }
|
||||
|
||||
/* Equality test. For the purposes of this test, two BigUnsignedInABase
|
||||
* values must have the same base to be equal. */
|
||||
bool operator ==(const BigUnsignedInABase &x) const {
|
||||
return base == x.base && NumberlikeArray<Digit>::operator ==(x);
|
||||
}
|
||||
bool operator !=(const BigUnsignedInABase &x) const { return !operator ==(x); }
|
||||
|
||||
};
|
||||
|
||||
#endif
|
@ -1,177 +0,0 @@
|
||||
#ifndef NUMBERLIKEARRAY_H
|
||||
#define NUMBERLIKEARRAY_H
|
||||
|
||||
// Make sure we have NULL.
|
||||
#ifndef NULL
|
||||
#define NULL 0
|
||||
#endif
|
||||
|
||||
/* A NumberlikeArray<Blk> object holds a heap-allocated array of Blk with a
|
||||
* length and a capacity and provides basic memory management features.
|
||||
* BigUnsigned and BigUnsignedInABase both subclass it.
|
||||
*
|
||||
* NumberlikeArray provides no information hiding. Subclasses should use
|
||||
* nonpublic inheritance and manually expose members as desired using
|
||||
* declarations like this:
|
||||
*
|
||||
* public:
|
||||
* NumberlikeArray< the-type-argument >::getLength;
|
||||
*/
|
||||
template <class Blk>
|
||||
class NumberlikeArray {
|
||||
public:
|
||||
|
||||
// Type for the index of a block in the array
|
||||
typedef unsigned int Index;
|
||||
// The number of bits in a block, defined below.
|
||||
static const unsigned int N;
|
||||
|
||||
// The current allocated capacity of this NumberlikeArray (in blocks)
|
||||
Index cap;
|
||||
// The actual length of the value stored in this NumberlikeArray (in blocks)
|
||||
Index len;
|
||||
// Heap-allocated array of the blocks (can be NULL if len == 0)
|
||||
Blk *blk;
|
||||
|
||||
// Constructs a ``zero'' NumberlikeArray with the given capacity.
|
||||
NumberlikeArray(Index c) : cap(c), len(0) {
|
||||
blk = (cap > 0) ? (new Blk[cap]) : NULL;
|
||||
}
|
||||
|
||||
/* Constructs a zero NumberlikeArray without allocating a backing array.
|
||||
* A subclass that doesn't know the needed capacity at initialization
|
||||
* time can use this constructor and then overwrite blk without first
|
||||
* deleting it. */
|
||||
NumberlikeArray() : cap(0), len(0) {
|
||||
blk = NULL;
|
||||
}
|
||||
|
||||
// Destructor. Note that `delete NULL' is a no-op.
|
||||
~NumberlikeArray() {
|
||||
delete [] blk;
|
||||
}
|
||||
|
||||
/* Ensures that the array has at least the requested capacity; may
|
||||
* destroy the contents. */
|
||||
void allocate(Index c);
|
||||
|
||||
/* Ensures that the array has at least the requested capacity; does not
|
||||
* destroy the contents. */
|
||||
void allocateAndCopy(Index c);
|
||||
|
||||
// Copy constructor
|
||||
NumberlikeArray(const NumberlikeArray<Blk> &x);
|
||||
|
||||
// Assignment operator
|
||||
void operator=(const NumberlikeArray<Blk> &x);
|
||||
|
||||
// Constructor that copies from a given array of blocks
|
||||
NumberlikeArray(const Blk *b, Index blen);
|
||||
|
||||
// ACCESSORS
|
||||
Index getCapacity() const { return cap; }
|
||||
Index getLength() const { return len; }
|
||||
Blk getBlock(Index i) const { return blk[i]; }
|
||||
bool isEmpty() const { return len == 0; }
|
||||
|
||||
/* Equality comparison: checks if both objects have the same length and
|
||||
* equal (==) array elements to that length. Subclasses may wish to
|
||||
* override. */
|
||||
bool operator ==(const NumberlikeArray<Blk> &x) const;
|
||||
|
||||
bool operator !=(const NumberlikeArray<Blk> &x) const {
|
||||
return !operator ==(x);
|
||||
}
|
||||
};
|
||||
|
||||
/* BEGIN TEMPLATE DEFINITIONS. They are present here so that source files that
|
||||
* include this header file can generate the necessary real definitions. */
|
||||
|
||||
template <class Blk>
|
||||
const unsigned int NumberlikeArray<Blk>::N = 8 * sizeof(Blk);
|
||||
|
||||
template <class Blk>
|
||||
void NumberlikeArray<Blk>::allocate(Index c) {
|
||||
// If the requested capacity is more than the current capacity...
|
||||
if (c > cap) {
|
||||
// Delete the old number array
|
||||
delete [] blk;
|
||||
// Allocate the new array
|
||||
cap = c;
|
||||
blk = new Blk[cap];
|
||||
}
|
||||
}
|
||||
|
||||
template <class Blk>
|
||||
void NumberlikeArray<Blk>::allocateAndCopy(Index c) {
|
||||
// If the requested capacity is more than the current capacity...
|
||||
if (c > cap) {
|
||||
Blk *oldBlk = blk;
|
||||
// Allocate the new number array
|
||||
cap = c;
|
||||
blk = new Blk[cap];
|
||||
// Copy number blocks
|
||||
Index i;
|
||||
for (i = 0; i < len; i++)
|
||||
blk[i] = oldBlk[i];
|
||||
// Delete the old array
|
||||
delete [] oldBlk;
|
||||
}
|
||||
}
|
||||
|
||||
template <class Blk>
|
||||
NumberlikeArray<Blk>::NumberlikeArray(const NumberlikeArray<Blk> &x)
|
||||
: len(x.len) {
|
||||
// Create array
|
||||
cap = len;
|
||||
blk = new Blk[cap];
|
||||
// Copy blocks
|
||||
Index i;
|
||||
for (i = 0; i < len; i++)
|
||||
blk[i] = x.blk[i];
|
||||
}
|
||||
|
||||
template <class Blk>
|
||||
void NumberlikeArray<Blk>::operator=(const NumberlikeArray<Blk> &x) {
|
||||
/* Calls like a = a have no effect; catch them before the aliasing
|
||||
* causes a problem */
|
||||
if (this == &x)
|
||||
return;
|
||||
// Copy length
|
||||
len = x.len;
|
||||
// Expand array if necessary
|
||||
allocate(len);
|
||||
// Copy number blocks
|
||||
Index i;
|
||||
for (i = 0; i < len; i++)
|
||||
blk[i] = x.blk[i];
|
||||
}
|
||||
|
||||
template <class Blk>
|
||||
NumberlikeArray<Blk>::NumberlikeArray(const Blk *b, Index blen)
|
||||
: cap(blen), len(blen) {
|
||||
// Create array
|
||||
blk = new Blk[cap];
|
||||
// Copy blocks
|
||||
Index i;
|
||||
for (i = 0; i < len; i++)
|
||||
blk[i] = b[i];
|
||||
}
|
||||
|
||||
template <class Blk>
|
||||
bool NumberlikeArray<Blk>::operator ==(const NumberlikeArray<Blk> &x) const {
|
||||
if (len != x.len)
|
||||
// Definitely unequal.
|
||||
return false;
|
||||
else {
|
||||
// Compare corresponding blocks one by one.
|
||||
Index i;
|
||||
for (i = 0; i < len; i++)
|
||||
if (blk[i] != x.blk[i])
|
||||
return false;
|
||||
// No blocks differed, so the objects are equal.
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -1,405 +0,0 @@
|
||||
#include "../include/BigInteger.hpp"
|
||||
|
||||
void BigInteger::operator =(const BigInteger &x) {
|
||||
// Calls like a = a have no effect
|
||||
if (this == &x)
|
||||
return;
|
||||
// Copy sign
|
||||
sign = x.sign;
|
||||
// Copy the rest
|
||||
mag = x.mag;
|
||||
}
|
||||
|
||||
BigInteger::BigInteger(const Blk *b, Index blen, Sign s) : mag(b, blen) {
|
||||
switch (s) {
|
||||
case zero:
|
||||
if (!mag.isZero())
|
||||
throw "BigInteger::BigInteger(const Blk *, Index, Sign): Cannot use a sign of zero with a nonzero magnitude";
|
||||
sign = zero;
|
||||
break;
|
||||
case positive:
|
||||
case negative:
|
||||
// If the magnitude is zero, force the sign to zero.
|
||||
sign = mag.isZero() ? zero : s;
|
||||
break;
|
||||
default:
|
||||
/* g++ seems to be optimizing out this case on the assumption
|
||||
* that the sign is a valid member of the enumeration. Oh well. */
|
||||
throw "BigInteger::BigInteger(const Blk *, Index, Sign): Invalid sign";
|
||||
}
|
||||
}
|
||||
|
||||
BigInteger::BigInteger(const BigUnsigned &x, Sign s) : mag(x) {
|
||||
switch (s) {
|
||||
case zero:
|
||||
if (!mag.isZero())
|
||||
throw "BigInteger::BigInteger(const BigUnsigned &, Sign): Cannot use a sign of zero with a nonzero magnitude";
|
||||
sign = zero;
|
||||
break;
|
||||
case positive:
|
||||
case negative:
|
||||
// If the magnitude is zero, force the sign to zero.
|
||||
sign = mag.isZero() ? zero : s;
|
||||
break;
|
||||
default:
|
||||
/* g++ seems to be optimizing out this case on the assumption
|
||||
* that the sign is a valid member of the enumeration. Oh well. */
|
||||
throw "BigInteger::BigInteger(const BigUnsigned &, Sign): Invalid sign";
|
||||
}
|
||||
}
|
||||
|
||||
/* CONSTRUCTION FROM PRIMITIVE INTEGERS
|
||||
* Same idea as in BigUnsigned.cc, except that negative input results in a
|
||||
* negative BigInteger instead of an exception. */
|
||||
|
||||
// Done longhand to let us use initialization.
|
||||
BigInteger::BigInteger(unsigned long x) : mag(x) { sign = mag.isZero() ? zero : positive; }
|
||||
BigInteger::BigInteger(unsigned int x) : mag(x) { sign = mag.isZero() ? zero : positive; }
|
||||
BigInteger::BigInteger(unsigned short x) : mag(x) { sign = mag.isZero() ? zero : positive; }
|
||||
|
||||
// For signed input, determine the desired magnitude and sign separately.
|
||||
|
||||
namespace {
|
||||
template <class X, class UX>
|
||||
BigInteger::Blk magOf(X x) {
|
||||
/* UX(...) cast needed to stop short(-2^15), which negates to
|
||||
* itself, from sign-extending in the conversion to Blk. */
|
||||
return BigInteger::Blk(x < 0 ? UX(-x) : x);
|
||||
}
|
||||
template <class X>
|
||||
BigInteger::Sign signOf(X x) {
|
||||
return (x == 0) ? BigInteger::zero
|
||||
: (x > 0) ? BigInteger::positive
|
||||
: BigInteger::negative;
|
||||
}
|
||||
}
|
||||
|
||||
BigInteger::BigInteger(long x) : sign(signOf(x)), mag(magOf<long , unsigned long >(x)) {}
|
||||
BigInteger::BigInteger(int x) : sign(signOf(x)), mag(magOf<int , unsigned int >(x)) {}
|
||||
BigInteger::BigInteger(short x) : sign(signOf(x)), mag(magOf<short, unsigned short>(x)) {}
|
||||
|
||||
// CONVERSION TO PRIMITIVE INTEGERS
|
||||
|
||||
/* Reuse BigUnsigned's conversion to an unsigned primitive integer.
|
||||
* The friend is a separate function rather than
|
||||
* BigInteger::convertToUnsignedPrimitive to avoid requiring BigUnsigned to
|
||||
* declare BigInteger. */
|
||||
template <class X>
|
||||
inline X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a) {
|
||||
return a.convertToPrimitive<X>();
|
||||
}
|
||||
|
||||
template <class X>
|
||||
X BigInteger::convertToUnsignedPrimitive() const {
|
||||
if (sign == negative)
|
||||
throw "BigInteger::to<Primitive>: "
|
||||
"Cannot convert a negative integer to an unsigned type";
|
||||
else
|
||||
return convertBigUnsignedToPrimitiveAccess<X>(mag);
|
||||
}
|
||||
|
||||
/* Similar to BigUnsigned::convertToPrimitive, but split into two cases for
|
||||
* nonnegative and negative numbers. */
|
||||
template <class X, class UX>
|
||||
X BigInteger::convertToSignedPrimitive() const {
|
||||
if (sign == zero)
|
||||
return 0;
|
||||
else if (mag.getLength() == 1) {
|
||||
// The single block might fit in an X. Try the conversion.
|
||||
Blk b = mag.getBlock(0);
|
||||
if (sign == positive) {
|
||||
X x = X(b);
|
||||
if (x >= 0 && Blk(x) == b)
|
||||
return x;
|
||||
} else {
|
||||
X x = -X(b);
|
||||
/* UX(...) needed to avoid rejecting conversion of
|
||||
* -2^15 to a short. */
|
||||
if (x < 0 && Blk(UX(-x)) == b)
|
||||
return x;
|
||||
}
|
||||
// Otherwise fall through.
|
||||
}
|
||||
throw "BigInteger::to<Primitive>: "
|
||||
"Value is too big to fit in the requested type";
|
||||
}
|
||||
|
||||
unsigned long BigInteger::toUnsignedLong () const { return convertToUnsignedPrimitive<unsigned long > (); }
|
||||
unsigned int BigInteger::toUnsignedInt () const { return convertToUnsignedPrimitive<unsigned int > (); }
|
||||
unsigned short BigInteger::toUnsignedShort() const { return convertToUnsignedPrimitive<unsigned short> (); }
|
||||
long BigInteger::toLong () const { return convertToSignedPrimitive <long , unsigned long> (); }
|
||||
int BigInteger::toInt () const { return convertToSignedPrimitive <int , unsigned int> (); }
|
||||
short BigInteger::toShort () const { return convertToSignedPrimitive <short, unsigned short>(); }
|
||||
|
||||
// COMPARISON
|
||||
BigInteger::CmpRes BigInteger::compareTo(const BigInteger &x) const {
|
||||
// A greater sign implies a greater number
|
||||
if (sign < x.sign)
|
||||
return less;
|
||||
else if (sign > x.sign)
|
||||
return greater;
|
||||
else switch (sign) {
|
||||
// If the signs are the same...
|
||||
case zero:
|
||||
return equal; // Two zeros are equal
|
||||
case positive:
|
||||
// Compare the magnitudes
|
||||
return mag.compareTo(x.mag);
|
||||
case negative:
|
||||
// Compare the magnitudes, but return the opposite result
|
||||
return CmpRes(-mag.compareTo(x.mag));
|
||||
default:
|
||||
throw "BigInteger internal error";
|
||||
}
|
||||
}
|
||||
|
||||
/* COPY-LESS OPERATIONS
|
||||
* These do some messing around to determine the sign of the result,
|
||||
* then call one of BigUnsigned's copy-less operations. */
|
||||
|
||||
// See remarks about aliased calls in BigUnsigned.cc .
|
||||
#define DTRT_ALIASED(cond, op) \
|
||||
if (cond) { \
|
||||
BigInteger tmpThis; \
|
||||
tmpThis.op; \
|
||||
*this = tmpThis; \
|
||||
return; \
|
||||
}
|
||||
|
||||
void BigInteger::add(const BigInteger &a, const BigInteger &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, add(a, b));
|
||||
// If one argument is zero, copy the other.
|
||||
if (a.sign == zero)
|
||||
operator =(b);
|
||||
else if (b.sign == zero)
|
||||
operator =(a);
|
||||
// If the arguments have the same sign, take the
|
||||
// common sign and add their magnitudes.
|
||||
else if (a.sign == b.sign) {
|
||||
sign = a.sign;
|
||||
mag.add(a.mag, b.mag);
|
||||
} else {
|
||||
// Otherwise, their magnitudes must be compared.
|
||||
switch (a.mag.compareTo(b.mag)) {
|
||||
case equal:
|
||||
// If their magnitudes are the same, copy zero.
|
||||
mag = 0;
|
||||
sign = zero;
|
||||
break;
|
||||
// Otherwise, take the sign of the greater, and subtract
|
||||
// the lesser magnitude from the greater magnitude.
|
||||
case greater:
|
||||
sign = a.sign;
|
||||
mag.subtract(a.mag, b.mag);
|
||||
break;
|
||||
case less:
|
||||
sign = b.sign;
|
||||
mag.subtract(b.mag, a.mag);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BigInteger::subtract(const BigInteger &a, const BigInteger &b) {
|
||||
// Notice that this routine is identical to BigInteger::add,
|
||||
// if one replaces b.sign by its opposite.
|
||||
DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
|
||||
// If a is zero, copy b and flip its sign. If b is zero, copy a.
|
||||
if (a.sign == zero) {
|
||||
mag = b.mag;
|
||||
// Take the negative of _b_'s, sign, not ours.
|
||||
// Bug pointed out by Sam Larkin on 2005.03.30.
|
||||
sign = Sign(-b.sign);
|
||||
} else if (b.sign == zero)
|
||||
operator =(a);
|
||||
// If their signs differ, take a.sign and add the magnitudes.
|
||||
else if (a.sign != b.sign) {
|
||||
sign = a.sign;
|
||||
mag.add(a.mag, b.mag);
|
||||
} else {
|
||||
// Otherwise, their magnitudes must be compared.
|
||||
switch (a.mag.compareTo(b.mag)) {
|
||||
// If their magnitudes are the same, copy zero.
|
||||
case equal:
|
||||
mag = 0;
|
||||
sign = zero;
|
||||
break;
|
||||
// If a's magnitude is greater, take a.sign and
|
||||
// subtract a from b.
|
||||
case greater:
|
||||
sign = a.sign;
|
||||
mag.subtract(a.mag, b.mag);
|
||||
break;
|
||||
// If b's magnitude is greater, take the opposite
|
||||
// of b.sign and subtract b from a.
|
||||
case less:
|
||||
sign = Sign(-b.sign);
|
||||
mag.subtract(b.mag, a.mag);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BigInteger::multiply(const BigInteger &a, const BigInteger &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
|
||||
// If one object is zero, copy zero and return.
|
||||
if (a.sign == zero || b.sign == zero) {
|
||||
sign = zero;
|
||||
mag = 0;
|
||||
return;
|
||||
}
|
||||
// If the signs of the arguments are the same, the result
|
||||
// is positive, otherwise it is negative.
|
||||
sign = (a.sign == b.sign) ? positive : negative;
|
||||
// Multiply the magnitudes.
|
||||
mag.multiply(a.mag, b.mag);
|
||||
}
|
||||
|
||||
/*
|
||||
* DIVISION WITH REMAINDER
|
||||
* Please read the comments before the definition of
|
||||
* `BigUnsigned::divideWithRemainder' in `BigUnsigned.cc' for lots of
|
||||
* information you should know before reading this function.
|
||||
*
|
||||
* Following Knuth, I decree that x / y is to be
|
||||
* 0 if y==0 and floor(real-number x / y) if y!=0.
|
||||
* Then x % y shall be x - y*(integer x / y).
|
||||
*
|
||||
* Note that x = y * (x / y) + (x % y) always holds.
|
||||
* In addition, (x % y) is from 0 to y - 1 if y > 0,
|
||||
* and from -(|y| - 1) to 0 if y < 0. (x % y) = x if y = 0.
|
||||
*
|
||||
* Examples: (q = a / b, r = a % b)
|
||||
* a b q r
|
||||
* === === === ===
|
||||
* 4 3 1 1
|
||||
* -4 3 -2 2
|
||||
* 4 -3 -2 -2
|
||||
* -4 -3 1 -1
|
||||
*/
|
||||
void BigInteger::divideWithRemainder(const BigInteger &b, BigInteger &q) {
|
||||
// Defend against aliased calls;
|
||||
// same idea as in BigUnsigned::divideWithRemainder .
|
||||
if (this == &q)
|
||||
throw "BigInteger::divideWithRemainder: Cannot write quotient and remainder into the same variable";
|
||||
if (this == &b || &q == &b) {
|
||||
BigInteger tmpB(b);
|
||||
divideWithRemainder(tmpB, q);
|
||||
return;
|
||||
}
|
||||
|
||||
// Division by zero gives quotient 0 and remainder *this
|
||||
if (b.sign == zero) {
|
||||
q.mag = 0;
|
||||
q.sign = zero;
|
||||
return;
|
||||
}
|
||||
// 0 / b gives quotient 0 and remainder 0
|
||||
if (sign == zero) {
|
||||
q.mag = 0;
|
||||
q.sign = zero;
|
||||
return;
|
||||
}
|
||||
|
||||
// Here *this != 0, b != 0.
|
||||
|
||||
// Do the operands have the same sign?
|
||||
if (sign == b.sign) {
|
||||
// Yes: easy case. Quotient is zero or positive.
|
||||
q.sign = positive;
|
||||
} else {
|
||||
// No: harder case. Quotient is negative.
|
||||
q.sign = negative;
|
||||
// Decrease the magnitude of the dividend by one.
|
||||
mag--;
|
||||
/*
|
||||
* We tinker with the dividend before and with the
|
||||
* quotient and remainder after so that the result
|
||||
* comes out right. To see why it works, consider the following
|
||||
* list of examples, where A is the magnitude-decreased
|
||||
* a, Q and R are the results of BigUnsigned division
|
||||
* with remainder on A and |b|, and q and r are the
|
||||
* final results we want:
|
||||
*
|
||||
* a A b Q R q r
|
||||
* -3 -2 3 0 2 -1 0
|
||||
* -4 -3 3 1 0 -2 2
|
||||
* -5 -4 3 1 1 -2 1
|
||||
* -6 -5 3 1 2 -2 0
|
||||
*
|
||||
* It appears that we need a total of 3 corrections:
|
||||
* Decrease the magnitude of a to get A. Increase the
|
||||
* magnitude of Q to get q (and make it negative).
|
||||
* Find r = (b - 1) - R and give it the desired sign.
|
||||
*/
|
||||
}
|
||||
|
||||
// Divide the magnitudes.
|
||||
mag.divideWithRemainder(b.mag, q.mag);
|
||||
|
||||
if (sign != b.sign) {
|
||||
// More for the harder case (as described):
|
||||
// Increase the magnitude of the quotient by one.
|
||||
q.mag++;
|
||||
// Modify the remainder.
|
||||
mag.subtract(b.mag, mag);
|
||||
mag--;
|
||||
}
|
||||
|
||||
// Sign of the remainder is always the sign of the divisor b.
|
||||
sign = b.sign;
|
||||
|
||||
// Set signs to zero as necessary. (Thanks David Allen!)
|
||||
if (mag.isZero())
|
||||
sign = zero;
|
||||
if (q.mag.isZero())
|
||||
q.sign = zero;
|
||||
|
||||
// WHEW!!!
|
||||
}
|
||||
|
||||
// Negation
|
||||
void BigInteger::negate(const BigInteger &a) {
|
||||
DTRT_ALIASED(this == &a, negate(a));
|
||||
// Copy a's magnitude
|
||||
mag = a.mag;
|
||||
// Copy the opposite of a.sign
|
||||
sign = Sign(-a.sign);
|
||||
}
|
||||
|
||||
// INCREMENT/DECREMENT OPERATORS
|
||||
|
||||
// Prefix increment
|
||||
void BigInteger::operator ++() {
|
||||
if (sign == negative) {
|
||||
mag--;
|
||||
if (mag == 0)
|
||||
sign = zero;
|
||||
} else {
|
||||
mag++;
|
||||
sign = positive; // if not already
|
||||
}
|
||||
}
|
||||
|
||||
// Postfix increment: same as prefix
|
||||
void BigInteger::operator ++(int) {
|
||||
operator ++();
|
||||
}
|
||||
|
||||
// Prefix decrement
|
||||
void BigInteger::operator --() {
|
||||
if (sign == positive) {
|
||||
mag--;
|
||||
if (mag == 0)
|
||||
sign = zero;
|
||||
} else {
|
||||
mag++;
|
||||
sign = negative;
|
||||
}
|
||||
}
|
||||
|
||||
// Postfix decrement: same as prefix
|
||||
void BigInteger::operator --(int) {
|
||||
operator --();
|
||||
}
|
||||
|
@ -1,71 +0,0 @@
|
||||
#include "../include/BigIntegerAlgorithms.hpp"
|
||||
|
||||
BigUnsigned gcd(BigUnsigned a, BigUnsigned b) {
|
||||
BigUnsigned trash;
|
||||
// Neat in-place alternating technique.
|
||||
for (;;) {
|
||||
if (b.isZero())
|
||||
return a;
|
||||
a.divideWithRemainder(b, trash);
|
||||
if (a.isZero())
|
||||
return b;
|
||||
b.divideWithRemainder(a, trash);
|
||||
}
|
||||
}
|
||||
|
||||
void extendedEuclidean(BigInteger m, BigInteger n,
|
||||
BigInteger &g, BigInteger &r, BigInteger &s) {
|
||||
if (&g == &r || &g == &s || &r == &s) {
|
||||
throw "BigInteger extendedEuclidean: Outputs are aliased";
|
||||
}
|
||||
BigInteger r1(1), s1(0), r2(0), s2(1), q;
|
||||
/* Invariants:
|
||||
* r1*m(orig) + s1*n(orig) == m(current)
|
||||
* r2*m(orig) + s2*n(orig) == n(current) */
|
||||
for (;;) {
|
||||
if (n.isZero()) {
|
||||
r = r1; s = s1; g = m;
|
||||
return;
|
||||
}
|
||||
// Subtract q times the second invariant from the first invariant.
|
||||
m.divideWithRemainder(n, q);
|
||||
r1 -= q*r2; s1 -= q*s2;
|
||||
|
||||
if (m.isZero()) {
|
||||
r = r2; s = s2; g = n;
|
||||
return;
|
||||
}
|
||||
// Subtract q times the first invariant from the second invariant.
|
||||
n.divideWithRemainder(m, q);
|
||||
r2 -= q*r1; s2 -= q*s1;
|
||||
}
|
||||
}
|
||||
|
||||
BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n) {
|
||||
BigInteger g, r, s;
|
||||
extendedEuclidean(x, n, g, r, s);
|
||||
if (g == 1)
|
||||
// r*x + s*n == 1, so r*x === 1 (mod n), so r is the answer.
|
||||
return (r % n).getMagnitude(); // (r % n) will be nonnegative
|
||||
else
|
||||
throw "BigInteger modinv: x and n have a common factor";
|
||||
}
|
||||
|
||||
BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent,
|
||||
const BigUnsigned &modulus) {
|
||||
BigUnsigned ans = 1, base2 = (base % modulus).getMagnitude();
|
||||
BigUnsigned::Index i = exponent.bitLength();
|
||||
// For each bit of the exponent, most to least significant...
|
||||
while (i > 0) {
|
||||
i--;
|
||||
// Square.
|
||||
ans *= ans;
|
||||
ans %= modulus;
|
||||
// And multiply if the bit is a 1.
|
||||
if (exponent.getBit(i)) {
|
||||
ans *= base2;
|
||||
ans %= modulus;
|
||||
}
|
||||
}
|
||||
return ans;
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
#include "../include/BigIntegerUtils.hpp"
|
||||
#include "../include/BigUnsignedInABase.hpp"
|
||||
|
||||
std::string bigUnsignedToString(const BigUnsigned &x) {
|
||||
return std::string(BigUnsignedInABase(x, 10));
|
||||
}
|
||||
|
||||
std::string bigIntegerToString(const BigInteger &x) {
|
||||
return (x.getSign() == BigInteger::negative)
|
||||
? (std::string("-") + bigUnsignedToString(x.getMagnitude()))
|
||||
: (bigUnsignedToString(x.getMagnitude()));
|
||||
}
|
||||
|
||||
BigUnsigned stringToBigUnsigned(const std::string &s) {
|
||||
return BigUnsigned(BigUnsignedInABase(s, 10));
|
||||
}
|
||||
|
||||
BigInteger stringToBigInteger(const std::string &s) {
|
||||
// Recognize a sign followed by a BigUnsigned.
|
||||
return (s[0] == '-') ? BigInteger(stringToBigUnsigned(s.substr(1, s.length() - 1)), BigInteger::negative)
|
||||
: (s[0] == '+') ? BigInteger(stringToBigUnsigned(s.substr(1, s.length() - 1)))
|
||||
: BigInteger(stringToBigUnsigned(s));
|
||||
}
|
||||
|
||||
std::ostream &operator <<(std::ostream &os, const BigUnsigned &x) {
|
||||
BigUnsignedInABase::Base base;
|
||||
long osFlags = os.flags();
|
||||
if (osFlags & os.dec)
|
||||
base = 10;
|
||||
else if (osFlags & os.hex) {
|
||||
base = 16;
|
||||
if (osFlags & os.showbase)
|
||||
os << "0x";
|
||||
} else if (osFlags & os.oct) {
|
||||
base = 8;
|
||||
if (osFlags & os.showbase)
|
||||
os << '0';
|
||||
} else
|
||||
throw "std::ostream << BigUnsigned: Could not determine the desired base from output-stream flags";
|
||||
std::string s = std::string(BigUnsignedInABase(x, base));
|
||||
os << s;
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream &operator <<(std::ostream &os, const BigInteger &x) {
|
||||
if (x.getSign() == BigInteger::negative)
|
||||
os << '-';
|
||||
os << x.getMagnitude();
|
||||
return os;
|
||||
}
|
@ -1,697 +0,0 @@
|
||||
#include "../include/BigUnsigned.hpp"
|
||||
|
||||
// Memory management definitions have moved to the bottom of NumberlikeArray.hh.
|
||||
|
||||
// The templates used by these constructors and converters are at the bottom of
|
||||
// BigUnsigned.hh.
|
||||
|
||||
BigUnsigned::BigUnsigned(unsigned long x) { initFromPrimitive (x); }
|
||||
BigUnsigned::BigUnsigned(unsigned int x) { initFromPrimitive (x); }
|
||||
BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive (x); }
|
||||
BigUnsigned::BigUnsigned( long x) { initFromSignedPrimitive(x); }
|
||||
BigUnsigned::BigUnsigned( int x) { initFromSignedPrimitive(x); }
|
||||
BigUnsigned::BigUnsigned( short x) { initFromSignedPrimitive(x); }
|
||||
|
||||
unsigned long BigUnsigned::toUnsignedLong () const { return convertToPrimitive <unsigned long >(); }
|
||||
unsigned int BigUnsigned::toUnsignedInt () const { return convertToPrimitive <unsigned int >(); }
|
||||
unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive <unsigned short>(); }
|
||||
long BigUnsigned::toLong () const { return convertToSignedPrimitive< long >(); }
|
||||
int BigUnsigned::toInt () const { return convertToSignedPrimitive< int >(); }
|
||||
short BigUnsigned::toShort () const { return convertToSignedPrimitive< short>(); }
|
||||
|
||||
// BIT/BLOCK ACCESSORS
|
||||
|
||||
void BigUnsigned::setBlock(Index i, Blk newBlock) {
|
||||
if (newBlock == 0) {
|
||||
if (i < len) {
|
||||
blk[i] = 0;
|
||||
zapLeadingZeros();
|
||||
}
|
||||
// If i >= len, no effect.
|
||||
} else {
|
||||
if (i >= len) {
|
||||
// The nonzero block extends the number.
|
||||
allocateAndCopy(i+1);
|
||||
// Zero any added blocks that we aren't setting.
|
||||
for (Index j = len; j < i; j++)
|
||||
blk[j] = 0;
|
||||
len = i+1;
|
||||
}
|
||||
blk[i] = newBlock;
|
||||
}
|
||||
}
|
||||
|
||||
/* Evidently the compiler wants BigUnsigned:: on the return type because, at
|
||||
* that point, it hasn't yet parsed the BigUnsigned:: on the name to get the
|
||||
* proper scope. */
|
||||
BigUnsigned::Index BigUnsigned::bitLength() const {
|
||||
if (isZero())
|
||||
return 0;
|
||||
else {
|
||||
Blk leftmostBlock = getBlock(len - 1);
|
||||
Index leftmostBlockLen = 0;
|
||||
while (leftmostBlock != 0) {
|
||||
leftmostBlock >>= 1;
|
||||
leftmostBlockLen++;
|
||||
}
|
||||
return leftmostBlockLen + (len - 1) * N;
|
||||
}
|
||||
}
|
||||
|
||||
void BigUnsigned::setBit(Index bi, bool newBit) {
|
||||
Index blockI = bi / N;
|
||||
Blk block = getBlock(blockI), mask = Blk(1) << (bi % N);
|
||||
block = newBit ? (block | mask) : (block & ~mask);
|
||||
setBlock(blockI, block);
|
||||
}
|
||||
|
||||
// COMPARISON
|
||||
BigUnsigned::CmpRes BigUnsigned::compareTo(const BigUnsigned &x) const {
|
||||
// A bigger length implies a bigger number.
|
||||
if (len < x.len)
|
||||
return less;
|
||||
else if (len > x.len)
|
||||
return greater;
|
||||
else {
|
||||
// Compare blocks one by one from left to right.
|
||||
Index i = len;
|
||||
while (i > 0) {
|
||||
i--;
|
||||
if (blk[i] == x.blk[i])
|
||||
continue;
|
||||
else if (blk[i] > x.blk[i])
|
||||
return greater;
|
||||
else
|
||||
return less;
|
||||
}
|
||||
// If no blocks differed, the numbers are equal.
|
||||
return equal;
|
||||
}
|
||||
}
|
||||
|
||||
// COPY-LESS OPERATIONS
|
||||
|
||||
/*
|
||||
* On most calls to copy-less operations, it's safe to read the inputs little by
|
||||
* little and write the outputs little by little. However, if one of the
|
||||
* inputs is coming from the same variable into which the output is to be
|
||||
* stored (an "aliased" call), we risk overwriting the input before we read it.
|
||||
* In this case, we first compute the result into a temporary BigUnsigned
|
||||
* variable and then copy it into the requested output variable *this.
|
||||
* Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on
|
||||
* aliased calls) to generate code for this check.
|
||||
*
|
||||
* I adopted this approach on 2007.02.13 (see Assignment Operators in
|
||||
* BigUnsigned.hh). Before then, put-here operations rejected aliased calls
|
||||
* with an exception. I think doing the right thing is better.
|
||||
*
|
||||
* Some of the put-here operations can probably handle aliased calls safely
|
||||
* without the extra copy because (for example) they process blocks strictly
|
||||
* right-to-left. At some point I might determine which ones don't need the
|
||||
* copy, but my reasoning would need to be verified very carefully. For now
|
||||
* I'll leave in the copy.
|
||||
*/
|
||||
#define DTRT_ALIASED(cond, op) \
|
||||
if (cond) { \
|
||||
BigUnsigned tmpThis; \
|
||||
tmpThis.op; \
|
||||
*this = tmpThis; \
|
||||
return; \
|
||||
}
|
||||
|
||||
|
||||
|
||||
void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, add(a, b));
|
||||
// If one argument is zero, copy the other.
|
||||
if (a.len == 0) {
|
||||
operator =(b);
|
||||
return;
|
||||
} else if (b.len == 0) {
|
||||
operator =(a);
|
||||
return;
|
||||
}
|
||||
// Some variables...
|
||||
// Carries in and out of an addition stage
|
||||
bool carryIn, carryOut;
|
||||
Blk temp;
|
||||
Index i;
|
||||
// a2 points to the longer input, b2 points to the shorter
|
||||
const BigUnsigned *a2, *b2;
|
||||
if (a.len >= b.len) {
|
||||
a2 = &a;
|
||||
b2 = &b;
|
||||
} else {
|
||||
a2 = &b;
|
||||
b2 = &a;
|
||||
}
|
||||
// Set prelimiary length and make room in this BigUnsigned
|
||||
len = a2->len + 1;
|
||||
allocate(len);
|
||||
// For each block index that is present in both inputs...
|
||||
for (i = 0, carryIn = false; i < b2->len; i++) {
|
||||
// Add input blocks
|
||||
temp = a2->blk[i] + b2->blk[i];
|
||||
// If a rollover occurred, the result is less than either input.
|
||||
// This test is used many times in the BigUnsigned code.
|
||||
carryOut = (temp < a2->blk[i]);
|
||||
// If a carry was input, handle it
|
||||
if (carryIn) {
|
||||
temp++;
|
||||
carryOut |= (temp == 0);
|
||||
}
|
||||
blk[i] = temp; // Save the addition result
|
||||
carryIn = carryOut; // Pass the carry along
|
||||
}
|
||||
// If there is a carry left over, increase blocks until
|
||||
// one does not roll over.
|
||||
for (; i < a2->len && carryIn; i++) {
|
||||
temp = a2->blk[i] + 1;
|
||||
carryIn = (temp == 0);
|
||||
blk[i] = temp;
|
||||
}
|
||||
// If the carry was resolved but the larger number
|
||||
// still has blocks, copy them over.
|
||||
for (; i < a2->len; i++)
|
||||
blk[i] = a2->blk[i];
|
||||
// Set the extra block if there's still a carry, decrease length otherwise
|
||||
if (carryIn)
|
||||
blk[i] = 1;
|
||||
else
|
||||
len--;
|
||||
}
|
||||
|
||||
void BigUnsigned::subtract(const BigUnsigned &a, const BigUnsigned &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
|
||||
if (b.len == 0) {
|
||||
// If b is zero, copy a.
|
||||
operator =(a);
|
||||
return;
|
||||
} else if (a.len < b.len)
|
||||
// If a is shorter than b, the result is negative.
|
||||
throw "BigUnsigned::subtract: "
|
||||
"Negative result in unsigned calculation";
|
||||
// Some variables...
|
||||
bool borrowIn, borrowOut;
|
||||
Blk temp;
|
||||
Index i;
|
||||
// Set preliminary length and make room
|
||||
len = a.len;
|
||||
allocate(len);
|
||||
// For each block index that is present in both inputs...
|
||||
for (i = 0, borrowIn = false; i < b.len; i++) {
|
||||
temp = a.blk[i] - b.blk[i];
|
||||
// If a reverse rollover occurred,
|
||||
// the result is greater than the block from a.
|
||||
borrowOut = (temp > a.blk[i]);
|
||||
// Handle an incoming borrow
|
||||
if (borrowIn) {
|
||||
borrowOut |= (temp == 0);
|
||||
temp--;
|
||||
}
|
||||
blk[i] = temp; // Save the subtraction result
|
||||
borrowIn = borrowOut; // Pass the borrow along
|
||||
}
|
||||
// If there is a borrow left over, decrease blocks until
|
||||
// one does not reverse rollover.
|
||||
for (; i < a.len && borrowIn; i++) {
|
||||
borrowIn = (a.blk[i] == 0);
|
||||
blk[i] = a.blk[i] - 1;
|
||||
}
|
||||
/* If there's still a borrow, the result is negative.
|
||||
* Throw an exception, but zero out this object so as to leave it in a
|
||||
* predictable state. */
|
||||
if (borrowIn) {
|
||||
len = 0;
|
||||
throw "BigUnsigned::subtract: Negative result in unsigned calculation";
|
||||
} else
|
||||
// Copy over the rest of the blocks
|
||||
for (; i < a.len; i++)
|
||||
blk[i] = a.blk[i];
|
||||
// Zap leading zeros
|
||||
zapLeadingZeros();
|
||||
}
|
||||
|
||||
/*
|
||||
* About the multiplication and division algorithms:
|
||||
*
|
||||
* I searched unsucessfully for fast C++ built-in operations like the `b_0'
|
||||
* and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer
|
||||
* Programming'' (replace `place' by `Blk'):
|
||||
*
|
||||
* ``b_0[:] multiplication of a one-place integer by another one-place
|
||||
* integer, giving a two-place answer;
|
||||
*
|
||||
* ``c_0[:] division of a two-place integer by a one-place integer,
|
||||
* provided that the quotient is a one-place integer, and yielding
|
||||
* also a one-place remainder.''
|
||||
*
|
||||
* I also missed his note that ``[b]y adjusting the word size, if
|
||||
* necessary, nearly all computers will have these three operations
|
||||
* available'', so I gave up on trying to use algorithms similar to his.
|
||||
* A future version of the library might include such algorithms; I
|
||||
* would welcome contributions from others for this.
|
||||
*
|
||||
* I eventually decided to use bit-shifting algorithms. To multiply `a'
|
||||
* and `b', we zero out the result. Then, for each `1' bit in `a', we
|
||||
* shift `b' left the appropriate amount and add it to the result.
|
||||
* Similarly, to divide `a' by `b', we shift `b' left varying amounts,
|
||||
* repeatedly trying to subtract it from `a'. When we succeed, we note
|
||||
* the fact by setting a bit in the quotient. While these algorithms
|
||||
* have the same O(n^2) time complexity as Knuth's, the ``constant factor''
|
||||
* is likely to be larger.
|
||||
*
|
||||
* Because I used these algorithms, which require single-block addition
|
||||
* and subtraction rather than single-block multiplication and division,
|
||||
* the innermost loops of all four routines are very similar. Study one
|
||||
* of them and all will become clear.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is a little inline function used by both the multiplication
|
||||
* routine and the division routine.
|
||||
*
|
||||
* `getShiftedBlock' returns the `x'th block of `num << y'.
|
||||
* `y' may be anything from 0 to N - 1, and `x' may be anything from
|
||||
* 0 to `num.len'.
|
||||
*
|
||||
* Two things contribute to this block:
|
||||
*
|
||||
* (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left.
|
||||
*
|
||||
* (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right.
|
||||
*
|
||||
* But we must be careful if `x == 0' or `x == num.len', in
|
||||
* which case we should use 0 instead of (2) or (1), respectively.
|
||||
*
|
||||
* If `y == 0', then (2) contributes 0, as it should. However,
|
||||
* in some computer environments, for a reason I cannot understand,
|
||||
* `a >> b' means `a >> (b % N)'. This means `num.blk[x-1] >> (N - y)'
|
||||
* will return `num.blk[x-1]' instead of the desired 0 when `y == 0';
|
||||
* the test `y == 0' handles this case specially.
|
||||
*/
|
||||
inline BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num,
|
||||
BigUnsigned::Index x, unsigned int y) {
|
||||
BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y));
|
||||
BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y);
|
||||
return part1 | part2;
|
||||
}
|
||||
|
||||
void BigUnsigned::multiply(const BigUnsigned &a, const BigUnsigned &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
|
||||
// If either a or b is zero, set to zero.
|
||||
if (a.len == 0 || b.len == 0) {
|
||||
len = 0;
|
||||
return;
|
||||
}
|
||||
/*
|
||||
* Overall method:
|
||||
*
|
||||
* Set this = 0.
|
||||
* For each 1-bit of `a' (say the `i2'th bit of block `i'):
|
||||
* Add `b << (i blocks and i2 bits)' to *this.
|
||||
*/
|
||||
// Variables for the calculation
|
||||
Index i, j, k;
|
||||
unsigned int i2;
|
||||
Blk temp;
|
||||
bool carryIn, carryOut;
|
||||
// Set preliminary length and make room
|
||||
len = a.len + b.len;
|
||||
allocate(len);
|
||||
// Zero out this object
|
||||
for (i = 0; i < len; i++)
|
||||
blk[i] = 0;
|
||||
// For each block of the first number...
|
||||
for (i = 0; i < a.len; i++) {
|
||||
// For each 1-bit of that block...
|
||||
for (i2 = 0; i2 < N; i2++) {
|
||||
if ((a.blk[i] & (Blk(1) << i2)) == 0)
|
||||
continue;
|
||||
/*
|
||||
* Add b to this, shifted left i blocks and i2 bits.
|
||||
* j is the index in b, and k = i + j is the index in this.
|
||||
*
|
||||
* `getShiftedBlock', a short inline function defined above,
|
||||
* is now used for the bit handling. It replaces the more
|
||||
* complex `bHigh' code, in which each run of the loop dealt
|
||||
* immediately with the low bits and saved the high bits to
|
||||
* be picked up next time. The last run of the loop used to
|
||||
* leave leftover high bits, which were handled separately.
|
||||
* Instead, this loop runs an additional time with j == b.len.
|
||||
* These changes were made on 2005.01.11.
|
||||
*/
|
||||
for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) {
|
||||
/*
|
||||
* The body of this loop is very similar to the body of the first loop
|
||||
* in `add', except that this loop does a `+=' instead of a `+'.
|
||||
*/
|
||||
temp = blk[k] + getShiftedBlock(b, j, i2);
|
||||
carryOut = (temp < blk[k]);
|
||||
if (carryIn) {
|
||||
temp++;
|
||||
carryOut |= (temp == 0);
|
||||
}
|
||||
blk[k] = temp;
|
||||
carryIn = carryOut;
|
||||
}
|
||||
// No more extra iteration to deal with `bHigh'.
|
||||
// Roll-over a carry as necessary.
|
||||
for (; carryIn; k++) {
|
||||
blk[k]++;
|
||||
carryIn = (blk[k] == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Zap possible leading zero
|
||||
if (blk[len - 1] == 0)
|
||||
len--;
|
||||
}
|
||||
|
||||
/*
|
||||
* DIVISION WITH REMAINDER
|
||||
* This monstrous function mods *this by the given divisor b while storing the
|
||||
* quotient in the given object q; at the end, *this contains the remainder.
|
||||
* The seemingly bizarre pattern of inputs and outputs was chosen so that the
|
||||
* function copies as little as possible (since it is implemented by repeated
|
||||
* subtraction of multiples of b from *this).
|
||||
*
|
||||
* "modWithQuotient" might be a better name for this function, but I would
|
||||
* rather not change the name now.
|
||||
*/
|
||||
void BigUnsigned::divideWithRemainder(const BigUnsigned &b, BigUnsigned &q) {
|
||||
/* Defending against aliased calls is more complex than usual because we
|
||||
* are writing to both *this and q.
|
||||
*
|
||||
* It would be silly to try to write quotient and remainder to the
|
||||
* same variable. Rule that out right away. */
|
||||
if (this == &q)
|
||||
throw "BigUnsigned::divideWithRemainder: Cannot write quotient and remainder into the same variable";
|
||||
/* Now *this and q are separate, so the only concern is that b might be
|
||||
* aliased to one of them. If so, use a temporary copy of b. */
|
||||
if (this == &b || &q == &b) {
|
||||
BigUnsigned tmpB(b);
|
||||
divideWithRemainder(tmpB, q);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Knuth's definition of mod (which this function uses) is somewhat
|
||||
* different from the C++ definition of % in case of division by 0.
|
||||
*
|
||||
* We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no
|
||||
* exceptions thrown. This allows us to preserve both Knuth's demand
|
||||
* that a mod 0 == a and the useful property that
|
||||
* (a / b) * b + (a % b) == a.
|
||||
*/
|
||||
if (b.len == 0) {
|
||||
q.len = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into
|
||||
* *this at all. The quotient is 0 and *this is already the remainder (so leave it alone).
|
||||
*/
|
||||
if (len < b.len) {
|
||||
q.len = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
// At this point we know (*this).len >= b.len > 0. (Whew!)
|
||||
|
||||
/*
|
||||
* Overall method:
|
||||
*
|
||||
* For each appropriate i and i2, decreasing:
|
||||
* Subtract (b << (i blocks and i2 bits)) from *this, storing the
|
||||
* result in subtractBuf.
|
||||
* If the subtraction succeeds with a nonnegative result:
|
||||
* Turn on bit i2 of block i of the quotient q.
|
||||
* Copy subtractBuf back into *this.
|
||||
* Otherwise bit i2 of block i remains off, and *this is unchanged.
|
||||
*
|
||||
* Eventually q will contain the entire quotient, and *this will
|
||||
* be left with the remainder.
|
||||
*
|
||||
* subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11.
|
||||
* But on a single iteration, we don't touch the i lowest blocks of blk
|
||||
* (and don't use those of subtractBuf) because these blocks are
|
||||
* unaffected by the subtraction: we are subtracting
|
||||
* (b << (i blocks and i2 bits)), which ends in at least `i' zero
|
||||
* blocks. */
|
||||
// Variables for the calculation
|
||||
Index i, j, k;
|
||||
unsigned int i2;
|
||||
Blk temp;
|
||||
bool borrowIn, borrowOut;
|
||||
|
||||
/*
|
||||
* Make sure we have an extra zero block just past the value.
|
||||
*
|
||||
* When we attempt a subtraction, we might shift `b' so
|
||||
* its first block begins a few bits left of the dividend,
|
||||
* and then we'll try to compare these extra bits with
|
||||
* a nonexistent block to the left of the dividend. The
|
||||
* extra zero block ensures sensible behavior; we need
|
||||
* an extra block in `subtractBuf' for exactly the same reason.
|
||||
*/
|
||||
Index origLen = len; // Save real length.
|
||||
/* To avoid an out-of-bounds access in case of reallocation, allocate
|
||||
* first and then increment the logical length. */
|
||||
allocateAndCopy(len + 1);
|
||||
len++;
|
||||
blk[origLen] = 0; // Zero the added block.
|
||||
|
||||
// subtractBuf holds part of the result of a subtraction; see above.
|
||||
Blk *subtractBuf = new Blk[len];
|
||||
|
||||
// Set preliminary length for quotient and make room
|
||||
q.len = origLen - b.len + 1;
|
||||
q.allocate(q.len);
|
||||
// Zero out the quotient
|
||||
for (i = 0; i < q.len; i++)
|
||||
q.blk[i] = 0;
|
||||
|
||||
// For each possible left-shift of b in blocks...
|
||||
i = q.len;
|
||||
while (i > 0) {
|
||||
i--;
|
||||
// For each possible left-shift of b in bits...
|
||||
// (Remember, N is the number of bits in a Blk.)
|
||||
q.blk[i] = 0;
|
||||
i2 = N;
|
||||
while (i2 > 0) {
|
||||
i2--;
|
||||
/*
|
||||
* Subtract b, shifted left i blocks and i2 bits, from *this,
|
||||
* and store the answer in subtractBuf. In the for loop, `k == i + j'.
|
||||
*
|
||||
* Compare this to the middle section of `multiply'. They
|
||||
* are in many ways analogous. See especially the discussion
|
||||
* of `getShiftedBlock'.
|
||||
*/
|
||||
for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) {
|
||||
temp = blk[k] - getShiftedBlock(b, j, i2);
|
||||
borrowOut = (temp > blk[k]);
|
||||
if (borrowIn) {
|
||||
borrowOut |= (temp == 0);
|
||||
temp--;
|
||||
}
|
||||
// Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'.
|
||||
subtractBuf[k] = temp;
|
||||
borrowIn = borrowOut;
|
||||
}
|
||||
// No more extra iteration to deal with `bHigh'.
|
||||
// Roll-over a borrow as necessary.
|
||||
for (; k < origLen && borrowIn; k++) {
|
||||
borrowIn = (blk[k] == 0);
|
||||
subtractBuf[k] = blk[k] - 1;
|
||||
}
|
||||
/*
|
||||
* If the subtraction was performed successfully (!borrowIn),
|
||||
* set bit i2 in block i of the quotient.
|
||||
*
|
||||
* Then, copy the portion of subtractBuf filled by the subtraction
|
||||
* back to *this. This portion starts with block i and ends--
|
||||
* where? Not necessarily at block `i + b.len'! Well, we
|
||||
* increased k every time we saved a block into subtractBuf, so
|
||||
* the region of subtractBuf we copy is just [i, k).
|
||||
*/
|
||||
if (!borrowIn) {
|
||||
q.blk[i] |= (Blk(1) << i2);
|
||||
while (k > i) {
|
||||
k--;
|
||||
blk[k] = subtractBuf[k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Zap possible leading zero in quotient
|
||||
if (q.blk[q.len - 1] == 0)
|
||||
q.len--;
|
||||
// Zap any/all leading zeros in remainder
|
||||
zapLeadingZeros();
|
||||
// Deallocate subtractBuf.
|
||||
// (Thanks to Brad Spencer for noticing my accidental omission of this!)
|
||||
delete [] subtractBuf;
|
||||
}
|
||||
|
||||
/* BITWISE OPERATORS
|
||||
* These are straightforward blockwise operations except that they differ in
|
||||
* the output length and the necessity of zapLeadingZeros. */
|
||||
|
||||
void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b));
|
||||
// The bitwise & can't be longer than either operand.
|
||||
len = (a.len >= b.len) ? b.len : a.len;
|
||||
allocate(len);
|
||||
Index i;
|
||||
for (i = 0; i < len; i++)
|
||||
blk[i] = a.blk[i] & b.blk[i];
|
||||
zapLeadingZeros();
|
||||
}
|
||||
|
||||
void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, bitOr(a, b));
|
||||
Index i;
|
||||
const BigUnsigned *a2, *b2;
|
||||
if (a.len >= b.len) {
|
||||
a2 = &a;
|
||||
b2 = &b;
|
||||
} else {
|
||||
a2 = &b;
|
||||
b2 = &a;
|
||||
}
|
||||
allocate(a2->len);
|
||||
for (i = 0; i < b2->len; i++)
|
||||
blk[i] = a2->blk[i] | b2->blk[i];
|
||||
for (; i < a2->len; i++)
|
||||
blk[i] = a2->blk[i];
|
||||
len = a2->len;
|
||||
// Doesn't need zapLeadingZeros.
|
||||
}
|
||||
|
||||
void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) {
|
||||
DTRT_ALIASED(this == &a || this == &b, bitXor(a, b));
|
||||
Index i;
|
||||
const BigUnsigned *a2, *b2;
|
||||
if (a.len >= b.len) {
|
||||
a2 = &a;
|
||||
b2 = &b;
|
||||
} else {
|
||||
a2 = &b;
|
||||
b2 = &a;
|
||||
}
|
||||
allocate(a2->len);
|
||||
for (i = 0; i < b2->len; i++)
|
||||
blk[i] = a2->blk[i] ^ b2->blk[i];
|
||||
for (; i < a2->len; i++)
|
||||
blk[i] = a2->blk[i];
|
||||
len = a2->len;
|
||||
zapLeadingZeros();
|
||||
}
|
||||
|
||||
void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) {
|
||||
DTRT_ALIASED(this == &a, bitShiftLeft(a, b));
|
||||
if (b < 0) {
|
||||
if (b << 1 == 0)
|
||||
throw "BigUnsigned::bitShiftLeft: "
|
||||
"Pathological shift amount not implemented";
|
||||
else {
|
||||
bitShiftRight(a, -b);
|
||||
return;
|
||||
}
|
||||
}
|
||||
Index shiftBlocks = b / N;
|
||||
unsigned int shiftBits = b % N;
|
||||
// + 1: room for high bits nudged left into another block
|
||||
len = a.len + shiftBlocks + 1;
|
||||
allocate(len);
|
||||
Index i, j;
|
||||
for (i = 0; i < shiftBlocks; i++)
|
||||
blk[i] = 0;
|
||||
for (j = 0, i = shiftBlocks; j <= a.len; j++, i++)
|
||||
blk[i] = getShiftedBlock(a, j, shiftBits);
|
||||
// Zap possible leading zero
|
||||
if (blk[len - 1] == 0)
|
||||
len--;
|
||||
}
|
||||
|
||||
void BigUnsigned::bitShiftRight(const BigUnsigned &a, int b) {
|
||||
DTRT_ALIASED(this == &a, bitShiftRight(a, b));
|
||||
if (b < 0) {
|
||||
if (b << 1 == 0)
|
||||
throw "BigUnsigned::bitShiftRight: "
|
||||
"Pathological shift amount not implemented";
|
||||
else {
|
||||
bitShiftLeft(a, -b);
|
||||
return;
|
||||
}
|
||||
}
|
||||
// This calculation is wacky, but expressing the shift as a left bit shift
|
||||
// within each block lets us use getShiftedBlock.
|
||||
Index rightShiftBlocks = (b + N - 1) / N;
|
||||
unsigned int leftShiftBits = N * rightShiftBlocks - b;
|
||||
// Now (N * rightShiftBlocks - leftShiftBits) == b
|
||||
// and 0 <= leftShiftBits < N.
|
||||
if (rightShiftBlocks >= a.len + 1) {
|
||||
// All of a is guaranteed to be shifted off, even considering the left
|
||||
// bit shift.
|
||||
len = 0;
|
||||
return;
|
||||
}
|
||||
// Now we're allocating a positive amount.
|
||||
// + 1: room for high bits nudged left into another block
|
||||
len = a.len + 1 - rightShiftBlocks;
|
||||
allocate(len);
|
||||
Index i, j;
|
||||
for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++)
|
||||
blk[i] = getShiftedBlock(a, j, leftShiftBits);
|
||||
// Zap possible leading zero
|
||||
if (blk[len - 1] == 0)
|
||||
len--;
|
||||
}
|
||||
|
||||
// INCREMENT/DECREMENT OPERATORS
|
||||
|
||||
// Prefix increment
|
||||
void BigUnsigned::operator ++() {
|
||||
Index i;
|
||||
bool carry = true;
|
||||
for (i = 0; i < len && carry; i++) {
|
||||
blk[i]++;
|
||||
carry = (blk[i] == 0);
|
||||
}
|
||||
if (carry) {
|
||||
// Allocate and then increase length, as in divideWithRemainder
|
||||
allocateAndCopy(len + 1);
|
||||
len++;
|
||||
blk[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Postfix increment: same as prefix
|
||||
void BigUnsigned::operator ++(int) {
|
||||
operator ++();
|
||||
}
|
||||
|
||||
// Prefix decrement
|
||||
void BigUnsigned::operator --() {
|
||||
if (len == 0)
|
||||
throw "BigUnsigned::operator --(): Cannot decrement an unsigned zero";
|
||||
Index i;
|
||||
bool borrow = true;
|
||||
for (i = 0; borrow; i++) {
|
||||
borrow = (blk[i] == 0);
|
||||
blk[i]--;
|
||||
}
|
||||
// Zap possible leading zero (there can only be one)
|
||||
if (blk[len - 1] == 0)
|
||||
len--;
|
||||
}
|
||||
|
||||
// Postfix decrement: same as prefix
|
||||
void BigUnsigned::operator --(int) {
|
||||
operator --();
|
||||
}
|
@ -1,125 +0,0 @@
|
||||
#include "../include/BigUnsignedInABase.hpp"
|
||||
|
||||
BigUnsignedInABase::BigUnsignedInABase(const Digit *d, Index l, Base base)
|
||||
: NumberlikeArray<Digit>(d, l), base(base) {
|
||||
// Check the base
|
||||
if (base < 2)
|
||||
throw "BigUnsignedInABase::BigUnsignedInABase(const Digit *, Index, Base): The base must be at least 2";
|
||||
|
||||
// Validate the digits.
|
||||
for (Index i = 0; i < l; i++)
|
||||
if (blk[i] >= base)
|
||||
throw "BigUnsignedInABase::BigUnsignedInABase(const Digit *, Index, Base): A digit is too large for the specified base";
|
||||
|
||||
// Eliminate any leading zeros we may have been passed.
|
||||
zapLeadingZeros();
|
||||
}
|
||||
|
||||
namespace {
|
||||
unsigned int bitLen(unsigned int x) {
|
||||
unsigned int len = 0;
|
||||
while (x > 0) {
|
||||
x >>= 1;
|
||||
len++;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
unsigned int ceilingDiv(unsigned int a, unsigned int b) {
|
||||
return (a + b - 1) / b;
|
||||
}
|
||||
}
|
||||
|
||||
BigUnsignedInABase::BigUnsignedInABase(const BigUnsigned &x, Base base) {
|
||||
// Check the base
|
||||
if (base < 2)
|
||||
throw "BigUnsignedInABase(BigUnsigned, Base): The base must be at least 2";
|
||||
this->base = base;
|
||||
|
||||
// Get an upper bound on how much space we need
|
||||
int maxBitLenOfX = x.getLength() * BigUnsigned::N;
|
||||
int minBitsPerDigit = bitLen(base) - 1;
|
||||
int maxDigitLenOfX = ceilingDiv(maxBitLenOfX, minBitsPerDigit);
|
||||
len = maxDigitLenOfX; // Another change to comply with `staying in bounds'.
|
||||
allocate(len); // Get the space
|
||||
|
||||
BigUnsigned x2(x), buBase(base);
|
||||
Index digitNum = 0;
|
||||
|
||||
while (!x2.isZero()) {
|
||||
// Get last digit. This is like `lastDigit = x2 % buBase, x2 /= buBase'.
|
||||
BigUnsigned lastDigit(x2);
|
||||
lastDigit.divideWithRemainder(buBase, x2);
|
||||
// Save the digit.
|
||||
blk[digitNum] = lastDigit.toUnsignedShort();
|
||||
// Move on. We can't run out of room: we figured it out above.
|
||||
digitNum++;
|
||||
}
|
||||
|
||||
// Save the actual length.
|
||||
len = digitNum;
|
||||
}
|
||||
|
||||
BigUnsignedInABase::operator BigUnsigned() const {
|
||||
BigUnsigned ans(0), buBase(base), temp;
|
||||
Index digitNum = len;
|
||||
while (digitNum > 0) {
|
||||
digitNum--;
|
||||
temp.multiply(ans, buBase);
|
||||
ans.add(temp, BigUnsigned(blk[digitNum]));
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
BigUnsignedInABase::BigUnsignedInABase(const std::string &s, Base base) {
|
||||
// Check the base.
|
||||
if (base > 36)
|
||||
throw "BigUnsignedInABase(std::string, Base): The default string conversion routines use the symbol set 0-9, A-Z and therefore support only up to base 36. You tried a conversion with a base over 36; write your own string conversion routine.";
|
||||
// Save the base.
|
||||
// This pattern is seldom seen in C++, but the analogous ``this.'' is common in Java.
|
||||
this->base = base;
|
||||
|
||||
// `s.length()' is a `size_t', while `len' is a `NumberlikeArray::Index',
|
||||
// also known as an `unsigned int'. Some compilers warn without this cast.
|
||||
len = Index(s.length());
|
||||
allocate(len);
|
||||
|
||||
Index digitNum, symbolNumInString;
|
||||
for (digitNum = 0; digitNum < len; digitNum++) {
|
||||
symbolNumInString = len - 1 - digitNum;
|
||||
char theSymbol = s[symbolNumInString];
|
||||
if (theSymbol >= '0' && theSymbol <= '9')
|
||||
blk[digitNum] = theSymbol - '0';
|
||||
else if (theSymbol >= 'A' && theSymbol <= 'Z')
|
||||
blk[digitNum] = theSymbol - 'A' + 10;
|
||||
else if (theSymbol >= 'a' && theSymbol <= 'z')
|
||||
blk[digitNum] = theSymbol - 'a' + 10;
|
||||
else
|
||||
throw "BigUnsignedInABase(std::string, Base): Bad symbol in input. Only 0-9, A-Z, a-z are accepted.";
|
||||
|
||||
if (blk[digitNum] >= base)
|
||||
throw "BigUnsignedInABase::BigUnsignedInABase(const Digit *, Index, Base): A digit is too large for the specified base";
|
||||
}
|
||||
zapLeadingZeros();
|
||||
}
|
||||
|
||||
BigUnsignedInABase::operator std::string() const {
|
||||
if (base > 36)
|
||||
throw "BigUnsignedInABase ==> std::string: The default string conversion routines use the symbol set 0-9, A-Z and therefore support only up to base 36. You tried a conversion with a base over 36; write your own string conversion routine.";
|
||||
if (len == 0)
|
||||
return std::string("0");
|
||||
// Some compilers don't have push_back, so use a char * buffer instead.
|
||||
char *s = new char[len + 1];
|
||||
s[len] = '\0';
|
||||
Index digitNum, symbolNumInString;
|
||||
for (symbolNumInString = 0; symbolNumInString < len; symbolNumInString++) {
|
||||
digitNum = len - 1 - symbolNumInString;
|
||||
Digit theDigit = blk[digitNum];
|
||||
if (theDigit < 10)
|
||||
s[symbolNumInString] = char('0' + theDigit);
|
||||
else
|
||||
s[symbolNumInString] = char('A' + theDigit - 10);
|
||||
}
|
||||
std::string s2(s);
|
||||
delete [] s;
|
||||
return s2;
|
||||
}
|
389
src/ecc/ecc.c
Normal file
389
src/ecc/ecc.c
Normal file
@ -0,0 +1,389 @@
|
||||
/*
|
||||
ecc.c - inplementations of ECC operations using keys
|
||||
defined with sect233r1 / NIST B-233
|
||||
|
||||
This is NOT intended to be used in an actual cryptographic
|
||||
scheme; as written, it is vulnerable to several attacks.
|
||||
This might or might not change in the future. It is intended
|
||||
to be used for doing operations on keys which are already known.
|
||||
|
||||
Copyright © 2018, 2019 Jbop (https://github.com/jbop1626)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <inttypes.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "ecc.h"
|
||||
|
||||
/*
|
||||
sect233r1 - domain parameters over GF(2^m).
|
||||
Defined in "Standards for Efficient Cryptography 2 (SEC 2)" v2.0, pp. 19-20
|
||||
Not all are currently used.
|
||||
*/
|
||||
const element POLY_F = {0x0200, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000400, 0x00000000, 0x00000001};
|
||||
const element POLY_R = {0x0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000400, 0x00000000, 0x00000001};
|
||||
const element A_COEFF = {0x0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000001};
|
||||
const element B_COEFF = {0x0066, 0x647EDE6C, 0x332C7F8C, 0x0923BB58, 0x213B333B, 0x20E9CE42, 0x81FE115F, 0x7D8F90AD};
|
||||
const element G_X = {0x00FA, 0xC9DFCBAC, 0x8313BB21, 0x39F1BB75, 0x5FEF65BC, 0x391F8B36, 0xF8F8EB73, 0x71FD558B};
|
||||
const element G_Y = {0x0100, 0x6A08A419, 0x03350678, 0xE58528BE, 0xBF8A0BEF, 0xF867A7CA, 0x36716F7E, 0x01F81052};
|
||||
const element G_ORDER = {0x0100, 0x00000000, 0x00000000, 0x00000000, 0x0013E974, 0xE72F8A69, 0x22031D26, 0x03CFE0D7}; /*
|
||||
const uint32_t COFACTOR = 0x02; */
|
||||
|
||||
|
||||
/*
|
||||
Printing
|
||||
*/
|
||||
void print_element(const element a) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
printf("%08"PRIX32" ", a[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void print_point(const ec_point * a) {
|
||||
printf("x: ");
|
||||
print_element(a->x);
|
||||
printf("y: ");
|
||||
print_element(a->y);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
/*
|
||||
Helper functions for working with elements in GF(2^m)
|
||||
*/
|
||||
int gf2m_is_equal(const element a, const element b) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
if (a[i] != b[i]) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void gf2m_set_zero(element a) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
a[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void gf2m_copy(const element src, element dst) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
dst[i] = src[i];
|
||||
}
|
||||
}
|
||||
|
||||
int gf2m_get_bit(const element a, int index) {
|
||||
if (index >= 233 || index < 0) return -1;
|
||||
int word_index = ((index / 32) - 7) * -1;
|
||||
int shift = index - (32 * (7 - word_index));
|
||||
return (a[word_index] >> shift) & 1;
|
||||
}
|
||||
|
||||
void gf2m_left_shift(element a, int shift) {
|
||||
if (shift <= 0) {
|
||||
a[0] &= 0x1FF;
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < 7; ++i) {
|
||||
a[i] <<= 1;
|
||||
if (a[i + 1] >= 0x80000000) {
|
||||
a[i] |= 1;
|
||||
}
|
||||
}
|
||||
a[7] <<= 1;
|
||||
gf2m_left_shift(a, shift - 1);
|
||||
}
|
||||
|
||||
int gf2m_is_one(const element a) {
|
||||
if (a[7] != 1) {
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < 7; ++i) {
|
||||
if (a[i] != 0) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
int gf2m_degree(const element a) {
|
||||
int degree = 0;
|
||||
int i = 0;
|
||||
while ((i < 7) && (a[i] == 0)) {
|
||||
i++;
|
||||
}
|
||||
degree = (7 - i) * 32;
|
||||
uint32_t most_significant_word = a[i];
|
||||
while (most_significant_word != 0) {
|
||||
most_significant_word >>= 1;
|
||||
degree += 1;
|
||||
}
|
||||
return degree - 1;
|
||||
}
|
||||
|
||||
void gf2m_swap(element a, element b) {
|
||||
element temp;
|
||||
gf2m_copy(a, temp);
|
||||
gf2m_copy(b, a);
|
||||
gf2m_copy(temp, b);
|
||||
}
|
||||
|
||||
/*
|
||||
Arithmetic operations on elements in GF(2^m)
|
||||
*/
|
||||
void gf2m_add(const element a, const element b, element result) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
result[i] = a[i] ^ b[i];
|
||||
}
|
||||
}
|
||||
|
||||
void gf2m_inv(const element a, element result) {
|
||||
element u, v, g_1, g_2, temp;
|
||||
gf2m_copy(a, u);
|
||||
gf2m_copy(POLY_F, v);
|
||||
gf2m_set_zero(g_1);
|
||||
g_1[7] |= 1;
|
||||
gf2m_set_zero(g_2);
|
||||
int j = gf2m_degree(u) - 233;
|
||||
while (!gf2m_is_one(u)) {
|
||||
if (j < 0) {
|
||||
gf2m_swap(u, v);
|
||||
gf2m_swap(g_1, g_2);
|
||||
j = -j;
|
||||
}
|
||||
gf2m_copy(v, temp);
|
||||
gf2m_left_shift(temp, j);
|
||||
gf2m_add(u, temp, u);
|
||||
gf2m_copy(g_2, temp);
|
||||
gf2m_left_shift(temp, j);
|
||||
gf2m_add(g_1, temp, g_1);
|
||||
|
||||
u[0] &= 0x1FF;
|
||||
g_1[0] &= 0x1FF;
|
||||
|
||||
j = gf2m_degree(u) - gf2m_degree(v);
|
||||
}
|
||||
gf2m_copy(g_1, result);
|
||||
}
|
||||
|
||||
// basic implementation
|
||||
void gf2m_mul(const element a, const element b, element result) {
|
||||
element t1, t2, t3;
|
||||
gf2m_copy(a, t1);
|
||||
gf2m_copy(b, t2);
|
||||
gf2m_set_zero(t3);
|
||||
for (int i = 0; i < 233; ++i) {
|
||||
if (gf2m_get_bit(t2, i)) {
|
||||
gf2m_add(t3, t1, t3);
|
||||
}
|
||||
int carry = gf2m_get_bit(t1, 232);
|
||||
gf2m_left_shift(t1, 1);
|
||||
if (carry == 1) {
|
||||
gf2m_add(POLY_R, t1, t1);
|
||||
}
|
||||
}
|
||||
gf2m_copy(t3, result);
|
||||
}
|
||||
|
||||
void gf2m_div(const element a, const element b, element result) {
|
||||
element temp;
|
||||
gf2m_inv(b, temp);
|
||||
gf2m_mul(a, temp, result);
|
||||
}
|
||||
|
||||
/*
|
||||
Operations on points on the elliptic curve
|
||||
y^2 + xy = x^3 + ax^2 + b over GF(2^m)
|
||||
*/
|
||||
void ec_point_copy(const ec_point * src, ec_point * dst) {
|
||||
gf2m_copy(src->x, dst->x);
|
||||
gf2m_copy(src->y, dst->y);
|
||||
}
|
||||
|
||||
int ec_point_is_equal(const ec_point * a, const ec_point * b) {
|
||||
return gf2m_is_equal(a->x, b->x) && gf2m_is_equal(a->y, b->y);
|
||||
}
|
||||
|
||||
void ec_point_neg(const ec_point * a, ec_point * result) {
|
||||
gf2m_copy(a->x, result->x);
|
||||
gf2m_add(a->x, a->y, result->y);
|
||||
}
|
||||
|
||||
void ec_point_double(const ec_point * a, ec_point * result) {
|
||||
ec_point temp, zero;
|
||||
gf2m_set_zero(zero.x);
|
||||
gf2m_set_zero(zero.y);
|
||||
|
||||
ec_point_neg(a, &temp);
|
||||
if (ec_point_is_equal(a, &temp) || ec_point_is_equal(a, &zero)) {
|
||||
ec_point_copy(&zero, result);
|
||||
return;
|
||||
}
|
||||
|
||||
element lambda, x, y, t, t2;
|
||||
// Compute lambda (a.x + (a.y / a.x))
|
||||
gf2m_div(a->y, a->x, t);
|
||||
gf2m_add(a->x, t, lambda);
|
||||
// Compute X (lambda^2 + lambda + A_COEFF)
|
||||
gf2m_mul(lambda, lambda, t);
|
||||
gf2m_add(t, lambda, t);
|
||||
gf2m_add(t, A_COEFF, x);
|
||||
// Compute Y (a.x^2 + (lambda * X) + X)
|
||||
gf2m_mul(a->x, a->x, t);
|
||||
gf2m_mul(lambda, x, t2);
|
||||
gf2m_add(t, t2, t);
|
||||
gf2m_add(t, x, y);
|
||||
// Copy X,Y to output point result
|
||||
gf2m_copy(x, result->x);
|
||||
gf2m_copy(y, result->y);
|
||||
}
|
||||
|
||||
void ec_point_add(const ec_point * a, const ec_point * b, ec_point * result) {
|
||||
if (!ec_point_is_equal(a, b)) {
|
||||
ec_point temp, zero;
|
||||
gf2m_set_zero(zero.x);
|
||||
gf2m_set_zero(zero.y);
|
||||
ec_point_neg(b, &temp);
|
||||
if (ec_point_is_equal(a, &temp)) {
|
||||
ec_point_copy(&zero, result);
|
||||
return;
|
||||
}
|
||||
else if (ec_point_is_equal(a, &zero)) {
|
||||
ec_point_copy(b, result);
|
||||
return;
|
||||
}
|
||||
else if (ec_point_is_equal(b, &zero)) {
|
||||
ec_point_copy(a, result);
|
||||
return;
|
||||
}
|
||||
else {
|
||||
element lambda, x, y, t, t2;
|
||||
// Compute lambda ((b.y + a.y) / (b.x + a.x))
|
||||
gf2m_add(b->y, a->y, t);
|
||||
gf2m_add(b->x, a->x, t2);
|
||||
gf2m_div(t, t2, lambda);
|
||||
// Compute X (lambda^2 + lambda + a.x + b.x + A_COEFF)
|
||||
gf2m_mul(lambda, lambda, t);
|
||||
gf2m_add(t, lambda, t2);
|
||||
gf2m_add(t2, a->x, t);
|
||||
gf2m_add(t, b->x, t2);
|
||||
gf2m_add(t2, A_COEFF, x);
|
||||
// Compute Y ((lambda * (a.x + X)) + X + a.y)
|
||||
gf2m_add(a->x, x, t);
|
||||
gf2m_mul(lambda, t, t2);
|
||||
gf2m_add(t2, x, t);
|
||||
gf2m_add(t, a->y, y);
|
||||
// Copy X,Y to output point result
|
||||
gf2m_copy(x, result->x);
|
||||
gf2m_copy(y, result->y);
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
ec_point_double(a, result);
|
||||
}
|
||||
}
|
||||
|
||||
void ec_point_mul(const element a, const ec_point * b, ec_point * result) {
|
||||
element k;
|
||||
ec_point P, Q;
|
||||
|
||||
gf2m_copy(a, k);
|
||||
ec_point_copy(b, &P);
|
||||
gf2m_set_zero(Q.x);
|
||||
gf2m_set_zero(Q.y);
|
||||
for (int i = 0; i < 233; ++i) {
|
||||
if (gf2m_get_bit(k, i)) {
|
||||
ec_point_add(&Q, &P, &Q);
|
||||
}
|
||||
ec_point_double(&P, &P);
|
||||
}
|
||||
ec_point_copy(&Q, result);
|
||||
}
|
||||
|
||||
int ec_point_on_curve(const ec_point * P) {
|
||||
// y^2 + xy = x^3 + ax^2 + b
|
||||
element xx, yy, xy, lhs, rhs;
|
||||
|
||||
// lhs = y^2 + xy
|
||||
gf2m_mul(P->y, P->y, yy);
|
||||
gf2m_mul(P->x, P->y, xy);
|
||||
gf2m_add(yy, xy, lhs);
|
||||
|
||||
// rhs = x^3 + ax^2 + b = (x^2)(x + a) + b
|
||||
gf2m_mul(P->x, P->x, xx);
|
||||
gf2m_add(P->x, A_COEFF, rhs);
|
||||
gf2m_mul(xx, rhs, rhs);
|
||||
gf2m_add(rhs, B_COEFF, rhs);
|
||||
|
||||
return gf2m_is_equal(lhs, rhs);
|
||||
}
|
||||
|
||||
/*
|
||||
I/O Helpers
|
||||
Private keys are expected to be 32 bytes; Public keys
|
||||
are expected to be 64 bytes and in uncompressed form.
|
||||
|
||||
Wii keys will need to be padded - two 0 bytes at the
|
||||
start of the private key, and two 0 bytes before each
|
||||
coordinate in the public key. Keys on the iQue Player
|
||||
are already stored with padding and need no changes.
|
||||
|
||||
These functions are mainly intended for reading/writing
|
||||
*keys* as byte arrays or octet streams, but they will
|
||||
work fine for any input with the correct length.
|
||||
*/
|
||||
// (32-byte) octet stream to GF(2^m) element
|
||||
void os_to_elem(const uint8_t * src_os, element dst_elem) {
|
||||
int j = 0;
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
uint32_t result = src_os[j];
|
||||
result = (result << 8) | src_os[j + 1];
|
||||
result = (result << 8) | src_os[j + 2];
|
||||
result = (result << 8) | src_os[j + 3];
|
||||
dst_elem[i] = result;
|
||||
j += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// (64-byte) octet stream to elliptic curve point
|
||||
void os_to_point(const uint8_t * src_os, ec_point * dst_point) {
|
||||
os_to_elem(src_os, dst_point->x);
|
||||
os_to_elem(src_os + 32, dst_point->y);
|
||||
}
|
||||
|
||||
// GF(2^m) element to (32-byte) octet stream
|
||||
void elem_to_os(const element src_elem, uint8_t * dst_os) {
|
||||
int j = 0;
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
dst_os[j] = (src_elem[i] & 0xFF000000) >> 24;
|
||||
dst_os[j + 1] = (src_elem[i] & 0x00FF0000) >> 16;
|
||||
dst_os[j + 2] = (src_elem[i] & 0x0000FF00) >> 8;
|
||||
dst_os[j + 3] = src_elem[i] & 0x000000FF;
|
||||
j += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Elliptic curve point to (64-byte) octet stream
|
||||
void point_to_os(const ec_point * src_point, uint8_t * dst_os) {
|
||||
elem_to_os(src_point->x, dst_os);
|
||||
elem_to_os(src_point->y, dst_os + 32);
|
||||
}
|
367
src/ecc/ecc.cpp
367
src/ecc/ecc.cpp
@ -1,367 +0,0 @@
|
||||
/*
|
||||
ecc.cpp - inplementations of ECC operations using keys
|
||||
defined with sect233r1 / NIST B-233
|
||||
This is NOT intended to be used in an actual cryptographic
|
||||
scheme; as written, it is vulnerable to several attacks.
|
||||
This might or might not change in the future. It is intended
|
||||
to be used for doing operations on keys which are already known.
|
||||
|
||||
Copyright © 2018 Jbop (https://github.com/jbop1626);
|
||||
Modification of a part of iQueCrypt
|
||||
(https://github.com/jbop1626/iquecrypt)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <cstring>
|
||||
#include "ecc.hpp"
|
||||
|
||||
/*
|
||||
Printing
|
||||
*/
|
||||
void print_element(const element a) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
std::cout << std::setw(8) << std::setfill('0') << std::hex << a[i] << " ";
|
||||
}
|
||||
std::cout << std::endl << std::endl;;
|
||||
}
|
||||
|
||||
void print_point(const ec_point & a) {
|
||||
std::cout << "x: ";
|
||||
print_element(a.x);
|
||||
std::cout << "y: ";
|
||||
print_element(a.y);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
Helper functions for working with elements in GF(2^m)
|
||||
*/
|
||||
bool gf2m_is_equal(const element a, const element b) {
|
||||
for (int i = 0; i < 7; ++i) {
|
||||
if (a[i] != b[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void gf2m_set_zero(element a) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
a[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void gf2m_copy(const element src, element dst) {
|
||||
std::memcpy(dst, src, 32);
|
||||
}
|
||||
|
||||
int gf2m_get_bit(const element a, int index) {
|
||||
int word_index = ((index / 32) - 7) * -1;
|
||||
int shift = index - (32 * (7 - word_index));
|
||||
return (a[word_index] >> shift) & 1;
|
||||
}
|
||||
|
||||
void gf2m_left_shift(element a, int shift) {
|
||||
if (!shift) {
|
||||
a[0] &= 0x1FF;
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < 7; ++i) {
|
||||
a[i] <<= 1;
|
||||
if (a[i + 1] >= 0x80000000) a[i] |= 1;
|
||||
}
|
||||
a[7] <<= 1;
|
||||
gf2m_left_shift(a, shift - 1);
|
||||
}
|
||||
|
||||
bool gf2m_is_one(const element a) {
|
||||
if (a[7] != 1) return false;
|
||||
else {
|
||||
for (int i = 0; i < 7; ++i) {
|
||||
if (a[i] != 0) return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
int gf2m_degree(const element a) {
|
||||
int degree = 0;
|
||||
int i = 0;
|
||||
while (a[i] == 0) {
|
||||
i++;
|
||||
}
|
||||
degree = (7 - i) * 32;
|
||||
uint32_t MSW = a[i];
|
||||
while (MSW != 0) {
|
||||
MSW >>= 1;
|
||||
degree += 1;
|
||||
}
|
||||
return degree - 1;
|
||||
}
|
||||
|
||||
void gf2m_swap(element a, element b) {
|
||||
element temp;
|
||||
gf2m_copy(a, temp);
|
||||
gf2m_copy(b, a);
|
||||
gf2m_copy(temp, b);
|
||||
}
|
||||
|
||||
/*
|
||||
Arithmetic operations on elements in GF(2^m)
|
||||
*/
|
||||
void gf2m_add(const element a, const element b, element c) {
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
c[i] = a[i] ^ b[i];
|
||||
}
|
||||
}
|
||||
|
||||
void gf2m_inv(const element a, element c) {
|
||||
element u, v, g_1, g_2, temp;
|
||||
gf2m_copy(a, u);
|
||||
gf2m_copy(poly_f, v);
|
||||
gf2m_set_zero(g_1);
|
||||
g_1[7] |= 1;
|
||||
gf2m_set_zero(g_2);
|
||||
int j = gf2m_degree(u) - 233;
|
||||
while (!gf2m_is_one(u)) {
|
||||
if (j < 0) {
|
||||
gf2m_swap(u, v);
|
||||
gf2m_swap(g_1, g_2);
|
||||
j = -j;
|
||||
}
|
||||
gf2m_copy(v, temp);
|
||||
gf2m_left_shift(temp, j);
|
||||
gf2m_add(u, temp, u);
|
||||
gf2m_copy(g_2, temp);
|
||||
gf2m_left_shift(temp, j);
|
||||
gf2m_add(g_1, temp, g_1);
|
||||
|
||||
u[0] &= 0x1FF;
|
||||
g_1[0] &= 0x1FF;
|
||||
|
||||
j = gf2m_degree(u) - gf2m_degree(v);
|
||||
}
|
||||
gf2m_copy(g_1, c);
|
||||
}
|
||||
|
||||
// basic implementation
|
||||
void gf2m_mul(const element a, const element b, element c) {
|
||||
element t1, t2, t3;
|
||||
gf2m_copy(a, t1);
|
||||
gf2m_copy(b, t2);
|
||||
gf2m_set_zero(t3);
|
||||
for (int i = 0; i < 233; ++i) {
|
||||
if (gf2m_get_bit(t2, i)) {
|
||||
gf2m_add(t3, t1, t3);
|
||||
}
|
||||
int carry = gf2m_get_bit(t1, 232);
|
||||
gf2m_left_shift(t1, 1);
|
||||
if (carry == 1) {
|
||||
gf2m_add(poly_r, t1, t1);
|
||||
}
|
||||
}
|
||||
gf2m_copy(t3, c);
|
||||
}
|
||||
|
||||
void gf2m_div(const element a, const element b, element c) {
|
||||
element temp;
|
||||
gf2m_inv(b, temp);
|
||||
gf2m_mul(a, temp, c);
|
||||
}
|
||||
// void gf2m_reduce(element c)
|
||||
// void gf2m_square(const element a, element c)
|
||||
|
||||
/*
|
||||
Operations on points on the elliptic curve
|
||||
y^2 + xy = x^3 + ax^2 + b over GF(2^m)
|
||||
*/
|
||||
void ec_point_copy(const ec_point & src, ec_point & dst) {
|
||||
gf2m_copy(src.x, dst.x);
|
||||
gf2m_copy(src.y, dst.y);
|
||||
}
|
||||
|
||||
bool ec_point_is_equal(const ec_point & a, const ec_point & c) {
|
||||
return gf2m_is_equal(a.x, c.x) && gf2m_is_equal(a.y, c.y);
|
||||
}
|
||||
|
||||
void ec_point_neg(const ec_point & a, ec_point & c) {
|
||||
element temp;
|
||||
gf2m_copy(a.x, c.x);
|
||||
gf2m_add(a.x, a.y, temp);
|
||||
gf2m_copy(temp, c.y);
|
||||
}
|
||||
|
||||
void ec_point_double(const ec_point & a, ec_point & c) {
|
||||
ec_point temp;
|
||||
ec_point zero;
|
||||
gf2m_set_zero(zero.x);
|
||||
gf2m_set_zero(zero.y);
|
||||
|
||||
ec_point_neg(a, temp);
|
||||
if (ec_point_is_equal(a, temp) || ec_point_is_equal(a, zero)) {
|
||||
ec_point_copy(zero, c);
|
||||
return;
|
||||
}
|
||||
|
||||
element lambda, x, y, t, t2;
|
||||
// Compute lambda (a.x + (a.y / a.x))
|
||||
gf2m_div(a.y, a.x, t);
|
||||
gf2m_add(a.x, t, lambda);
|
||||
// Compute X (lambda^2 + lambda + a_coeff)
|
||||
gf2m_mul(lambda, lambda, t);
|
||||
gf2m_add(t, lambda, t);
|
||||
gf2m_add(t, a_coeff, x);
|
||||
// Compute Y (a.x^2 + (lambda * X) + X)
|
||||
gf2m_mul(a.x, a.x, t);
|
||||
gf2m_mul(lambda, x, t2);
|
||||
gf2m_add(t, t2, t);
|
||||
gf2m_add(t, x, y);
|
||||
// Copy X,Y to output point c
|
||||
gf2m_copy(x, c.x);
|
||||
gf2m_copy(y, c.y);
|
||||
}
|
||||
|
||||
void ec_point_add(const ec_point & a, const ec_point & b, ec_point & c) {
|
||||
if (!ec_point_is_equal(a, b)) {
|
||||
ec_point temp;
|
||||
ec_point zero;
|
||||
gf2m_set_zero(zero.x);
|
||||
gf2m_set_zero(zero.y);
|
||||
ec_point_neg(b, temp);
|
||||
if (ec_point_is_equal(a, temp)) {
|
||||
ec_point_copy(zero, c);
|
||||
return;
|
||||
}
|
||||
else if (ec_point_is_equal(a, zero)) {
|
||||
ec_point_copy(b, c);
|
||||
return;
|
||||
}
|
||||
else if (ec_point_is_equal(b, zero)) {
|
||||
ec_point_copy(a, c);
|
||||
return;
|
||||
}
|
||||
else {
|
||||
element lambda, x, y, t, t2;
|
||||
// Compute lambda ((b.y + a.y) / (b.x + a.x))
|
||||
gf2m_add(b.y, a.y, t);
|
||||
gf2m_add(b.x, a.x, t2);
|
||||
gf2m_div(t, t2, lambda);
|
||||
// Compute X (lambda^2 + lambda + a.x + b.x + a_coeff)
|
||||
gf2m_mul(lambda, lambda, t);
|
||||
gf2m_add(t, lambda, t2);
|
||||
gf2m_add(t2, a.x, t);
|
||||
gf2m_add(t, b.x, t2);
|
||||
gf2m_add(t2, a_coeff, x);
|
||||
// Compute Y ((lambda * (a.x + X)) + X + a.y)
|
||||
gf2m_add(a.x, x, t);
|
||||
gf2m_mul(lambda, t, t2);
|
||||
gf2m_add(t2, x, t);
|
||||
gf2m_add(t, a.y, y);
|
||||
// Copy X,Y to output point c
|
||||
gf2m_copy(x, c.x);
|
||||
gf2m_copy(y, c.y);
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
ec_point_double(a, c);
|
||||
}
|
||||
}
|
||||
|
||||
void ec_point_mul(const element a, const ec_point & b, ec_point & c) {
|
||||
element k;
|
||||
ec_point P;
|
||||
ec_point Q;
|
||||
|
||||
gf2m_copy(a, k);
|
||||
ec_point_copy(b, P);
|
||||
gf2m_set_zero(Q.x);
|
||||
gf2m_set_zero(Q.y);
|
||||
for (int i = 0; i < 233; ++i) {
|
||||
if (gf2m_get_bit(k, i)) {
|
||||
ec_point_add(Q, P, Q);
|
||||
}
|
||||
ec_point_double(P, P);
|
||||
}
|
||||
ec_point_copy(Q, c);
|
||||
}
|
||||
|
||||
bool ec_point_on_curve(const ec_point & P) {
|
||||
// y^2 + xy = x^3 + ax^2 + b
|
||||
element xx, yy, xy, lhs, rhs;
|
||||
|
||||
gf2m_mul(P.y, P.y, yy);
|
||||
gf2m_mul(P.x, P.y, xy);
|
||||
gf2m_add(yy, xy, lhs);
|
||||
|
||||
gf2m_mul(P.x, P.x, xx);
|
||||
gf2m_add(P.x, a_coeff, rhs);
|
||||
gf2m_mul(xx, rhs, rhs);
|
||||
gf2m_add(rhs, b_coeff, rhs);
|
||||
|
||||
return gf2m_is_equal(lhs, rhs);
|
||||
}
|
||||
|
||||
/*
|
||||
I/O Helpers
|
||||
Private keys are expected to be 32 bytes; Public keys
|
||||
are expected to be 64 bytes and in uncompressed form.
|
||||
|
||||
Wii keys will need to be padded - two 0 bytes at the
|
||||
start of the private key, and two 0 bytes before each
|
||||
coordinate in the public key.
|
||||
|
||||
These functions are mainly intended for reading/writing
|
||||
*keys* as byte arrays or octet streams, but they will
|
||||
work fine for any input with the correct length.
|
||||
*/
|
||||
// (32-byte) octet stream to GF(2^m) element
|
||||
void os_to_elem(const uint8_t * os, element elem) {
|
||||
int j = 0;
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
uint32_t temp = 0;
|
||||
temp |= (os[j] << 24);
|
||||
temp |= (os[j + 1] << 16);
|
||||
temp |= (os[j + 2] << 8);
|
||||
temp |= os[j + 3];
|
||||
elem[i] = temp;
|
||||
j += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// (64-byte) octet stream to elliptic curve point
|
||||
void os_to_point(const uint8_t * os, ec_point & point) {
|
||||
os_to_elem(os, point.x);
|
||||
os_to_elem(os + 32, point.y);
|
||||
}
|
||||
|
||||
// GF(2^m) element to (32-byte) octet stream
|
||||
void elem_to_os(const element src, uint8_t * output_os) {
|
||||
int j = 0;
|
||||
for (int i = 0; i < 7; ++i) {
|
||||
output_os[j] = ((src[i] & 0xFF000000) >> 24);
|
||||
output_os[j + 1] = ((src[i] & 0x00FF0000) >> 16);
|
||||
output_os[j + 2] = ((src[i] & 0x0000FF00) >> 8);
|
||||
output_os[j + 3] = src[i] & 0x000000FF;
|
||||
j += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Elliptic curve point to (64-byte) octet stream
|
||||
void point_to_os(const ec_point & src, uint8_t * output_os) {
|
||||
elem_to_os(src.x, output_os);
|
||||
elem_to_os(src.y, output_os + 32);
|
||||
}
|
103
src/ecc/ecc.h
Normal file
103
src/ecc/ecc.h
Normal file
@ -0,0 +1,103 @@
|
||||
/*
|
||||
ecc.h - definitions required for ECC operations using keys
|
||||
defined with sect233r1 / NIST B-233
|
||||
|
||||
Copyright © 2018, 2019 Jbop (https://github.com/jbop1626)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef NINTY_233_ECC_H
|
||||
#define NINTY_233_ECC_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef uint32_t element[8];
|
||||
|
||||
typedef struct {
|
||||
element x;
|
||||
element y;
|
||||
} ec_point;
|
||||
|
||||
/*
|
||||
sect233r1 - domain parameters over GF(2^m).
|
||||
Defined in "Standards for Efficient Cryptography 2 (SEC 2)" v2.0, pp. 19-20
|
||||
Not all are currently used.
|
||||
(Actual definitions are in ecc.c)
|
||||
*/
|
||||
extern const element POLY_F;
|
||||
extern const element POLY_R;
|
||||
extern const element A_COEFF;
|
||||
extern const element B_COEFF;
|
||||
extern const element G_X;
|
||||
extern const element G_Y;
|
||||
extern const element G_ORDER; /*
|
||||
extern const uint32_t COFACTOR; */
|
||||
|
||||
/*
|
||||
Printing
|
||||
*/
|
||||
void print_element(const element a);
|
||||
void print_point(const ec_point * a);
|
||||
|
||||
/*
|
||||
Helper functions for working with elements in GF(2^m)
|
||||
*/
|
||||
int gf2m_is_equal(const element a, const element b);
|
||||
void gf2m_set_zero(element a);
|
||||
void gf2m_copy(const element src, element dst);
|
||||
int gf2m_get_bit(const element a, int index);
|
||||
void gf2m_left_shift(element a, int shift);
|
||||
int gf2m_is_one(const element a);
|
||||
int gf2m_degree(const element a);
|
||||
void gf2m_swap(element a, element b);
|
||||
|
||||
/*
|
||||
Arithmetic operations on elements in GF(2^m)
|
||||
*/
|
||||
void gf2m_add(const element a, const element b, element result);
|
||||
void gf2m_inv(const element a, element result);
|
||||
void gf2m_mul(const element a, const element b, element result);
|
||||
void gf2m_div(const element a, const element b, element result);
|
||||
|
||||
/*
|
||||
Operations on points on the elliptic curve
|
||||
y^2 + xy = x^3 + ax^2 + b over GF(2^m)
|
||||
*/
|
||||
void ec_point_copy(const ec_point * src, ec_point * dst);
|
||||
int ec_point_is_equal(const ec_point * a, const ec_point * b);
|
||||
void ec_point_neg(const ec_point * a, ec_point * result);
|
||||
void ec_point_double(const ec_point * a, ec_point * result);
|
||||
void ec_point_add(const ec_point * a, const ec_point * b, ec_point * result);
|
||||
void ec_point_mul(const element a, const ec_point * b, ec_point * result);
|
||||
int ec_point_on_curve(const ec_point * a);
|
||||
|
||||
/*
|
||||
I/O Helpers
|
||||
*/
|
||||
void os_to_elem(const uint8_t * src_os, element dst_elem);
|
||||
void os_to_point(const uint8_t * src_os, ec_point * dst_point);
|
||||
void elem_to_os(const element src_elem, uint8_t * dst_os);
|
||||
void point_to_os(const ec_point * src_point, uint8_t * dst_os);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,95 +0,0 @@
|
||||
/*
|
||||
ecc.hpp - definitions required for ECC operations using keys
|
||||
defined with sect233r1 / NIST B-233
|
||||
|
||||
Copyright © 2018 Jbop (https://github.com/jbop1626);
|
||||
Modification of a part of iQueCrypt
|
||||
(https://github.com/jbop1626/iquecrypt)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef NINTY_233_ECC_HPP
|
||||
#define NINTY_233_ECC_HPP
|
||||
|
||||
typedef uint32_t element[8];
|
||||
|
||||
typedef struct {
|
||||
element x;
|
||||
element y;
|
||||
} ec_point;
|
||||
|
||||
/*
|
||||
sect233r1 - domain parameters over GF(2^m). Defined in SEC 2 v2.0, pp. 19-20
|
||||
Not all are currently used.
|
||||
*/
|
||||
const element poly_f = {0x0200, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000400, 0x00000000, 0x00000001};
|
||||
const element poly_r = {0x0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000400, 0x00000000, 0x00000001};
|
||||
const element a_coeff = {0x0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000001};
|
||||
const element b_coeff = {0x0066, 0x647EDE6C, 0x332C7F8C, 0x0923BB58, 0x213B333B, 0x20E9CE42, 0x81FE115F, 0x7D8F90AD};
|
||||
const element G_x = {0x00FA, 0xC9DFCBAC, 0x8313BB21, 0x39F1BB75, 0x5FEF65BC, 0x391F8B36, 0xF8F8EB73, 0x71FD558B};
|
||||
const element G_y = {0x0100, 0x6A08A419, 0x03350678, 0xE58528BE, 0xBF8A0BEF, 0xF867A7CA, 0x36716F7E, 0x01F81052};
|
||||
const element G_order = {0x0100, 0x00000000, 0x00000000, 0x00000000, 0x0013E974, 0xE72F8A69, 0x22031D26, 0x03CFE0D7}; /*
|
||||
const uint32_t cofactor = 0x02; */
|
||||
|
||||
/*
|
||||
Printing
|
||||
*/
|
||||
void print_element(const element a);
|
||||
void print_point(const ec_point & a);
|
||||
|
||||
/*
|
||||
Helper functions for working with elements in GF(2^m)
|
||||
*/
|
||||
bool gf2m_is_equal(const element a, const element b);
|
||||
void gf2m_set_zero(element a);
|
||||
void gf2m_copy(const element src, element dst);
|
||||
int gf2m_get_bit(const element a, int index);
|
||||
void gf2m_left_shift(element a, int shift);
|
||||
bool gf2m_is_one(const element a);
|
||||
int gf2m_degree(const element a);
|
||||
void gf2m_swap(element a, element b);
|
||||
|
||||
/*
|
||||
Arithmetic operations on elements in GF(2^m)
|
||||
*/
|
||||
void gf2m_add(const element a, const element b, element c);
|
||||
void gf2m_inv(const element a, element c);
|
||||
void gf2m_mul(const element a, const element b, element c);
|
||||
void gf2m_div(const element a, const element b, element c);
|
||||
// void gf2m_reduce(element c);
|
||||
// void gf2m_square(const element a, element c);
|
||||
|
||||
/*
|
||||
Operations on points on the elliptic curve
|
||||
y^2 + xy = x^3 + ax^2 + b over GF(2^m)
|
||||
*/
|
||||
void ec_point_copy(const ec_point & src, ec_point & dst);
|
||||
bool ec_point_is_equal(const ec_point & a, const ec_point & c);
|
||||
void ec_point_neg(const ec_point & a, ec_point & c);
|
||||
void ec_point_double(const ec_point & a, ec_point & c);
|
||||
void ec_point_add(const ec_point & a, const ec_point & b, ec_point & c);
|
||||
void ec_point_mul(const element a, const ec_point & b, ec_point & c);
|
||||
bool ec_point_on_curve(const ec_point & a);
|
||||
|
||||
/*
|
||||
I/O Helpers
|
||||
*/
|
||||
void os_to_elem(const uint8_t * os, element elem);
|
||||
void os_to_point(const uint8_t * os, ec_point & point);
|
||||
void elem_to_os(const element src, uint8_t * output_os);
|
||||
void point_to_os(const ec_point & src, uint8_t * output_os);
|
||||
|
||||
#endif
|
113
src/example.c
Normal file
113
src/example.c
Normal file
@ -0,0 +1,113 @@
|
||||
/*
|
||||
example.c
|
||||
Simple example of how to use ninty-233
|
||||
|
||||
Copyright © 2019 Jbop (https://github.com/jbop1626)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "ninty-233.h"
|
||||
|
||||
int main(int argc, char * argv[]) {
|
||||
uint8_t private_key_A[32] = { 0x00, 0x00, 0x01, 0x5F, 0xC2, 0xC6, 0x53, 0xCD,
|
||||
0xBA, 0xDC, 0xD8, 0x24, 0x23, 0xFE, 0xA2, 0xE8,
|
||||
0xCC, 0x75, 0x7C, 0xC3, 0x5A, 0x27, 0x46, 0x73,
|
||||
0xF5, 0x70, 0xAE, 0x7A, 0xD2, 0xBB, 0x59, 0xB0 };
|
||||
|
||||
uint8_t public_key_A[64] = { 0x00, 0x00, 0x00, 0x27, 0x64, 0xB9, 0x37, 0x21,
|
||||
0xDA, 0xA4, 0x33, 0xC1, 0xC4, 0x45, 0x0B, 0xFA,
|
||||
0x8E, 0x4D, 0x36, 0x9C, 0x41, 0x16, 0xD6, 0xED,
|
||||
0xBE, 0x03, 0x0D, 0x9F, 0x12, 0x3B, 0xB1, 0x18,
|
||||
0x00, 0x00, 0x01, 0x87, 0xBE, 0xC4, 0xF5, 0x1A,
|
||||
0x9F, 0x4B, 0x0B, 0x3F, 0xD3, 0x08, 0x01, 0xBC,
|
||||
0x6F, 0x11, 0xAC, 0x4C, 0x26, 0xDB, 0x3B, 0x6C,
|
||||
0x70, 0x5D, 0xC1, 0x7E, 0x9C, 0x00, 0x84, 0x27 };
|
||||
|
||||
uint8_t private_key_B[32] = { 0x00, 0x00, 0x00, 0xE4, 0xC0, 0x89, 0x52, 0x2C,
|
||||
0xA3, 0x38, 0x6C, 0xC8, 0xF6, 0x29, 0x80, 0x1E,
|
||||
0x0F, 0xE9, 0xD0, 0x92, 0xA5, 0x61, 0x27, 0x48,
|
||||
0xC1, 0xE9, 0x51, 0x1D, 0x82, 0xDB, 0x93, 0xE0 };
|
||||
|
||||
uint8_t public_key_B[64] = { 0x00, 0x00, 0x00, 0xDD, 0x56, 0x98, 0x2B, 0xED,
|
||||
0x1F, 0x91, 0x0C, 0x20, 0x2D, 0x91, 0x38, 0xE8,
|
||||
0x6B, 0xFC, 0x60, 0x77, 0x3F, 0x38, 0xF5, 0x4A,
|
||||
0x08, 0xEC, 0xB3, 0xD6, 0xEB, 0x40, 0x10, 0xD1,
|
||||
0x00, 0x00, 0x00, 0xBB, 0xFD, 0x3C, 0xA6, 0x76,
|
||||
0x6F, 0xB1, 0x19, 0xCE, 0xC4, 0xEB, 0x65, 0x74,
|
||||
0x8D, 0x54, 0x9B, 0xD6, 0x94, 0x0F, 0x70, 0x44,
|
||||
0x00, 0x0F, 0x8E, 0xA1, 0xD5, 0x1B, 0x47, 0x1A};
|
||||
|
||||
uint8_t data[48] = { 0x6B, 0xFC, 0x60, 0x77, 0x3F, 0x38, 0xF5, 0x4A,
|
||||
0x08, 0xEC, 0xB3, 0xD6, 0xEB, 0x40, 0x10, 0xD1,
|
||||
0x00, 0x00, 0x00, 0xBB, 0xFD, 0x3C, 0xA6, 0x76,
|
||||
0xA3, 0x38, 0x6C, 0xC8, 0xF6, 0x29, 0x80, 0x1E,
|
||||
0x8E, 0x4D, 0x36, 0x9C, 0x41, 0x16, 0xD6, 0xED,
|
||||
0xBE, 0x03, 0x0D, 0x9F, 0x12, 0x3B, 0xB1, 0x18 };
|
||||
|
||||
// Convert bytes to GF(2^m) elements and elliptic curve points
|
||||
element priv_key_A, priv_key_B;
|
||||
ec_point pub_key_A, pub_key_B;
|
||||
os_to_elem(private_key_A, priv_key_A);
|
||||
os_to_elem(private_key_B, priv_key_B);
|
||||
os_to_point(public_key_A, &pub_key_A);
|
||||
os_to_point(public_key_B, &pub_key_B);
|
||||
|
||||
/* ECDH */
|
||||
printf("ECDH with private key A and public key B:\n");
|
||||
ec_point shared_secret1;
|
||||
ecdh(priv_key_A, &pub_key_B, &shared_secret1);
|
||||
print_point(&shared_secret1);
|
||||
|
||||
printf("ECDH with private key B and public key A:\n");
|
||||
ec_point shared_secret2;
|
||||
ecdh(priv_key_B, &pub_key_A, &shared_secret2);
|
||||
print_point(&shared_secret2);
|
||||
|
||||
if (ec_point_is_equal(&shared_secret1, &shared_secret2)) {
|
||||
printf("Success! Shared secret outputs are equal.\n");
|
||||
}
|
||||
else {
|
||||
printf("Failure! Shared secret outputs are not equal.\n");
|
||||
}
|
||||
|
||||
|
||||
/* HASHING */
|
||||
printf("\n\nSign data with private key A:\n");
|
||||
mpz_t hash;
|
||||
mpz_init(hash);
|
||||
|
||||
// If we wanted to hash in the way the iQue Player does it (by adding
|
||||
// certain magic data to the SHA1 state), we would pass in the aptly-named
|
||||
// IQUE_HASH flag instead of NOT_IQUE_HASH as the 3rd argument.
|
||||
sha1(data, 48, NOT_IQUE_HASH, hash);
|
||||
|
||||
/* SIGNING */
|
||||
element r, s;
|
||||
ecdsa_sign(hash, priv_key_A, r, s);
|
||||
printf("Complete!\n");
|
||||
|
||||
/* SIGNATURE VERIFICATION */
|
||||
int result1 = ecdsa_verify(hash, &pub_key_A, r, s);
|
||||
printf("Verify signature with public key A: %d\n", result1);
|
||||
|
||||
int result2 = ecdsa_verify(hash, &pub_key_B, r, s);
|
||||
printf("Verify signature with public key B: %d\n", result2);
|
||||
mpz_clear(hash);
|
||||
}
|
4412
src/mini-gmp/mini-gmp.c
Normal file
4412
src/mini-gmp/mini-gmp.c
Normal file
File diff suppressed because it is too large
Load Diff
298
src/mini-gmp/mini-gmp.h
Normal file
298
src/mini-gmp/mini-gmp.h
Normal file
@ -0,0 +1,298 @@
|
||||
/* mini-gmp, a minimalistic implementation of a GNU GMP subset.
|
||||
|
||||
Copyright 2011-2015 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of the GNU MP Library.
|
||||
|
||||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of either:
|
||||
|
||||
* the GNU Lesser General Public License as published by the Free
|
||||
Software Foundation; either version 3 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
or
|
||||
|
||||
* the GNU General Public License as published by the Free Software
|
||||
Foundation; either version 2 of the License, or (at your option) any
|
||||
later version.
|
||||
|
||||
or both in parallel, as here.
|
||||
|
||||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received copies of the GNU General Public License and the
|
||||
GNU Lesser General Public License along with the GNU MP Library. If not,
|
||||
see https://www.gnu.org/licenses/. */
|
||||
|
||||
/* About mini-gmp: This is a minimal implementation of a subset of the
|
||||
GMP interface. It is intended for inclusion into applications which
|
||||
have modest bignums needs, as a fallback when the real GMP library
|
||||
is not installed.
|
||||
|
||||
This file defines the public interface. */
|
||||
|
||||
#ifndef MINI_GMP_H
|
||||
#define MINI_GMP_H
|
||||
|
||||
/* For size_t */
|
||||
#include <stddef.h>
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void mp_set_memory_functions (void *(*) (size_t),
|
||||
void *(*) (void *, size_t, size_t),
|
||||
void (*) (void *, size_t));
|
||||
|
||||
void mp_get_memory_functions (void *(**) (size_t),
|
||||
void *(**) (void *, size_t, size_t),
|
||||
void (**) (void *, size_t));
|
||||
|
||||
typedef unsigned long mp_limb_t;
|
||||
typedef long mp_size_t;
|
||||
typedef unsigned long mp_bitcnt_t;
|
||||
|
||||
typedef mp_limb_t *mp_ptr;
|
||||
typedef const mp_limb_t *mp_srcptr;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int _mp_alloc; /* Number of *limbs* allocated and pointed
|
||||
to by the _mp_d field. */
|
||||
int _mp_size; /* abs(_mp_size) is the number of limbs the
|
||||
last field points to. If _mp_size is
|
||||
negative this is a negative number. */
|
||||
mp_limb_t *_mp_d; /* Pointer to the limbs. */
|
||||
} mpz_struct;
|
||||
|
||||
typedef mpz_struct mpz_t[1];
|
||||
|
||||
typedef mpz_struct *mpz_ptr;
|
||||
typedef const mpz_struct *mpz_srcptr;
|
||||
|
||||
extern const int mp_bits_per_limb;
|
||||
|
||||
void mpn_copyi (mp_ptr, mp_srcptr, mp_size_t);
|
||||
void mpn_copyd (mp_ptr, mp_srcptr, mp_size_t);
|
||||
void mpn_zero (mp_ptr, mp_size_t);
|
||||
|
||||
int mpn_cmp (mp_srcptr, mp_srcptr, mp_size_t);
|
||||
int mpn_zero_p (mp_srcptr, mp_size_t);
|
||||
|
||||
mp_limb_t mpn_add_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t);
|
||||
mp_limb_t mpn_add_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t);
|
||||
mp_limb_t mpn_add (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t);
|
||||
|
||||
mp_limb_t mpn_sub_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t);
|
||||
mp_limb_t mpn_sub_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t);
|
||||
mp_limb_t mpn_sub (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t);
|
||||
|
||||
mp_limb_t mpn_mul_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t);
|
||||
mp_limb_t mpn_addmul_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t);
|
||||
mp_limb_t mpn_submul_1 (mp_ptr, mp_srcptr, mp_size_t, mp_limb_t);
|
||||
|
||||
mp_limb_t mpn_mul (mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t);
|
||||
void mpn_mul_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t);
|
||||
void mpn_sqr (mp_ptr, mp_srcptr, mp_size_t);
|
||||
int mpn_perfect_square_p (mp_srcptr, mp_size_t);
|
||||
mp_size_t mpn_sqrtrem (mp_ptr, mp_ptr, mp_srcptr, mp_size_t);
|
||||
|
||||
mp_limb_t mpn_lshift (mp_ptr, mp_srcptr, mp_size_t, unsigned int);
|
||||
mp_limb_t mpn_rshift (mp_ptr, mp_srcptr, mp_size_t, unsigned int);
|
||||
|
||||
mp_bitcnt_t mpn_scan0 (mp_srcptr, mp_bitcnt_t);
|
||||
mp_bitcnt_t mpn_scan1 (mp_srcptr, mp_bitcnt_t);
|
||||
|
||||
void mpn_com (mp_ptr, mp_srcptr, mp_size_t);
|
||||
mp_limb_t mpn_neg (mp_ptr, mp_srcptr, mp_size_t);
|
||||
|
||||
mp_bitcnt_t mpn_popcount (mp_srcptr, mp_size_t);
|
||||
|
||||
mp_limb_t mpn_invert_3by2 (mp_limb_t, mp_limb_t);
|
||||
#define mpn_invert_limb(x) mpn_invert_3by2 ((x), 0)
|
||||
|
||||
size_t mpn_get_str (unsigned char *, int, mp_ptr, mp_size_t);
|
||||
mp_size_t mpn_set_str (mp_ptr, const unsigned char *, size_t, int);
|
||||
|
||||
void mpz_init (mpz_t);
|
||||
void mpz_init2 (mpz_t, mp_bitcnt_t);
|
||||
void mpz_clear (mpz_t);
|
||||
|
||||
#define mpz_odd_p(z) (((z)->_mp_size != 0) & (int) (z)->_mp_d[0])
|
||||
#define mpz_even_p(z) (! mpz_odd_p (z))
|
||||
|
||||
int mpz_sgn (const mpz_t);
|
||||
int mpz_cmp_si (const mpz_t, long);
|
||||
int mpz_cmp_ui (const mpz_t, unsigned long);
|
||||
int mpz_cmp (const mpz_t, const mpz_t);
|
||||
int mpz_cmpabs_ui (const mpz_t, unsigned long);
|
||||
int mpz_cmpabs (const mpz_t, const mpz_t);
|
||||
int mpz_cmp_d (const mpz_t, double);
|
||||
int mpz_cmpabs_d (const mpz_t, double);
|
||||
|
||||
void mpz_abs (mpz_t, const mpz_t);
|
||||
void mpz_neg (mpz_t, const mpz_t);
|
||||
void mpz_swap (mpz_t, mpz_t);
|
||||
|
||||
void mpz_add_ui (mpz_t, const mpz_t, unsigned long);
|
||||
void mpz_add (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_sub_ui (mpz_t, const mpz_t, unsigned long);
|
||||
void mpz_ui_sub (mpz_t, unsigned long, const mpz_t);
|
||||
void mpz_sub (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
void mpz_mul_si (mpz_t, const mpz_t, long int);
|
||||
void mpz_mul_ui (mpz_t, const mpz_t, unsigned long int);
|
||||
void mpz_mul (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_mul_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
void mpz_addmul_ui (mpz_t, const mpz_t, unsigned long int);
|
||||
void mpz_addmul (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_submul_ui (mpz_t, const mpz_t, unsigned long int);
|
||||
void mpz_submul (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
void mpz_cdiv_qr (mpz_t, mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_fdiv_qr (mpz_t, mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_tdiv_qr (mpz_t, mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_cdiv_q (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_fdiv_q (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_tdiv_q (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_cdiv_r (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_fdiv_r (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_tdiv_r (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
void mpz_cdiv_q_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
void mpz_fdiv_q_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
void mpz_tdiv_q_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
void mpz_cdiv_r_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
void mpz_fdiv_r_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
void mpz_tdiv_r_2exp (mpz_t, const mpz_t, mp_bitcnt_t);
|
||||
|
||||
void mpz_mod (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
void mpz_divexact (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
int mpz_divisible_p (const mpz_t, const mpz_t);
|
||||
int mpz_congruent_p (const mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
unsigned long mpz_cdiv_qr_ui (mpz_t, mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_fdiv_qr_ui (mpz_t, mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_tdiv_qr_ui (mpz_t, mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_cdiv_q_ui (mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_fdiv_q_ui (mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_tdiv_q_ui (mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_cdiv_r_ui (mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_fdiv_r_ui (mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_tdiv_r_ui (mpz_t, const mpz_t, unsigned long);
|
||||
unsigned long mpz_cdiv_ui (const mpz_t, unsigned long);
|
||||
unsigned long mpz_fdiv_ui (const mpz_t, unsigned long);
|
||||
unsigned long mpz_tdiv_ui (const mpz_t, unsigned long);
|
||||
|
||||
unsigned long mpz_mod_ui (mpz_t, const mpz_t, unsigned long);
|
||||
|
||||
void mpz_divexact_ui (mpz_t, const mpz_t, unsigned long);
|
||||
|
||||
int mpz_divisible_ui_p (const mpz_t, unsigned long);
|
||||
|
||||
unsigned long mpz_gcd_ui (mpz_t, const mpz_t, unsigned long);
|
||||
void mpz_gcd (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_gcdext (mpz_t, mpz_t, mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_lcm_ui (mpz_t, const mpz_t, unsigned long);
|
||||
void mpz_lcm (mpz_t, const mpz_t, const mpz_t);
|
||||
int mpz_invert (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
void mpz_sqrtrem (mpz_t, mpz_t, const mpz_t);
|
||||
void mpz_sqrt (mpz_t, const mpz_t);
|
||||
int mpz_perfect_square_p (const mpz_t);
|
||||
|
||||
void mpz_pow_ui (mpz_t, const mpz_t, unsigned long);
|
||||
void mpz_ui_pow_ui (mpz_t, unsigned long, unsigned long);
|
||||
void mpz_powm (mpz_t, const mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_powm_ui (mpz_t, const mpz_t, unsigned long, const mpz_t);
|
||||
|
||||
void mpz_rootrem (mpz_t, mpz_t, const mpz_t, unsigned long);
|
||||
int mpz_root (mpz_t, const mpz_t, unsigned long);
|
||||
|
||||
void mpz_fac_ui (mpz_t, unsigned long);
|
||||
void mpz_bin_uiui (mpz_t, unsigned long, unsigned long);
|
||||
|
||||
int mpz_probab_prime_p (const mpz_t, int);
|
||||
|
||||
int mpz_tstbit (const mpz_t, mp_bitcnt_t);
|
||||
void mpz_setbit (mpz_t, mp_bitcnt_t);
|
||||
void mpz_clrbit (mpz_t, mp_bitcnt_t);
|
||||
void mpz_combit (mpz_t, mp_bitcnt_t);
|
||||
|
||||
void mpz_com (mpz_t, const mpz_t);
|
||||
void mpz_and (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_ior (mpz_t, const mpz_t, const mpz_t);
|
||||
void mpz_xor (mpz_t, const mpz_t, const mpz_t);
|
||||
|
||||
mp_bitcnt_t mpz_popcount (const mpz_t);
|
||||
mp_bitcnt_t mpz_hamdist (const mpz_t, const mpz_t);
|
||||
mp_bitcnt_t mpz_scan0 (const mpz_t, mp_bitcnt_t);
|
||||
mp_bitcnt_t mpz_scan1 (const mpz_t, mp_bitcnt_t);
|
||||
|
||||
int mpz_fits_slong_p (const mpz_t);
|
||||
int mpz_fits_ulong_p (const mpz_t);
|
||||
long int mpz_get_si (const mpz_t);
|
||||
unsigned long int mpz_get_ui (const mpz_t);
|
||||
double mpz_get_d (const mpz_t);
|
||||
size_t mpz_size (const mpz_t);
|
||||
mp_limb_t mpz_getlimbn (const mpz_t, mp_size_t);
|
||||
|
||||
void mpz_realloc2 (mpz_t, mp_bitcnt_t);
|
||||
mp_srcptr mpz_limbs_read (mpz_srcptr);
|
||||
mp_ptr mpz_limbs_modify (mpz_t, mp_size_t);
|
||||
mp_ptr mpz_limbs_write (mpz_t, mp_size_t);
|
||||
void mpz_limbs_finish (mpz_t, mp_size_t);
|
||||
mpz_srcptr mpz_roinit_n (mpz_t, mp_srcptr, mp_size_t);
|
||||
|
||||
#define MPZ_ROINIT_N(xp, xs) {{0, (xs),(xp) }}
|
||||
|
||||
void mpz_set_si (mpz_t, signed long int);
|
||||
void mpz_set_ui (mpz_t, unsigned long int);
|
||||
void mpz_set (mpz_t, const mpz_t);
|
||||
void mpz_set_d (mpz_t, double);
|
||||
|
||||
void mpz_init_set_si (mpz_t, signed long int);
|
||||
void mpz_init_set_ui (mpz_t, unsigned long int);
|
||||
void mpz_init_set (mpz_t, const mpz_t);
|
||||
void mpz_init_set_d (mpz_t, double);
|
||||
|
||||
size_t mpz_sizeinbase (const mpz_t, int);
|
||||
char *mpz_get_str (char *, int, const mpz_t);
|
||||
int mpz_set_str (mpz_t, const char *, int);
|
||||
int mpz_init_set_str (mpz_t, const char *, int);
|
||||
|
||||
/* This long list taken from gmp.h. */
|
||||
/* For reference, "defined(EOF)" cannot be used here. In g++ 2.95.4,
|
||||
<iostream> defines EOF but not FILE. */
|
||||
#if defined (FILE) \
|
||||
|| defined (H_STDIO) \
|
||||
|| defined (_H_STDIO) /* AIX */ \
|
||||
|| defined (_STDIO_H) /* glibc, Sun, SCO */ \
|
||||
|| defined (_STDIO_H_) /* BSD, OSF */ \
|
||||
|| defined (__STDIO_H) /* Borland */ \
|
||||
|| defined (__STDIO_H__) /* IRIX */ \
|
||||
|| defined (_STDIO_INCLUDED) /* HPUX */ \
|
||||
|| defined (__dj_include_stdio_h_) /* DJGPP */ \
|
||||
|| defined (_FILE_DEFINED) /* Microsoft */ \
|
||||
|| defined (__STDIO__) /* Apple MPW MrC */ \
|
||||
|| defined (_MSL_STDIO_H) /* Metrowerks */ \
|
||||
|| defined (_STDIO_H_INCLUDED) /* QNX4 */ \
|
||||
|| defined (_ISO_STDIO_ISO_H) /* Sun C++ */ \
|
||||
|| defined (__STDIO_LOADED) /* VMS */
|
||||
size_t mpz_out_str (FILE *, int, const mpz_t);
|
||||
#endif
|
||||
|
||||
void mpz_import (mpz_t, size_t, int, size_t, int, size_t, const void *);
|
||||
void *mpz_export (void *, size_t *, int, size_t, int, size_t, const mpz_t);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
#endif /* MINI_GMP_H */
|
248
src/ninty-233.c
Normal file
248
src/ninty-233.c
Normal file
@ -0,0 +1,248 @@
|
||||
/*
|
||||
ninty-233.c
|
||||
|
||||
Copyright © 2018, 2019 Jbop (https://github.com/jbop1626)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdarg.h>
|
||||
#include <limits.h>
|
||||
#include <time.h>
|
||||
|
||||
#include "ninty-233.h"
|
||||
#include "ecc/ecc.h"
|
||||
#include "sha1/sha1.h"
|
||||
#include "mini-gmp/mini-gmp.h"
|
||||
|
||||
|
||||
static void init_mpz_list(size_t count, mpz_ptr x, ...) {
|
||||
va_list mpz_list;
|
||||
va_start(mpz_list, x);
|
||||
|
||||
size_t i = 0;
|
||||
while (i < count) {
|
||||
mpz_init(x);
|
||||
x = va_arg(mpz_list, mpz_ptr);
|
||||
i++;
|
||||
}
|
||||
|
||||
va_end(mpz_list);
|
||||
}
|
||||
|
||||
static void clear_mpz_list(size_t count, mpz_ptr x, ...) {
|
||||
va_list mpz_list;
|
||||
va_start(mpz_list, x);
|
||||
|
||||
size_t i = 0;
|
||||
while (i < count) {
|
||||
mpz_clear(x);
|
||||
x = va_arg(mpz_list, mpz_ptr);
|
||||
i++;
|
||||
}
|
||||
|
||||
va_end(mpz_list);
|
||||
}
|
||||
|
||||
static void generate_k(const mpz_t n, const mpz_t hash, mpz_t k_out) {
|
||||
// Do NOT use this implementation for generation of k
|
||||
// when creating a signature that must be secure!
|
||||
srand(time(NULL));
|
||||
|
||||
mpz_t random_mpz;
|
||||
mpz_init(random_mpz);
|
||||
|
||||
uint32_t buffer[8] = { 0 };
|
||||
for(int i = 0; i < 8; ++i) {
|
||||
buffer[i] = rand() % UINT32_MAX;
|
||||
}
|
||||
|
||||
mpz_import(random_mpz, 8, 1, sizeof(buffer[0]), 0, 0, buffer);
|
||||
mpz_mul(k_out, random_mpz, hash);
|
||||
while (mpz_cmp(k_out, n) >= 0) {
|
||||
mpz_tdiv_q_ui(k_out, k_out, 7);
|
||||
}
|
||||
|
||||
mpz_clear(random_mpz);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void mpz_to_gf2m(const mpz_t src, element dst) {
|
||||
uint32_t buffer[32] = { 0 };
|
||||
gf2m_set_zero(dst);
|
||||
|
||||
size_t count = 0;
|
||||
mpz_export((void *)buffer, &count, 1, sizeof(dst[0]), 0, 0, src);
|
||||
if (count == 0 || count > INT_MAX) {
|
||||
fprintf(stderr, "mpz_to_gf2m error! Element argument is now zero.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
int i = 7;
|
||||
int j = count - 1;
|
||||
while(i >= 0 && j >= 0) {
|
||||
dst[i] = buffer[j];
|
||||
i--;
|
||||
j--;
|
||||
}
|
||||
}
|
||||
|
||||
void gf2m_to_mpz(const element src, mpz_t dst) {
|
||||
mpz_import(dst, 8, 1, sizeof(src[0]), 0, 0, src);
|
||||
}
|
||||
|
||||
void sha1(const uint8_t * input, uint32_t input_length, unsigned ique_flag, mpz_t hash_out) {
|
||||
SHA1_HASH hash;
|
||||
Sha1Context context;
|
||||
|
||||
Sha1Initialise(&context);
|
||||
Sha1Update(&context, input, input_length);
|
||||
if (ique_flag) {
|
||||
// When performing certain hashes, the iQue Player updates the
|
||||
// SHA1 state with the following magic data.
|
||||
uint8_t ique_magic[4] = { 0x06, 0x09, 0x19, 0x68 };
|
||||
Sha1Update(&context, &ique_magic, 4);
|
||||
}
|
||||
Sha1Finalise(&context, &hash);
|
||||
|
||||
mpz_import(hash_out, 20, 1, sizeof(hash.bytes[0]), 0, 0, (void *)hash.bytes);
|
||||
}
|
||||
|
||||
void ecdh(const element private_key, const ec_point * public_key, ec_point * shared_secret_output) {
|
||||
ec_point_mul(private_key, public_key, shared_secret_output);
|
||||
}
|
||||
|
||||
void ecdsa_sign(const mpz_t z, const element private_key, element r_out, element s_out) {
|
||||
mpz_t r, s, n, D, zero, k, x_p, k_inv, med;
|
||||
init_mpz_list(9, r, s, n, D, zero, k, x_p, k_inv, med);
|
||||
|
||||
gf2m_to_mpz(G_ORDER, n);
|
||||
gf2m_to_mpz(private_key, D);
|
||||
gf2m_set_zero(r_out);
|
||||
gf2m_set_zero(s_out);
|
||||
|
||||
while(!mpz_cmp(r, zero) || !mpz_cmp(s, zero)) {
|
||||
// Generate k in [1, n - 1]
|
||||
generate_k(n, z, k);
|
||||
element k_elem;
|
||||
mpz_to_gf2m(k, k_elem);
|
||||
|
||||
// Calculate P = kG
|
||||
ec_point G, P;
|
||||
gf2m_copy(G_X, G.x);
|
||||
gf2m_copy(G_Y, G.y);
|
||||
ec_point_mul(k_elem, &G, &P);
|
||||
|
||||
// Calculate r = x_p mod n
|
||||
gf2m_to_mpz(P.x, x_p);
|
||||
mpz_mod(r, x_p, n);
|
||||
|
||||
// Calculate s = k^-1(z + rD) mod n
|
||||
if (mpz_invert(k_inv, k, n) == 0) {
|
||||
fprintf(stderr, "An error occurred while calculating the inverse of k mod n.\n");
|
||||
fprintf(stderr, "The resulting signature will be invalid!\n");
|
||||
}
|
||||
mpz_mul(med, r, D);
|
||||
mpz_add(med, z, med);
|
||||
mpz_mod(med, med, n);
|
||||
|
||||
mpz_mul(s, k_inv, med);
|
||||
mpz_mod(s, s, n);
|
||||
}
|
||||
mpz_to_gf2m(r, r_out);
|
||||
mpz_to_gf2m(s, s_out);
|
||||
|
||||
clear_mpz_list(9, r, s, n, D, zero, k, x_p, k_inv, med);
|
||||
}
|
||||
|
||||
int ecdsa_verify(const mpz_t z, const ec_point * public_key, const element r_input, const element s_input) {
|
||||
ec_point Q, test;
|
||||
ec_point_copy(public_key, &Q);
|
||||
element zero = { 0 };
|
||||
|
||||
// If Q is the identity, Q is invalid
|
||||
if (gf2m_is_equal(Q.x, zero) && gf2m_is_equal(Q.y, zero)) {
|
||||
return 0;
|
||||
}
|
||||
// If Q is not a point on the curve, Q is invalid
|
||||
if (!ec_point_on_curve(&Q)) {
|
||||
return 0;
|
||||
}
|
||||
// If nQ is not the identity, Q is invalid (or n is messed up)
|
||||
ec_point_mul(G_ORDER, &Q, &test);
|
||||
if (!(gf2m_is_equal(test.x, zero) && gf2m_is_equal(test.y, zero))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Public key is valid, now verify signature...
|
||||
mpz_t r, s, n;
|
||||
init_mpz_list(3, r, s, n);
|
||||
gf2m_to_mpz(r_input, r);
|
||||
gf2m_to_mpz(s_input, s);
|
||||
gf2m_to_mpz(G_ORDER, n);
|
||||
|
||||
// If r or s are not in [1, n - 1], sig is invalid
|
||||
if ( (mpz_cmp_ui(r, 1) < 0 || mpz_cmp(r, n) > 0 || mpz_cmp(r, n) == 0) ||
|
||||
(mpz_cmp_ui(s, 1) < 0 || mpz_cmp(s, n) > 0 || mpz_cmp(s, n) == 0) ) {
|
||||
clear_mpz_list(3, r, s, n);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Calculate u_1 and u_2
|
||||
mpz_t s_inv, u_1, u_2;
|
||||
init_mpz_list(3, s_inv, u_1, u_2);
|
||||
|
||||
if (mpz_invert(s_inv, s, n) == 0) {
|
||||
fprintf(stderr, "An error occurred while calculating the inverse of s mod n.\n");
|
||||
clear_mpz_list(6, r, s, n, s_inv, u_1, u_2);
|
||||
return 0;
|
||||
}
|
||||
mpz_mul(u_1, z, s_inv);
|
||||
mpz_mod(u_1, u_1, n);
|
||||
mpz_mul(u_2, r, s_inv);
|
||||
mpz_mod(u_2, u_2, n);
|
||||
|
||||
// Calculate P3 = u_1G + u_2Q
|
||||
element u_1_elem, u_2_elem;
|
||||
mpz_to_gf2m(u_1, u_1_elem);
|
||||
mpz_to_gf2m(u_2, u_2_elem);
|
||||
ec_point G, P1, P2, P3;
|
||||
gf2m_copy(G_X, G.x);
|
||||
gf2m_copy(G_Y, G.y);
|
||||
|
||||
ec_point_mul(u_1_elem, &G, &P1);
|
||||
ec_point_mul(u_2_elem, &Q, &P2);
|
||||
ec_point_add(&P1, &P2, &P3);
|
||||
|
||||
// If P3 is the identity, sig is invalid
|
||||
if (gf2m_is_equal(P3.x, zero) && gf2m_is_equal(P3.y, zero)) {
|
||||
clear_mpz_list(6, r, s, n, s_inv, u_1, u_2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// And finally, is r congruent to P3.x mod n?
|
||||
mpz_t x_p;
|
||||
mpz_init(x_p);
|
||||
gf2m_to_mpz(P3.x, x_p);
|
||||
|
||||
int is_congruent = mpz_congruent_p(r, x_p, n) != 0;
|
||||
clear_mpz_list(7, r, s, n, s_inv, u_1, u_2, x_p);
|
||||
return is_congruent;
|
||||
}
|
@ -1,204 +0,0 @@
|
||||
/*
|
||||
ninty-233.cpp
|
||||
|
||||
Copyright © 2018 Jbop (https://github.com/jbop1626);
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "ninty-233.hpp"
|
||||
#include <iomanip>
|
||||
#include <random>
|
||||
#include <limits>
|
||||
|
||||
/*
|
||||
BigUnsigned <--> GF(2^m) element conversions
|
||||
*/
|
||||
BigUnsigned gf2m_to_bigunsigned(const element src) {
|
||||
BigUnsigned dst = src[0];
|
||||
for (int i = 1; i < 8; ++i) {
|
||||
dst <<= 32;
|
||||
dst += src[i];
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
void bigunsigned_to_gf2m(const BigUnsigned & src, element dst) {
|
||||
gf2m_set_zero(dst);
|
||||
BigUnsigned temp = src;
|
||||
for (int i = 7; i >= 0; --i) {
|
||||
BigUnsigned low32 = temp & 0xFFFFFFFF;
|
||||
dst[i] = low32.toUnsignedInt();
|
||||
temp >>= 32;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
SHA-1 result as big (unsigned) integer
|
||||
*/
|
||||
BigUnsigned sha1(uint8_t * input, int length) {
|
||||
SHA1_HASH hash;
|
||||
Sha1Context context;
|
||||
|
||||
Sha1Initialise(&context);
|
||||
Sha1Update(&context, input, length);
|
||||
#if defined(IQUE_ECC) && (IQUE_ECC == 1)
|
||||
uint8_t ique_magic[4] = { 0x06, 0x09, 0x19, 0x68 }; // iQue-specific magic
|
||||
Sha1Update(&context, &ique_magic, 4);
|
||||
#endif
|
||||
Sha1Finalise(&context, &hash);
|
||||
|
||||
BigUnsigned hash_bigint = hash.bytes[0];
|
||||
for (int i = 1; i < 20; ++i) {
|
||||
hash_bigint <<= 8;
|
||||
hash_bigint += hash.bytes[i];
|
||||
}
|
||||
|
||||
return hash_bigint;
|
||||
}
|
||||
|
||||
/*
|
||||
Generation of k, for signing
|
||||
*/
|
||||
BigUnsigned generate_k(const BigUnsigned & n, const BigUnsigned & hash) {
|
||||
BigUnsigned bu_temp = hash;
|
||||
element elem_temp;
|
||||
uint8_t os_temp[32];
|
||||
|
||||
std::random_device rd;
|
||||
std::uniform_int_distribution<unsigned int> dist(1, std::numeric_limits<unsigned int>::max());
|
||||
unsigned int salt = dist(rd);
|
||||
salt = salt * dist(rd);
|
||||
bu_temp += salt;
|
||||
|
||||
bigunsigned_to_gf2m(bu_temp, elem_temp);
|
||||
elem_to_os(elem_temp, os_temp);
|
||||
BigUnsigned k = sha1(os_temp, 32);
|
||||
k *= k;
|
||||
while(k >= n) {
|
||||
k /= 7;
|
||||
}
|
||||
return k;
|
||||
}
|
||||
|
||||
/*
|
||||
ECC algorithms
|
||||
*/
|
||||
void ecdh(const uint8_t * private_key, const uint8_t * public_key, uint8_t * output) {
|
||||
element private_copy;
|
||||
ec_point public_copy;
|
||||
ec_point shared_secret;
|
||||
|
||||
os_to_elem(private_key, private_copy);
|
||||
os_to_point(public_key, public_copy);
|
||||
|
||||
ec_point_mul(private_copy, public_copy, shared_secret);
|
||||
|
||||
point_to_os(shared_secret, output);
|
||||
}
|
||||
|
||||
void ecdsa_sign(const BigUnsigned z, const uint8_t * private_key, element r_out, element s_out) {
|
||||
element private_copy;
|
||||
os_to_elem(private_key, private_copy);
|
||||
|
||||
BigUnsigned r = 0;
|
||||
BigUnsigned s = 0;
|
||||
BigUnsigned n = gf2m_to_bigunsigned(G_order);
|
||||
BigUnsigned D = gf2m_to_bigunsigned(private_copy);
|
||||
|
||||
while(r == 0 || s == 0) {
|
||||
// Generate k in [1, n - 1]
|
||||
BigUnsigned k = generate_k(n, z);
|
||||
element k_elem;
|
||||
bigunsigned_to_gf2m(k, k_elem);
|
||||
|
||||
// Calculate P = kG
|
||||
ec_point G;
|
||||
gf2m_copy(G_x, G.x);
|
||||
gf2m_copy(G_y, G.y);
|
||||
ec_point P;
|
||||
ec_point_mul(k_elem, G, P);
|
||||
|
||||
// Calculate r = x_p mod n
|
||||
BigUnsigned x_p = gf2m_to_bigunsigned(P.x);
|
||||
r = x_p % n;
|
||||
|
||||
// Calculate s = k^-1(z + rD) mod n
|
||||
BigUnsigned k_inv = modinv(k, n);
|
||||
BigUnsigned med = (z + (r * D)) % n;
|
||||
s = (k_inv * med) % n;
|
||||
}
|
||||
bigunsigned_to_gf2m(r, r_out);
|
||||
bigunsigned_to_gf2m(s, s_out);
|
||||
}
|
||||
|
||||
bool ecdsa_verify(const BigUnsigned z, const uint8_t * public_key, const element r_input, const element s_input) {
|
||||
ec_point Q, test;
|
||||
os_to_point(public_key, Q);
|
||||
element zero = { 0 };
|
||||
|
||||
// If Q is the identity, Q is invalid
|
||||
if (gf2m_is_equal(Q.x, zero) && gf2m_is_equal(Q.y, zero)) {
|
||||
return false;
|
||||
}
|
||||
// If Q is not a point on the curve, Q is invalid
|
||||
if (!ec_point_on_curve(Q)) {
|
||||
return false;
|
||||
}
|
||||
// If nQ is not the identity, Q is invalid (or n is messed up)
|
||||
ec_point_mul(G_order, Q, test);
|
||||
if (!(gf2m_is_equal(test.x, zero) && gf2m_is_equal(test.y, zero))) {
|
||||
return false;
|
||||
}
|
||||
// Public key is valid, now verify signature...
|
||||
BigUnsigned r = gf2m_to_bigunsigned(r_input);
|
||||
BigUnsigned s = gf2m_to_bigunsigned(s_input);
|
||||
BigUnsigned n = gf2m_to_bigunsigned(G_order);
|
||||
|
||||
// If r,s are not in [1, n - 1], sig is invalid
|
||||
if (r < 1 || r >= n) {
|
||||
return false;
|
||||
}
|
||||
if (s < 1 || s >= n) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Calculate u_1 and u_2
|
||||
BigUnsigned s_inv = modinv(s, n);
|
||||
BigUnsigned u_1 = (z * s_inv) % n;
|
||||
BigUnsigned u_2 = (r * s_inv) % n;
|
||||
|
||||
// Calculate P3 = u_1G + u_2Q
|
||||
element u_1_elem, u_2_elem;
|
||||
ec_point P1, P2, P3;
|
||||
ec_point G;
|
||||
gf2m_copy(G_x, G.x);
|
||||
gf2m_copy(G_y, G.y);
|
||||
bigunsigned_to_gf2m(u_1, u_1_elem);
|
||||
bigunsigned_to_gf2m(u_2, u_2_elem);
|
||||
|
||||
ec_point_mul(u_1_elem, G, P1);
|
||||
ec_point_mul(u_2_elem, Q, P2);
|
||||
ec_point_add(P1, P2, P3);
|
||||
|
||||
// If P3 is the identity, sig is invalid
|
||||
if (gf2m_is_equal(P3.x, zero) && gf2m_is_equal(P3.y, zero)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// And finally, is r congruent to P3.x mod n?
|
||||
BigUnsigned x_p = gf2m_to_bigunsigned(P3.x);
|
||||
return r == (x_p % n);
|
||||
}
|
59
src/ninty-233.h
Normal file
59
src/ninty-233.h
Normal file
@ -0,0 +1,59 @@
|
||||
/*
|
||||
ninty-233
|
||||
Library for ECC operations using keys defined with
|
||||
sect233r1 / NIST B-233 -- the curve/domain parameters
|
||||
used by Nintendo in the iQue Player and Wii.
|
||||
|
||||
Copyright © 2018, 2019 Jbop (https://github.com/jbop1626)
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef NINTY_233_H
|
||||
#define NINTY_233_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "ecc/ecc.h"
|
||||
#include "mini-gmp/mini-gmp.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
/*
|
||||
Multi-precision integer <--> GF(2^m) element conversions
|
||||
*/
|
||||
void mpz_to_gf2m(const mpz_t src, element dst);
|
||||
void gf2m_to_mpz(const element src, mpz_t dst);
|
||||
|
||||
/*
|
||||
SHA-1 result as multi-precision integer
|
||||
*/
|
||||
#define NOT_IQUE_HASH 0
|
||||
#define IQUE_HASH 1
|
||||
void sha1(const uint8_t * input, uint32_t input_length, unsigned ique_flag, mpz_t hash_out);
|
||||
|
||||
/*
|
||||
ECC algorithms
|
||||
*/
|
||||
void ecdh(const element private_key, const ec_point * public_key, ec_point * shared_secret_output);
|
||||
void ecdsa_sign(const mpz_t hash, const element private_key, element r_out, element s_out);
|
||||
int ecdsa_verify(const mpz_t hash, const ec_point * public_key, const element r_input, const element s_input);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,56 +0,0 @@
|
||||
/*
|
||||
ninty-233
|
||||
Library for ECC operations using keys defined with
|
||||
sect233r1 / NIST B-233 -- the curve/domain parameters
|
||||
used by Nintendo in the iQue Player and Wii.
|
||||
|
||||
Copyright © 2018 Jbop (https://github.com/jbop1626);
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef NINTY_233
|
||||
#define NINTY_233
|
||||
|
||||
#include "bigint/include/BigIntegerLibrary.hpp"
|
||||
#include "ecc/ecc.hpp"
|
||||
#include "sha1/sha1.hpp"
|
||||
|
||||
#define IQUE_ECC 1
|
||||
|
||||
/*
|
||||
BigUnsigned <--> GF(2^m) element conversions
|
||||
*/
|
||||
BigUnsigned gf2m_to_bigunsigned(const element src);
|
||||
void bigunsigned_to_gf2m(const BigUnsigned & src, element dst);
|
||||
|
||||
/*
|
||||
SHA-1 result as big (unsigned) integer
|
||||
*/
|
||||
BigUnsigned sha1(uint8_t * input, int length);
|
||||
|
||||
/*
|
||||
Generation of k, for signing
|
||||
*/
|
||||
BigUnsigned generate_k(const BigUnsigned & n, const BigUnsigned & hash);
|
||||
|
||||
/*
|
||||
ECC algorithms
|
||||
*/
|
||||
void ecdh(const uint8_t * private_key, const uint8_t * public_key, uint8_t * output);
|
||||
void ecdsa_sign(const BigUnsigned hash, const uint8_t * private_key, element r_out, element s_out);
|
||||
bool ecdsa_verify(const BigUnsigned hash, const uint8_t * public_key, const element r_input, const element s_input);
|
||||
|
||||
#endif
|
@ -10,7 +10,8 @@
|
||||
// This is free and unencumbered software released into the public domain - June 2013 waterjuice.org
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#pragma once
|
||||
#ifndef NINTY_233_WJCRYPT_SHA1_H
|
||||
#define NINTY_233_WJCRYPT_SHA1_H
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// IMPORTS
|
||||
@ -22,6 +23,9 @@
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// TYPES
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Sha1Context - This must be initialised using Sha1Initialised. Do not modify the contents of this structure directly.
|
||||
typedef struct
|
||||
@ -92,3 +96,9 @@ void
|
||||
uint32_t BufferSize, // [in]
|
||||
SHA1_HASH* Digest // [in]
|
||||
);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -1,32 +0,0 @@
|
||||
/*
|
||||
Copyright © 2018 Jbop (https://github.com/jbop1626);
|
||||
|
||||
This file is a part of ninty-233.
|
||||
|
||||
ninty-233 is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
ninty-233 is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef NINTY_233_SHA1_HPP
|
||||
#define NINTY_233_SHA1_HPP
|
||||
|
||||
#ifndef __cplusplus
|
||||
#error Do not include this header in a C project
|
||||
#endif
|
||||
|
||||
extern "C" {
|
||||
#include "sha1.h"
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user