//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // WjCryptLib_Sha1 // // Implementation of SHA1 hash function. // Original author: Steve Reid // Contributions by: James H. Brown , Saul Kravitz , // and Ralph Giles // Modified by WaterJuice retaining Public Domain license. // // This is free and unencumbered software released into the public domain - June 2013 waterjuice.org //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // IMPORTS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include "sha1.h" #include //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // DEFINES //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Decide whether to use the Little-Endian shortcut. If the shortcut is not used then the code will work correctly // on either big or little endian, however if we do know it is a little endian architecture we can speed it up a bit. // Note, there are TWO places where USE_LITTLE_ENDIAN_SHORTCUT is used. They MUST be paired together. #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ) // gcc defines __BYTE_ORDER__ so if it says its little endian we can use that. #define USE_LITTLE_ENDIAN_SHORTCUT #elif defined( _WIN32 ) // Windows is always little endian so we can use that. #define USE_LITTLE_ENDIAN_SHORTCUT #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // TYPES //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// typedef union { uint8_t c [64]; uint32_t l [16]; } CHAR64LONG16; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // INTERNAL FUNCTIONS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Endian neutral macro for loading 32 bit value from 4 byte array (in big endian form). #define LOAD32H(x, y) \ { x = ((uint32_t)((y)[0] & 255)<<24) | \ ((uint32_t)((y)[1] & 255)<<16) | \ ((uint32_t)((y)[2] & 255)<<8) | \ ((uint32_t)((y)[3] & 255)); } #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) // blk0() and blk() perform the initial expand. #ifdef USE_LITTLE_ENDIAN_SHORTCUT #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) | (rol(block->l[i],8)&0x00FF00FF)) #else #define blk0(i) block->l[i] #endif #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15] ^ block->l[(i+8)&15] ^ block->l[(i+2)&15] ^ block->l[i&15],1)) // (R0+R1), R2, R3, R4 are the different operations used in SHA1 #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i)+ 0x5A827999 + rol(v,5); w=rol(w,30); #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk(i) + 0x5A827999 + rol(v,5); w=rol(w,30); #define R2(v,w,x,y,z,i) z += (w^x^y) + blk(i) + 0x6ED9EBA1 + rol(v,5); w=rol(w,30); #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk(i) + 0x8F1BBCDC + rol(v,5); w=rol(w,30); #define R4(v,w,x,y,z,i) z += (w^x^y) + blk(i) + 0xCA62C1D6 + rol(v,5); w=rol(w,30); // Loads the 128 bits from ByteArray into WordArray, treating ByteArray as big endian data #ifdef USE_LITTLE_ENDIAN_SHORTCUT #define Load128BitsAsWords( WordArray, ByteArray ) \ memcpy( WordArray, ByteArray, 64 ) #else #define Load128BitsAsWords( WordArray, ByteArray ) \ { \ uint32_t i; \ for( i=0; i<16; i++ ) \ { \ LOAD32H( (WordArray)[i], (ByteArray)+(i*4) ); \ } \ } #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // TransformFunction // // Hash a single 512-bit block. This is the core of the algorithm //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static void TransformFunction ( uint32_t state[5], uint8_t const buffer[64] ) { uint32_t a; uint32_t b; uint32_t c; uint32_t d; uint32_t e; uint8_t workspace[64]; CHAR64LONG16* block = (CHAR64LONG16*) workspace; Load128BitsAsWords( block->l, buffer ); // Copy context->state[] to working vars a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; // 4 rounds of 20 operations each. Loop unrolled. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); // Add the working vars back into context.state[] state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PUBLIC FUNCTIONS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Initialise // // Initialises an SHA1 Context. Use this to initialise/reset a context. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void Sha1Initialise ( Sha1Context* Context // [out] ) { // SHA1 initialisation constants Context->State[0] = 0x67452301; Context->State[1] = 0xEFCDAB89; Context->State[2] = 0x98BADCFE; Context->State[3] = 0x10325476; Context->State[4] = 0xC3D2E1F0; Context->Count[0] = 0; Context->Count[1] = 0; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Update // // Adds data to the SHA1 context. This will process the data and update the internal state of the context. Keep on // calling this function until all the data has been added. Then call Sha1Finalise to calculate the hash. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void Sha1Update ( Sha1Context* Context, // [in out] void const* Buffer, // [in] uint32_t BufferSize // [in] ) { uint32_t i; uint32_t j; j = (Context->Count[0] >> 3) & 63; if( (Context->Count[0] += BufferSize << 3) < (BufferSize << 3) ) { Context->Count[1]++; } Context->Count[1] += (BufferSize >> 29); if( (j + BufferSize) > 63 ) { i = 64 - j; memcpy( &Context->Buffer[j], Buffer, i ); TransformFunction(Context->State, Context->Buffer); for( ; i + 63 < BufferSize; i += 64 ) { TransformFunction(Context->State, (uint8_t*)Buffer + i); } j = 0; } else { i = 0; } memcpy( &Context->Buffer[j], &((uint8_t*)Buffer)[i], BufferSize - i ); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Finalise // // Performs the final calculation of the hash and returns the digest (20 byte buffer containing 160bit hash). After // calling this, Sha1Initialised must be used to reuse the context. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void Sha1Finalise ( Sha1Context* Context, // [in out] SHA1_HASH* Digest // [in] ) { uint32_t i; uint8_t finalcount[8]; for( i=0; i<8; i++ ) { finalcount[i] = (unsigned char)((Context->Count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); // Endian independent } Sha1Update( Context, (uint8_t*)"\x80", 1 ); while( (Context->Count[0] & 504) != 448 ) { Sha1Update( Context, (uint8_t*)"\0", 1 ); } Sha1Update( Context, finalcount, 8 ); // Should cause a Sha1TransformFunction() for( i=0; ibytes[i] = (uint8_t)((Context->State[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Calculate // // Combines Sha1Initialise, Sha1Update, and Sha1Finalise into one function. Calculates the SHA1 hash of the buffer. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void Sha1Calculate ( void const* Buffer, // [in] uint32_t BufferSize, // [in] SHA1_HASH* Digest // [in] ) { Sha1Context context; Sha1Initialise( &context ); Sha1Update( &context, Buffer, BufferSize ); Sha1Finalise( &context, Digest ); }