mirror of
https://gitlab.com/Nanolx/qwad.git
synced 2024-11-21 18:19:18 +01:00
619 lines
22 KiB
Python
619 lines
22 KiB
Python
#!/usr/bin/python
|
|
|
|
from common import *
|
|
|
|
class SoundFile:
|
|
def __init__(self, signal, filename, samplerate=32000):
|
|
self.actual_file = StringIO()
|
|
self.file = wave.open(filename, 'wb')
|
|
self.signal = signal
|
|
self.sr = samplerate
|
|
def write(self):
|
|
self.file.setparams((2, 2, self.sr, self.sr*4, 'NONE', 'noncompressed'))
|
|
self.file.writeframes(self.signal)
|
|
self.actual_file.seek(0)
|
|
self.file.close()
|
|
|
|
class BNS_data(object):
|
|
def __init__(self):
|
|
self.magic = "DATA"
|
|
self.size = 0x0004d000
|
|
def eat(self, buffer, offset):
|
|
self.magic, self.size = struct.unpack('>4sI', buffer[offset:offset+8])
|
|
return offset + 8
|
|
def show(self):
|
|
print "Magic: %s" % self.magic
|
|
print "Length: %08x" % self.size
|
|
return
|
|
def write(self, file):
|
|
file.write(self.magic)
|
|
file.write(struct.pack('>I', self.size))
|
|
file.write(self.data)
|
|
return
|
|
|
|
class BNS_info(object):
|
|
def __init__(self):
|
|
self.magic = "INFO"
|
|
self.size = 0x000000a0
|
|
self.codec = 0x00
|
|
self.has_loop = 0x00
|
|
self.chan_cnt = 0x02
|
|
self.zero = 0x00
|
|
self.samplerate = 0xac44
|
|
self.pad0 = 0x0000
|
|
self.loop_start = 0x00000000
|
|
self.loop_end = 0x00000000
|
|
self.offset_to_chan_starts = 0x00000018
|
|
self.pad2 = 0x00000000
|
|
self.channel1_start_offset = 0x00000020
|
|
self.channel2_start_offset = 0x0000002C
|
|
self.chan1_start = 0x00000000
|
|
self.coefficients1_offset = 0x0000038
|
|
self.pad1 = 0x00000000
|
|
self.chan2_start = 0x00000000
|
|
self.coefficients2_offset = 0x00000068
|
|
self.pad3 = 0x00000000
|
|
self.coefficients1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
self.chan1_gain = 0x0000
|
|
self.chan1_predictive_scale = 0x0000
|
|
self.chan1_previous_value = 0x0000
|
|
self.chan1_next_previous_value = 0x0000
|
|
self.chan1_loop_predictive_scale = 0x0000
|
|
self.chan1_loop_previous_value = 0x0000
|
|
self.chan1_loop_next_previous_value = 0x0000
|
|
self.chan1_loop_padding = 0x0000
|
|
self.coefficients2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
self.chan2_gain = 0x0000
|
|
self.chan2_predictive_scale = 0x0000
|
|
self.chan2_previous_value = 0x0000
|
|
self.chan2_next_previous_value = 0x0000
|
|
self.chan2_loop_predictive_scale = 0x0000
|
|
self.chan2_loop_previous_value = 0x0000
|
|
self.chan2_loop_next_previous_value = 0x0000
|
|
self.chan2_loop_padding = 0x0000
|
|
def eat(self, buffer, offset):
|
|
self.magic, self.size = struct.unpack('>4sI', buffer[offset+0:offset+8])
|
|
self.codec, self.has_loop = struct.unpack('>BB', buffer[offset+8:offset+10])
|
|
self.chan_cnt, self.zero = struct.unpack('>BB', buffer[offset+10:offset+12])
|
|
self.samplerate, self.pad0 = struct.unpack('>HH', buffer[offset+12:offset+16])
|
|
assert self.samplerate <= 48000
|
|
assert self.samplerate > 32000
|
|
self.loop_start, self.loop_end = struct.unpack('>II', buffer[offset+16:offset+24])
|
|
co = offset + 24
|
|
self.offset_to_chan_starts = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.pad2 = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.channel1_start_offset = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.channel2_start_offset = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.chan1_start = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.coefficients1_offset = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
if self.chan_cnt == 2:
|
|
self.pad1 = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.chan2_start = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.coefficients2_offset = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
self.pad3 = Struct.uint32(buffer[co:co+4], endian='>')
|
|
co += 4
|
|
for x in xrange(16):
|
|
self.coefficients1[x] = Struct.int16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_gain = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_predictive_scale = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_next_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_predictive_scale = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_next_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_padding = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
for x in xrange(16):
|
|
self.coefficients2[x] = Struct.int16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_gain = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_predictive_scale = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_next_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_loop_predictive_scale = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_loop_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_loop_next_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan2_loop_padding = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
elif self.chan_cnt == 1:
|
|
for x in xrange(16):
|
|
self.coefficients1[x] = Struct.int16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_gain = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_predictive_scale = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_next_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_predictive_scale = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_next_previous_value = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
self.chan1_loop_padding = Struct.uint16(buffer[co:co+2], endian='>')
|
|
co += 2
|
|
return co
|
|
def show(self):
|
|
print "Magic: %s" % self.magic
|
|
print "Length: %08x" % self.size
|
|
print "Codec: %02x " % self.codec,
|
|
if self.codec == 0: print "ADPCM"
|
|
else: print "Unknown (Maybe >_>, please contact megazig)"
|
|
print "Loop Flag: %02x " % self.has_loop,
|
|
if self.has_loop == 0: print "One shot"
|
|
else: print "Looping"
|
|
print "Channel Count: %02x" % self.chan_cnt
|
|
print "Zero: %02x" % self.zero
|
|
print "Samplerate: %04x %d" % ( self.samplerate , self.samplerate )
|
|
print "Padding: %04x" % self.pad0
|
|
print "Loop Start: %08x" % self.loop_start
|
|
print "Loop End: %08x" % self.loop_end
|
|
print "Channels Starts Offsets: %08x" % self.offset_to_chan_starts
|
|
print "Padding: %08x" % self.pad2
|
|
print "Channel 1 Start Offset: %08x" % self.channel1_start_offset
|
|
print "Channel 2 Start Offset: %08x" % self.channel2_start_offset
|
|
print "Channel 1 Start: %08x" % self.chan1_start
|
|
print "Coefficients 1 Offset: %08x" % self.coefficients1_offset
|
|
if self.chan_cnt == 2:
|
|
print "Padding: %08x" % self.pad1
|
|
print "Channel 2 Start: %08x" % self.chan2_start
|
|
print "Coefficients 2 Offset: %08x" % self.coefficients2_offset
|
|
print "Padding: %08x" % self.pad3
|
|
for x in xrange(16):
|
|
print "\t\tCoefficients 1: %2d - %04x - %d" % ( x , self.coefficients1[x], self.coefficients1[x] )
|
|
print "\tGain: %04x" % self.chan1_gain
|
|
print "\tPredictive Scale: %04x" % self.chan1_predictive_scale
|
|
print "\tPrevious Value: %04x" % self.chan1_previous_value
|
|
print "\tNext Previous Value: %04x" % self.chan1_next_previous_value
|
|
print "\tLoop Predictive Scale: %04x" % self.chan1_loop_predictive_scale
|
|
print "\tLoop Previous Value: %04x" % self.chan1_loop_previous_value
|
|
print "\tLoop Next Previous Value: %04x" % self.chan1_loop_next_previous_value
|
|
print "\tPadding: %04x" % self.chan1_loop_padding
|
|
for x in xrange(16):
|
|
print "\t\tCoefficients 2: %2d - %04x - %d" % ( x , self.coefficients2[x], self.coefficients2[x] )
|
|
print "\tGain: %04x" % self.chan2_gain
|
|
print "\tPredictive Scale: %04x" % self.chan2_predictive_scale
|
|
print "\tPrevious Value: %04x" % self.chan2_previous_value
|
|
print "\tNext Previous Value: %04x" % self.chan2_next_previous_value
|
|
print "\tLoop Predictive Scale: %04x" % self.chan2_loop_predictive_scale
|
|
print "\tLoop Previous Value: %04x" % self.chan2_loop_previous_value
|
|
print "\tLoop Next Previous Value: %04x" % self.chan2_loop_next_previous_value
|
|
print "\tPadding: %04x" % self.chan2_loop_padding
|
|
elif self.chan_cnt == 1:
|
|
for x in xrange(16):
|
|
print "\t\tCoefficients 1: %2d - %04x - %d" % ( x , self.coefficients1[x], self.coefficients1[x] )
|
|
print "\tGain: %04x" % self.chan1_gain
|
|
print "\tPredictive Scale: %04x" % self.chan1_predictive_scale
|
|
print "\tPrevious Value: %04x" % self.chan1_previous_value
|
|
print "\tNext Previous Value: %04x" % self.chan1_next_previous_value
|
|
print "\tLoop Predictive Scale: %04x" % self.chan1_loop_predictive_scale
|
|
print "\tLoop Previous Value: %04x" % self.chan1_loop_previous_value
|
|
print "\tLoop Next Previous Value: %04x" % self.chan1_loop_next_previous_value
|
|
print "\tPadding: %04x" % self.chan1_loop_padding
|
|
return
|
|
def write(self, file):
|
|
file.write(self.magic)
|
|
file.write(struct.pack('>I', self.size))
|
|
file.write(struct.pack('>B', self.codec))
|
|
file.write(struct.pack('>B', self.has_loop))
|
|
file.write(struct.pack('>B', self.chan_cnt))
|
|
file.write(struct.pack('>B', self.zero))
|
|
file.write(struct.pack('>H', self.samplerate))
|
|
file.write(struct.pack('>H', self.pad0))
|
|
file.write(struct.pack('>I', self.loop_start))
|
|
file.write(struct.pack('>I', self.loop_end))
|
|
file.write(struct.pack('>I', self.offset_to_chan_starts))
|
|
file.write(struct.pack('>I', self.pad2))
|
|
file.write(struct.pack('>I', self.channel1_start_offset))
|
|
file.write(struct.pack('>I', self.channel2_start_offset))
|
|
file.write(struct.pack('>I', self.chan1_start))
|
|
file.write(struct.pack('>I', self.coefficients1_offset))
|
|
if self.chan_cnt == 2:
|
|
file.write(struct.pack('>I', self.pad1))
|
|
file.write(struct.pack('>I', self.chan2_start))
|
|
file.write(struct.pack('>I', self.coefficients2_offset))
|
|
file.write(struct.pack('>I', self.pad3))
|
|
for x in xrange(16):
|
|
file.write(struct.pack('>h', self.coefficients1[x]))
|
|
file.write(struct.pack('>H', self.chan1_gain))
|
|
file.write(struct.pack('>H', self.chan1_predictive_scale))
|
|
file.write(struct.pack('>H', self.chan1_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_next_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_loop_predictive_scale))
|
|
file.write(struct.pack('>H', self.chan1_loop_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_loop_next_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_loop_padding))
|
|
for x in xrange(16):
|
|
file.write(struct.pack('>h', self.coefficients2[x]))
|
|
file.write(struct.pack('>H', self.chan2_gain))
|
|
file.write(struct.pack('>H', self.chan2_predictive_scale))
|
|
file.write(struct.pack('>H', self.chan2_previous_value))
|
|
file.write(struct.pack('>H', self.chan2_next_previous_value))
|
|
file.write(struct.pack('>H', self.chan2_loop_predictive_scale))
|
|
file.write(struct.pack('>H', self.chan2_loop_previous_value))
|
|
file.write(struct.pack('>H', self.chan2_loop_next_previous_value))
|
|
file.write(struct.pack('>H', self.chan2_loop_padding))
|
|
elif self.chan_cnt == 1:
|
|
for x in xrange(16):
|
|
file.write(struct.pack('>h', self.coefficients1[x]))
|
|
file.write(struct.pack('>H', self.chan1_gain))
|
|
file.write(struct.pack('>H', self.chan1_predictive_scale))
|
|
file.write(struct.pack('>H', self.chan1_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_next_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_loop_predictive_scale))
|
|
file.write(struct.pack('>H', self.chan1_loop_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_loop_next_previous_value))
|
|
file.write(struct.pack('>H', self.chan1_loop_padding))
|
|
return
|
|
|
|
|
|
class BNS_header(object):
|
|
def __init__(self):
|
|
self.magic = "BNS "
|
|
self.flags = 0xfeff0100
|
|
self.filesize = 0x0004d0c0
|
|
self.size = 0x0020
|
|
self.chunk_cnt = 0x0002
|
|
self.info_off = 0x00000020
|
|
self.info_len = 0x000000a0
|
|
self.data_off = 0x000000c0
|
|
self.data_len = 0x0004d000
|
|
def eat(self, buffer, offset):
|
|
if struct.unpack('>4s', buffer[offset:offset+4])[0] != "BNS ":
|
|
offset += 0x20
|
|
self.magic, self.flags = struct.unpack('>4sI', buffer[offset+0:offset+8])
|
|
self.filesize, self.size, self.chunk_cnt = struct.unpack('>IHH', buffer[offset+8:offset+16])
|
|
self.info_off, self.info_len = struct.unpack('>II', buffer[offset+16:offset+24])
|
|
self.data_off, self.data_len = struct.unpack('>II', buffer[offset+24:offset+32])
|
|
assert self.magic == "BNS "
|
|
assert self.info_off < self.filesize
|
|
assert self.data_off < self.filesize
|
|
return offset + 32
|
|
def show(self):
|
|
print "Magic: %s" % self.magic
|
|
print "Flags: %08x" % self.flags
|
|
print "Length: %08x" % self.filesize
|
|
print "Header Size: %04x" % self.size
|
|
print "Chunk Count: %04x" % self.chunk_cnt
|
|
print "Info Offset: %08x" % self.info_off
|
|
print "Info Length: %08x" % self.info_len
|
|
print "Data Offset: %08x" % self.data_off
|
|
print "Data Length: %08x" % self.data_len
|
|
return
|
|
def write(self, file):
|
|
file.write(self.magic)
|
|
file.write(struct.pack('>I', self.flags))
|
|
file.write(struct.pack('>I', self.filesize))
|
|
file.write(struct.pack('>H', self.size))
|
|
file.write(struct.pack('>H', self.chunk_cnt))
|
|
file.write(struct.pack('>I', self.info_off))
|
|
file.write(struct.pack('>I', self.info_len))
|
|
file.write(struct.pack('>I', self.data_off))
|
|
file.write(struct.pack('>I', self.data_len))
|
|
return
|
|
|
|
class BNS(object):
|
|
def __init__(self):
|
|
self.header = BNS_header()
|
|
self.info = BNS_info()
|
|
self.data = BNS_data()
|
|
self.buffered_data = ""
|
|
self.lsamps = [ [ 0 , 0 ] , [ 0 , 0 ] ]
|
|
self.rlsamps = [ [ 0 , 0 ] , [ 0 , 0 ] ]
|
|
self.tlsamps = [ 0 , 0 ]
|
|
self.hbc_deftbl = [ 674 , 1040,
|
|
3598, -1738,
|
|
2270, -583,
|
|
3967, -1969,
|
|
1516, 381,
|
|
3453, -1468,
|
|
2606, -617,
|
|
3795, -1759 ]
|
|
self.deftbl = [ 1820 , -856 ,
|
|
3238 , -1514 ,
|
|
2333 , -550 ,
|
|
3336 , -1376 ,
|
|
2444 , -949 ,
|
|
3666 , -1764 ,
|
|
2654 , -701 ,
|
|
3420 , -1398 ]
|
|
self.phist1 = [ 0 , 0 ]
|
|
self.phist2 = [ 0 , 0 ]
|
|
self.errors = 0
|
|
def find_exp(self, residual):
|
|
exp = 0
|
|
while residual>7.5 or residual<-8.5:
|
|
exp += 1
|
|
residual /= 2.0
|
|
return exp
|
|
def determine_std_exponent(self, idx, table, index, inbuf):
|
|
elsamps = [ 0 , 0 ]
|
|
max_res = 0
|
|
factor1 = table[2*index+0]
|
|
factor2 = table[2*index+1]
|
|
for x in xrange(2):
|
|
elsamps[x] = self.rlsamps[idx][x]
|
|
for i in xrange(14):
|
|
predictor = (elsamps[1]*factor1 + elsamps[0]*factor2) >> 11
|
|
residual = inbuf[i] - predictor
|
|
if residual>max_res:
|
|
max_res = residual
|
|
elsamps[0] = elsamps[1]
|
|
elsamps[1] = inbuf[i]
|
|
return self.find_exp(max_res)
|
|
def compress_adpcm(self, idx, table, tblidx, inbuf):
|
|
data = [0 for i in range(8)]
|
|
error = 0
|
|
factor1 = table[2*tblidx+0]
|
|
factor2 = table[2*tblidx+1]
|
|
exp = self.determine_std_exponent(idx, table, tblidx, inbuf)
|
|
while exp<=15:
|
|
error = 0
|
|
data[0] = exp | (tblidx << 4)
|
|
for x in xrange(2):
|
|
self.tlsamps[x] = self.rlsamps[idx][x]
|
|
j = 0
|
|
for i in xrange(14):
|
|
predictor = (self.tlsamps[1]*factor1 + self.tlsamps[0]*factor2) >> 11
|
|
residual = inbuf[i] - predictor
|
|
residual = residual >> exp
|
|
if residual>7 or residual<-8:
|
|
exp += 1
|
|
break
|
|
nibble = clamp(residual, -8, 7)
|
|
if i&1:
|
|
data[i/2+1] = data[i/2+1] | (nibble & 0xf)
|
|
else:
|
|
data[i/2+1] = nibble << 4
|
|
predictor = predictor + (nibble << exp)
|
|
self.tlsamps[0] = self.tlsamps[1]
|
|
self.tlsamps[1] = clamp(predictor, -32768, 32767)
|
|
error = error + ((self.tlsamps[1] - inbuf[i]) ** 2)
|
|
else:
|
|
j = 14
|
|
if j == 14:
|
|
break
|
|
return error, data
|
|
def repack_adpcm(self, idx, table, inbuf):
|
|
data = [0 for i in range(8)]
|
|
blsamps = [ 0 , 0 ]
|
|
bestidx = -1
|
|
besterror = 999999999.0
|
|
for tblidx in xrange(8):
|
|
error, testdata = self.compress_adpcm(idx, table, tblidx, inbuf)
|
|
if error < besterror:
|
|
besterror = error
|
|
for x in xrange(8):
|
|
data[x] = testdata[x]
|
|
for x in xrange(2):
|
|
blsamps[x] = self.tlsamps[x]
|
|
bestidx = tblidx
|
|
for x in xrange(2):
|
|
self.rlsamps[idx][x] = blsamps[x]
|
|
return data
|
|
def encode(self, buffer, offset=0):
|
|
sampsbuf = [0 for i in range(14)]
|
|
templen = len(buffer)
|
|
templen = templen / 4
|
|
modlen = templen % 14
|
|
for x in xrange(14-modlen):
|
|
buffer = buffer + '\x00'
|
|
buffer = buffer + '\x00'
|
|
buffer = buffer + '\x00'
|
|
buffer = buffer + '\x00'
|
|
num_samps = len(buffer) / 4
|
|
blocks = (num_samps + 13) / 14
|
|
snddatal = []
|
|
snddatar = []
|
|
co = offset
|
|
temp = 0
|
|
for x in xrange(num_samps):
|
|
snddatal.append(Struct.int16(buffer[co:co+2]))
|
|
co += 2
|
|
snddatar.append(Struct.int16(buffer[co:co+2]))
|
|
co += 2
|
|
data = [0 for i in range(blocks*16)]
|
|
data1_off = 0
|
|
data2_off = blocks * 8
|
|
self.info.chan2_start = data2_off
|
|
for i in xrange(blocks):
|
|
for j in xrange(14):
|
|
sampsbuf[j] = snddatal[i*14+j]
|
|
out_buf = self.repack_adpcm(0, self.deftbl, sampsbuf)
|
|
for k in xrange(8):
|
|
data[data1_off+k] = out_buf[k]
|
|
for j in xrange(14):
|
|
sampsbuf[j] = snddatar[i*14+j]
|
|
out_buf = self.repack_adpcm(1, self.deftbl, sampsbuf)
|
|
for k in xrange(8):
|
|
data[data2_off+k] = out_buf[k]
|
|
data1_off += 8
|
|
data2_off += 8
|
|
self.info.loop_end = blocks * 7
|
|
return data
|
|
def create_bns(self, inbuf, samplerate=44100, channels=2):
|
|
self.info.chan_cnt = channels
|
|
self.info.samplerate = samplerate
|
|
assert samplerate >=32000
|
|
self.data.data = ''.join(Struct.int8(p) for p in self.encode(inbuf))
|
|
self.data.size = len(self.data.data)
|
|
self.header.data_len = self.data.size
|
|
self.header.filesize = self.info.size + self.data.size + 8 + self.header.size
|
|
self.info.loop_end = self.data.size - (self.data.size / 7)
|
|
for x in xrange(16):
|
|
self.info.coefficients1[x] = self.deftbl[x]
|
|
if self.info.chan_cnt == 2:
|
|
for x in xrange(16): self.info.coefficients2[x] = self.deftbl[x]
|
|
return
|
|
def decode_adpcm(self, index, coefs, buffer):
|
|
outbuf = [0 for i in range(14)]
|
|
header = Struct.uint8(buffer[0:1], endian='>')
|
|
coef_index = (header >> 4) & 0x7
|
|
scale = 1 << (header & 0xf)
|
|
hist1 = self.phist1[index]
|
|
hist2 = self.phist2[index]
|
|
coef1 = coefs[coef_index * 2 + 0]
|
|
coef2 = coefs[coef_index * 2 + 1]
|
|
for x in xrange(14):
|
|
sample_byte = Struct.uint8(buffer[x/2+1:x/2+2], endian='>')
|
|
if x&1:
|
|
nibble = (sample_byte & 0xf0) >> 4
|
|
else:
|
|
nibble = (sample_byte & 0x0f) >> 0
|
|
if nibble >= 8:
|
|
nibble -= 16
|
|
sample_delta_11 = (scale * nibble) << 11
|
|
predicted_sample_11 = coef1*hist1 + coef2*hist2
|
|
sample_11 = predicted_sample_11 + sample_delta_11
|
|
sample_raw = (sample_11 + 1024) >> 11
|
|
sample_raw = clamp(sample_raw, -32768, 32767)
|
|
outbuf[x] = sample_raw
|
|
hist2 = hist1
|
|
hist1 = outbuf[x]
|
|
self.phist1[index] = hist1
|
|
self.phist2[index] = hist2
|
|
return outbuf
|
|
def decode(self, buffer, offset):
|
|
decoded_buffer = []
|
|
if self.info.chan_cnt == 2:
|
|
multi = 16
|
|
coeff0 = self.info.coefficients1
|
|
coeff1 = self.info.coefficients2
|
|
elif self.info.chan_cnt == 1:
|
|
multi = 8
|
|
coeff0 = self.info.coefficients1
|
|
coeff1 = self.info.coefficients1
|
|
blocks = self.data.size / multi
|
|
data1_offset = offset
|
|
data2_offset = offset + blocks * 8
|
|
decoded_buffer_l = [0 for i in range(blocks * 14)]
|
|
decoded_buffer_r = [0 for i in range(blocks * 14)]
|
|
for x in xrange(blocks):
|
|
out_buffer = self.decode_adpcm(0, coeff0, buffer[data1_offset:data1_offset+8])
|
|
for y in xrange(14):
|
|
decoded_buffer_l[x*14+y] = out_buffer[y]
|
|
out_buffer = self.decode_adpcm(1, coeff1, buffer[data2_offset:data2_offset+8])
|
|
for y in xrange(14):
|
|
decoded_buffer_r[x*14+y] = out_buffer[y]
|
|
data1_offset += 8
|
|
data2_offset += 8
|
|
for x in xrange(blocks * 14):
|
|
decoded_buffer.append(decoded_buffer_l[x])
|
|
decoded_buffer.append(decoded_buffer_r[x])
|
|
return decoded_buffer
|
|
def eat(self, buffer, offset, decode=False):
|
|
co = self.header.eat(buffer, offset)
|
|
co = self.info.eat(buffer, co)
|
|
co = self.data.eat(buffer, co)
|
|
self.data.data = buffer[co:]
|
|
if decode == True:
|
|
buffer_out = self.decode(buffer, co)
|
|
return buffer_out
|
|
return
|
|
def show(self):
|
|
self.header.show()
|
|
self.info.show()
|
|
self.data.show()
|
|
return
|
|
def write(self, filename):
|
|
file = open(filename, 'wb')
|
|
if file:
|
|
self.header.write(file)
|
|
self.info.write(file)
|
|
self.data.write(file)
|
|
file.close()
|
|
else:
|
|
print "Could not open file for writing"
|
|
return
|
|
|
|
def main():
|
|
if sys.argv[1] == "-d":
|
|
file = open(sys.argv[2], 'rb')
|
|
if file:
|
|
buffer = file.read()
|
|
file.close()
|
|
else:
|
|
print "Could not open file"
|
|
sys.exit(2)
|
|
bns = BNS()
|
|
wavbuffer = bns.eat(buffer, 0x00, True)
|
|
wavstring = ''.join(Struct.int16(p) for p in wavbuffer)
|
|
f = SoundFile(wavstring, sys.argv[3], bns.info.samplerate)
|
|
f.write()
|
|
|
|
elif sys.argv[1] == "-e":
|
|
f = wave.open(sys.argv[2], 'rb')
|
|
num_chans = f.getnchannels()
|
|
samplerate = f.getframerate()
|
|
assert samplerate >= 32000
|
|
assert samplerate <= 48000
|
|
buffer = f.readframes(f.getnframes())
|
|
f.close()
|
|
|
|
bns = BNS()
|
|
bns.create_bns(buffer, samplerate, num_chans)
|
|
bns.write(sys.argv[3])
|
|
elif sys.argv[1] == "-s":
|
|
file = open(sys.argv[2], 'rb')
|
|
if file:
|
|
buffer = file.read()
|
|
file.close()
|
|
else:
|
|
print "Could not open file"
|
|
sys.exit(2)
|
|
bns = BNS()
|
|
bns.eat(buffer, 0x00, False)
|
|
bns.show()
|
|
else:
|
|
print "Unknown second argument. possiblities are -d and -e"
|
|
print "Usage: python bns.py -d <sound.bin> <output.wav>"
|
|
print " == OR == "
|
|
print " python bns.py -e <input.wav> <sound.bin> "
|
|
print " == OR == "
|
|
print " python bns.py -s <sound.bin> "
|
|
sys.exit(1)
|
|
|
|
if __name__ == "__main__":
|
|
# Import Psyco if available
|
|
try:
|
|
import psyco
|
|
psyco.full()
|
|
except ImportError:
|
|
print "no psycho import"
|
|
if len(sys.argv) == 1:
|
|
print "Usage: python bns.py -d <sound.bin> <output.wav>"
|
|
print " == OR == "
|
|
print " python bns.py -e <input.wav> <sound.bin> "
|
|
print " == OR == "
|
|
print " python bns.py -s <sound.bin> "
|
|
sys.exit(1)
|
|
main()
|
|
|