Rework GPU VMM variable naming

This commit is contained in:
Billy Laws 2020-11-08 20:14:14 +00:00 committed by ◱ PixelyIon
parent 4c9d453008
commit c7e5202042
7 changed files with 101 additions and 100 deletions

View File

@ -16,7 +16,7 @@ namespace skyline::gpu::vmm {
std::optional<ChunkDescriptor> MemoryManager::FindChunk(ChunkState state, u64 size, u64 alignment) { std::optional<ChunkDescriptor> MemoryManager::FindChunk(ChunkState state, u64 size, u64 alignment) {
auto chunk{std::find_if(chunks.begin(), chunks.end(), [state, size, alignment](const ChunkDescriptor &chunk) -> bool { auto chunk{std::find_if(chunks.begin(), chunks.end(), [state, size, alignment](const ChunkDescriptor &chunk) -> bool {
return (alignment ? util::IsAligned(chunk.address, alignment) : true) && chunk.size > size && chunk.state == state; return (alignment ? util::IsAligned(chunk.virtAddr, alignment) : true) && chunk.size > size && chunk.state == state;
})}; })};
if (chunk != chunks.end()) if (chunk != chunks.end())
@ -30,7 +30,7 @@ namespace skyline::gpu::vmm {
for (auto chunk{chunks.begin()}; chunk != chunkEnd; chunk++) { for (auto chunk{chunks.begin()}; chunk != chunkEnd; chunk++) {
if (chunk->CanContain(newChunk)) { if (chunk->CanContain(newChunk)) {
auto oldChunk{*chunk}; auto oldChunk{*chunk};
u64 newSize{newChunk.address - chunk->address}; u64 newSize{newChunk.virtAddr - chunk->virtAddr};
u64 extension{chunk->size - newSize - newChunk.size}; u64 extension{chunk->size - newSize - newChunk.size};
if (newSize == 0) { if (newSize == 0) {
@ -41,16 +41,16 @@ namespace skyline::gpu::vmm {
} }
if (extension) if (extension)
chunks.insert(std::next(chunk), ChunkDescriptor(newChunk.address + newChunk.size, extension, (oldChunk.state == ChunkState::Mapped) ? (oldChunk.pointer + newSize + newChunk.size) : 0, oldChunk.state)); chunks.insert(std::next(chunk), ChunkDescriptor(newChunk.virtAddr + newChunk.size, extension, (oldChunk.state == ChunkState::Mapped) ? (oldChunk.cpuPtr + newSize + newChunk.size) : 0, oldChunk.state));
return newChunk.address; return newChunk.virtAddr;
} else if (chunk->address + chunk->size > newChunk.address) { } else if (chunk->virtAddr + chunk->size > newChunk.virtAddr) {
chunk->size = newChunk.address - chunk->address; chunk->size = newChunk.virtAddr - chunk->virtAddr;
// Deletes all chunks that are within the chunk being inserted and split the final one // Deletes all chunks that are within the chunk being inserted and split the final one
auto tailChunk{std::next(chunk)}; auto tailChunk{std::next(chunk)};
while (tailChunk != chunkEnd) { while (tailChunk != chunkEnd) {
if (tailChunk->address + tailChunk->size >= newChunk.address + newChunk.size) if (tailChunk->virtAddr + tailChunk->size >= newChunk.virtAddr + newChunk.size)
break; break;
tailChunk = chunks.erase(tailChunk); tailChunk = chunks.erase(tailChunk);
@ -61,11 +61,11 @@ namespace skyline::gpu::vmm {
if (tailChunk == chunkEnd) if (tailChunk == chunkEnd)
break; break;
u64 chunkSliceOffset{newChunk.address + newChunk.size - tailChunk->address}; u64 chunkSliceOffset{newChunk.virtAddr + newChunk.size - tailChunk->virtAddr};
tailChunk->address += chunkSliceOffset; tailChunk->virtAddr += chunkSliceOffset;
tailChunk->size -= chunkSliceOffset; tailChunk->size -= chunkSliceOffset;
if (tailChunk->state == ChunkState::Mapped) if (tailChunk->state == ChunkState::Mapped)
tailChunk->pointer += chunkSliceOffset; tailChunk->cpuPtr += chunkSliceOffset;
// If the size of the head chunk is zero then we can directly replace it with our new one rather than inserting it // If the size of the head chunk is zero then we can directly replace it with our new one rather than inserting it
auto headChunk{std::prev(tailChunk)}; auto headChunk{std::prev(tailChunk)};
@ -74,7 +74,7 @@ namespace skyline::gpu::vmm {
else else
chunks.insert(std::next(headChunk), newChunk); chunks.insert(std::next(headChunk), newChunk);
return newChunk.address; return newChunk.virtAddr;
} }
} }
@ -94,44 +94,44 @@ namespace skyline::gpu::vmm {
return InsertChunk(chunk); return InsertChunk(chunk);
} }
u64 MemoryManager::ReserveFixed(u64 address, u64 size) { u64 MemoryManager::ReserveFixed(u64 virtAddr, u64 size) {
if (!util::IsAligned(address, constant::GpuPageSize)) if (!util::IsAligned(virtAddr, constant::GpuPageSize))
return 0; return 0;
size = util::AlignUp(size, constant::GpuPageSize); size = util::AlignUp(size, constant::GpuPageSize);
return InsertChunk(ChunkDescriptor(address, size, 0, ChunkState::Reserved)); return InsertChunk(ChunkDescriptor(virtAddr, size, nullptr, ChunkState::Reserved));
} }
u64 MemoryManager::MapAllocate(u8 *pointer, u64 size) { u64 MemoryManager::MapAllocate(u8 *cpuPtr, u64 size) {
size = util::AlignUp(size, constant::GpuPageSize); size = util::AlignUp(size, constant::GpuPageSize);
auto mappedChunk{FindChunk(ChunkState::Unmapped, size)}; auto mappedChunk{FindChunk(ChunkState::Unmapped, size)};
if (!mappedChunk) if (!mappedChunk)
return 0; return 0;
auto chunk{*mappedChunk}; auto chunk{*mappedChunk};
chunk.pointer = pointer; chunk.cpuPtr = cpuPtr;
chunk.size = size; chunk.size = size;
chunk.state = ChunkState::Mapped; chunk.state = ChunkState::Mapped;
return InsertChunk(chunk); return InsertChunk(chunk);
} }
u64 MemoryManager::MapFixed(u64 address, u8 *pointer, u64 size) { u64 MemoryManager::MapFixed(u64 virtAddr, u8 *cpuPtr, u64 size) {
if (!util::IsAligned(address, constant::GpuPageSize)) if (!util::IsAligned(virtAddr, constant::GpuPageSize))
return false; return false;
size = util::AlignUp(size, constant::GpuPageSize); size = util::AlignUp(size, constant::GpuPageSize);
return InsertChunk(ChunkDescriptor(address, size, pointer, ChunkState::Mapped)); return InsertChunk(ChunkDescriptor(virtAddr, size, cpuPtr, ChunkState::Mapped));
} }
bool MemoryManager::Unmap(u64 address, u64 size) { bool MemoryManager::Unmap(u64 virtAddr, u64 size) {
if (!util::IsAligned(address, constant::GpuPageSize)) if (!util::IsAligned(virtAddr, constant::GpuPageSize))
return false; return false;
try { try {
InsertChunk(ChunkDescriptor(address, size, 0, ChunkState::Unmapped)); InsertChunk(ChunkDescriptor(virtAddr, size, 0, ChunkState::Unmapped));
} catch (const std::exception &e) { } catch (const std::exception &e) {
return false; return false;
} }
@ -139,19 +139,19 @@ namespace skyline::gpu::vmm {
return true; return true;
} }
void MemoryManager::Read(u8 *destination, u64 address, u64 size) const { void MemoryManager::Read(u8 *destination, u64 virtAddr, u64 size) const {
auto chunk{std::upper_bound(chunks.begin(), chunks.end(), address, [](const u64 address, const ChunkDescriptor &chunk) -> bool { auto chunk{std::upper_bound(chunks.begin(), chunks.end(), virtAddr, [](const u64 address, const ChunkDescriptor &chunk) -> bool {
return address < chunk.address; return address < chunk.virtAddr;
})}; })};
if (chunk == chunks.end() || chunk->state != ChunkState::Mapped) if (chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to read region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", address, size); throw exception("Failed to read region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
chunk--; chunk--;
u64 initialSize{size}; u64 initialSize{size};
u64 chunkOffset{address - chunk->address}; u64 chunkOffset{virtAddr - chunk->virtAddr};
u8 *source{chunk->pointer + chunkOffset}; u8 *source{chunk->cpuPtr + chunkOffset};
u64 sourceSize{std::min(chunk->size - chunkOffset, size)}; u64 sourceSize{std::min(chunk->size - chunkOffset, size)};
// A continuous region in the GPU address space may be made up of several discontinuous regions in physical memory so we have to iterate over all chunks // A continuous region in the GPU address space may be made up of several discontinuous regions in physical memory so we have to iterate over all chunks
@ -161,27 +161,27 @@ namespace skyline::gpu::vmm {
size -= sourceSize; size -= sourceSize;
if (size) { if (size) {
if (++chunk == chunks.end() || chunk->state != ChunkState::Mapped) if (++chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to read region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", address, size); throw exception("Failed to read region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
source = chunk->pointer; source = chunk->cpuPtr;
sourceSize = std::min(chunk->size, size); sourceSize = std::min(chunk->size, size);
} }
} }
} }
void MemoryManager::Write(u8 *source, u64 address, u64 size) const { void MemoryManager::Write(u8 *source, u64 virtAddr, u64 size) const {
auto chunk{std::upper_bound(chunks.begin(), chunks.end(), address, [](const u64 address, const ChunkDescriptor &chunk) -> bool { auto chunk{std::upper_bound(chunks.begin(), chunks.end(), virtAddr, [](const u64 address, const ChunkDescriptor &chunk) -> bool {
return address < chunk.address; return address < chunk.virtAddr;
})}; })};
if (chunk == chunks.end() || chunk->state != ChunkState::Mapped) if (chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to write region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", address, size); throw exception("Failed to write region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
chunk--; chunk--;
u64 initialSize{size}; u64 initialSize{size};
u64 chunkOffset{address - chunk->address}; u64 chunkOffset{virtAddr - chunk->virtAddr};
u8 *destination{chunk->pointer + chunkOffset}; u8 *destination{chunk->cpuPtr + chunkOffset};
u64 destinationSize{std::min(chunk->size - chunkOffset, size)}; u64 destinationSize{std::min(chunk->size - chunkOffset, size)};
// A continuous region in the GPU address space may be made up of several discontinuous regions in physical memory so we have to iterate over all chunks // A continuous region in the GPU address space may be made up of several discontinuous regions in physical memory so we have to iterate over all chunks
@ -191,9 +191,9 @@ namespace skyline::gpu::vmm {
size -= destinationSize; size -= destinationSize;
if (size) { if (size) {
if (++chunk == chunks.end() || chunk->state != ChunkState::Mapped) if (++chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to write region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", address, size); throw exception("Failed to write region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
destination = chunk->pointer; destination = chunk->cpuPtr;
destinationSize = std::min(chunk->size, size); destinationSize = std::min(chunk->size, size);
} }
} }

View File

@ -11,30 +11,30 @@ namespace skyline {
} }
namespace gpu::vmm { namespace gpu::vmm {
enum ChunkState { enum class ChunkState {
Unmapped, //!< The chunk is unmapped Unmapped, //!< The chunk is unmapped
Reserved, //!< The chunk is reserved Reserved, //!< The chunk is reserved
Mapped //!< The chunk is mapped and a CPU side address is present Mapped //!< The chunk is mapped and a CPU side address is present
}; };
struct ChunkDescriptor { struct ChunkDescriptor {
u64 address; //!< The address of the chunk in the GPU address space u64 virtAddr; //!< The address of the chunk in the virtual address space
u64 size; //!< The size of the chunk in bytes u64 size; //!< The size of the chunk in bytes
u8 *pointer; //!< A pointer to the chunk in the CPU address space (if mapped) u8 *cpuPtr; //!< A pointer to the chunk in the application's address space (if mapped)
ChunkState state; ChunkState state;
ChunkDescriptor(u64 address, u64 size, u8 *pointer, ChunkState state) : address(address), size(size), pointer(pointer), state(state) {} ChunkDescriptor(u64 virtAddr, u64 size, u8 *cpuPtr, ChunkState state) : virtAddr(virtAddr), size(size), cpuPtr(cpuPtr), state(state) {}
/** /**
* @return If the given chunk can be contained wholly within this chunk * @return If the given chunk can be contained wholly within this chunk
*/ */
inline bool CanContain(const ChunkDescriptor &chunk) { inline bool CanContain(const ChunkDescriptor &chunk) {
return (chunk.address >= this->address) && ((this->size + this->address) >= (chunk.size + chunk.address)); return (chunk.virtAddr >= this->virtAddr) && ((this->size + this->virtAddr) >= (chunk.size + chunk.virtAddr));
} }
}; };
/** /**
* @brief The MemoryManager class handles the mapping of the GPU address space * @brief The MemoryManager class handles mapping between a virtual address space and an application's address space
*/ */
class MemoryManager { class MemoryManager {
private: private:
@ -42,18 +42,18 @@ namespace skyline {
std::vector<ChunkDescriptor> chunks; std::vector<ChunkDescriptor> chunks;
/** /**
* @brief Finds a chunk of the specified type in the GPU address space that is larger than the given size * @brief Finds a chunk in the virtual address space that is larger than meets the given requirements
* @param state The state of the chunk to find * @param state The state of the chunk to find
* @param size The minimum size of the chunk to find * @param size The minimum size of the chunk to find
* @param alignment The alignment of the chunk to find * @param alignment The minimum alignment of the chunk to find
* @return The first unmapped chunk in the GPU address space that fulfils the requested conditions * @return The first applicable chunk
*/ */
std::optional<ChunkDescriptor> FindChunk(ChunkState state, u64 size, u64 alignment = 0); std::optional<ChunkDescriptor> FindChunk(ChunkState state, u64 size, u64 alignment = 0);
/** /**
* @brief Inserts a chunk into the chunk list, resizing and splitting as necessary * @brief Inserts a chunk into the chunk list, resizing and splitting as necessary
* @param newChunk The chunk to insert * @param newChunk The chunk to insert
* @return The base virtual GPU address of the inserted chunk * @return The base virtual address of the inserted chunk
*/ */
u64 InsertChunk(const ChunkDescriptor &newChunk); u64 InsertChunk(const ChunkDescriptor &newChunk);
@ -61,81 +61,82 @@ namespace skyline {
MemoryManager(const DeviceState &state); MemoryManager(const DeviceState &state);
/** /**
* @brief Reserves a region of the GPU address space so it will not be chosen automatically when mapping * @brief Reserves a region of the virtual address space so it will not be chosen automatically when mapping
* @param size The size of the region to reserve * @param size The size of the region to reserve
* @param alignment The alignment of the region to reserve * @param alignment The alignment of the region to reserve
* @return The virtual GPU base address of the region base * @return The base virtual address of the reserved region
*/ */
u64 ReserveSpace(u64 size, u64 alignment); u64 ReserveSpace(u64 size, u64 alignment);
/** /**
* @brief Reserves a fixed region of the GPU address space so it will not be chosen automatically when mapping * @brief Reserves a fixed region of the virtual address space so it will not be chosen automatically when mapping
* @param address The virtual base address of the region to allocate * @param virtAddr The virtual base address of the region to allocate
* @param size The size of the region to allocate * @param size The size of the region to allocate
* @return The virtual address of the region base * @return The base virtual address of the reserved region
*/ */
u64 ReserveFixed(u64 address, u64 size); u64 ReserveFixed(u64 virtAddr, u64 size);
/** /**
* @brief Maps a physical CPU memory region to an automatically chosen virtual memory region * @brief Maps a CPU memory region into an automatically chosen region of the virtual address space
* @param pointer A pointer to the region to be mapped into the GPU's address space * @param cpuPtr A pointer to the region to be mapped into the virtual address space
* @param size The size of the region to map * @param size The size of the region to map
* @return The virtual address of the region base * @return The base virtual address of the mapped region
*/ */
u64 MapAllocate(u8 *pointer, u64 size); u64 MapAllocate(u8 *cpuPtr, u64 size);
/** /**
* @brief Maps a physical CPU memory region to a fixed virtual memory region * @brief Maps a CPU memory region to a fixed region in the virtual address space
* @param address The target virtual address of the region * @param virtAddr The target virtual address of the region
* @param pointer A pointer to the region to be mapped into the GPU's address space * @param cpuPtr A pointer to the region to be mapped into the virtual address space
* @param size The size of the region to map * @param size The size of the region to map
* @return The virtual address of the region base * @return The base virtual address of the mapped region
*/ */
u64 MapFixed(u64 address, u8 *pointer, u64 size); u64 MapFixed(u64 virtAddr, u8 *cpuPtr, u64 size);
/** /**
* @brief Unmaps all chunks in the given region from the GPU address space * @brief Unmaps all chunks in the given region from the virtual address space
* @return Whether the operation succeeded * @return Whether the operation succeeded
*/ */
bool Unmap(u64 address, u64 size); bool Unmap(u64 virtAddr, u64 size);
void Read(u8 *destination, u64 address, u64 size) const;
void Read(u8 *destination, u64 virtAddr, u64 size) const;
/** /**
* @brief Reads in a span from a region of the GPU virtual address space * @brief Reads in a span from a region of the virtual address space
*/ */
template<typename T> template<typename T>
void Read(span<T> destination, u64 address) const { void Read(span<T> destination, u64 virtAddr) const {
Read(reinterpret_cast<u8 *>(destination.data()), address, destination.size_bytes()); Read(reinterpret_cast<u8 *>(destination.data()), virtAddr, destination.size_bytes());
} }
/** /**
* @brief Reads in an object from a region of the GPU virtual address space * @brief Reads in an object from a region of the virtual address space
* @tparam T The type of object to return * @tparam T The type of object to return
*/ */
template<typename T> template<typename T>
T Read(u64 address) const { T Read(u64 virtAddr) const {
T obj; T obj;
Read(reinterpret_cast<u8 *>(&obj), address, sizeof(T)); Read(reinterpret_cast<u8 *>(&obj), virtAddr, sizeof(T));
return obj; return obj;
} }
void Write(u8 *source, u64 address, u64 size) const; void Write(u8 *source, u64 virtAddr, u64 size) const;
/** /**
* @brief Writes out a span to a region of the GPU virtual address space * @brief Writes out a span to a region of the virtual address space
*/ */
template<typename T> template<typename T>
void Write(span<T> source, u64 address) const { void Write(span<T> source, u64 virtAddr) const {
Write(reinterpret_cast<u8 *>(source.data()), address, source.size_bytes()); Write(reinterpret_cast<u8 *>(source.data()), virtAddr, source.size_bytes());
} }
/** /**
* @brief Reads in an object from a region of the GPU virtual address space * @brief Reads in an object from a region of the virtual address space
*/ */
template<typename T> template<typename T>
void Write(T source, u64 address) const { void Write(T source, u64 virtAddr) const {
Write(reinterpret_cast<u8 *>(&source), address, sizeof(T)); Write(reinterpret_cast<u8 *>(&source), virtAddr, sizeof(T));
} }
}; };
} }

View File

@ -148,7 +148,7 @@ namespace skyline::service::hosbinder {
throw exception("Unknown pixel format used for FB"); throw exception("Unknown pixel format used for FB");
} }
auto texture{std::make_shared<gpu::GuestTexture>(state, nvBuffer->pointer + gbpBuffer.offset, gpu::texture::Dimensions(gbpBuffer.width, gbpBuffer.height), format, gpu::texture::TileMode::Block, gpu::texture::TileConfig{.surfaceWidth = static_cast<u16>(gbpBuffer.stride), .blockHeight = static_cast<u8>(1U << gbpBuffer.blockHeightLog2), .blockDepth = 1})}; auto texture{std::make_shared<gpu::GuestTexture>(state, nvBuffer->ptr + gbpBuffer.offset, gpu::texture::Dimensions(gbpBuffer.width, gbpBuffer.height), format, gpu::texture::TileMode::Block, gpu::texture::TileConfig{.surfaceWidth = static_cast<u16>(gbpBuffer.stride), .blockHeight = static_cast<u8>(1U << gbpBuffer.blockHeightLog2), .blockDepth = 1})};
queue[data.slot] = std::make_shared<Buffer>(gbpBuffer, texture->InitializeTexture()); queue[data.slot] = std::make_shared<Buffer>(gbpBuffer, texture->InitializeTexture());
state.gpu->presentation.bufferEvent->Signal(); state.gpu->presentation.bufferEvent->Signal();

View File

@ -98,7 +98,7 @@ namespace skyline::service::nvdrv::device {
} }
u64 gpuAddress{data.offset + data.bufferOffset}; u64 gpuAddress{data.offset + data.bufferOffset};
u8 *cpuPtr{region->second.cpuPtr + data.bufferOffset}; u8 *cpuPtr{region->second.ptr + data.bufferOffset};
if (state.gpu->memoryManager.MapFixed(gpuAddress, cpuPtr, data.mappingSize)) { if (state.gpu->memoryManager.MapFixed(gpuAddress, cpuPtr, data.mappingSize)) {
state.logger->Warn("Failed to remap GPU address space region: 0x{:X}", gpuAddress); state.logger->Warn("Failed to remap GPU address space region: 0x{:X}", gpuAddress);
@ -108,20 +108,20 @@ namespace skyline::service::nvdrv::device {
return NvStatus::Success; return NvStatus::Success;
} }
u8 *mapPointer{data.bufferOffset + mapping->pointer}; u8 *cpuPtr{data.bufferOffset + mapping->ptr};
u64 mapSize{data.mappingSize ? data.mappingSize : mapping->size}; u64 size{data.mappingSize ? data.mappingSize : mapping->size};
if (data.flags.fixed) if (data.flags.fixed)
data.offset = state.gpu->memoryManager.MapFixed(data.offset, mapPointer, mapSize); data.offset = state.gpu->memoryManager.MapFixed(data.offset, cpuPtr, size);
else else
data.offset = state.gpu->memoryManager.MapAllocate(mapPointer, mapSize); data.offset = state.gpu->memoryManager.MapAllocate(cpuPtr, size);
if (data.offset == 0) { if (data.offset == 0) {
state.logger->Warn("Failed to map GPU address space region!"); state.logger->Warn("Failed to map GPU address space region!");
return NvStatus::BadParameter; return NvStatus::BadParameter;
} }
regionMap[data.offset] = {mapPointer, mapSize, data.flags.fixed}; regionMap[data.offset] = {cpuPtr, size, data.flags.fixed};
return NvStatus::Success; return NvStatus::Success;
} catch (const std::out_of_range &) { } catch (const std::out_of_range &) {
@ -176,17 +176,17 @@ namespace skyline::service::nvdrv::device {
constexpr u32 MinAlignmentShift{0x10}; // This shift is applied to all addresses passed to Remap constexpr u32 MinAlignmentShift{0x10}; // This shift is applied to all addresses passed to Remap
auto entries{buffer.cast<Entry>()}; auto entries{buffer.cast<Entry>()};
for (auto entry : entries) { for (const auto &entry : entries) {
try { try {
auto driver{nvdrv::driver.lock()}; auto driver{nvdrv::driver.lock()};
auto nvmap{driver->nvMap.lock()}; auto nvmap{driver->nvMap.lock()};
auto mapping{nvmap->GetObject(entry.nvmapHandle)}; auto mapping{nvmap->GetObject(entry.nvmapHandle)};
u64 mapAddress{static_cast<u64>(entry.gpuOffset) << MinAlignmentShift}; u64 virtAddr{static_cast<u64>(entry.gpuOffset) << MinAlignmentShift};
u8 *mapPointer{mapping->pointer + (static_cast<u64>(entry.mapOffset) << MinAlignmentShift)}; u8 *cpuPtr{mapping->ptr + (static_cast<u64>(entry.mapOffset) << MinAlignmentShift)};
u64 mapSize{static_cast<u64>(entry.pages) << MinAlignmentShift}; u64 size{static_cast<u64>(entry.pages) << MinAlignmentShift};
state.gpu->memoryManager.MapFixed(mapAddress, mapPointer, mapSize); state.gpu->memoryManager.MapFixed(virtAddr, cpuPtr, size);
} catch (const std::out_of_range &) { } catch (const std::out_of_range &) {
state.logger->Warn("Invalid NvMap handle: 0x{:X}", entry.nvmapHandle); state.logger->Warn("Invalid NvMap handle: 0x{:X}", entry.nvmapHandle);
return NvStatus::BadParameter; return NvStatus::BadParameter;

View File

@ -13,7 +13,7 @@ namespace skyline::service::nvdrv::device {
class NvHostAsGpu : public NvDevice { class NvHostAsGpu : public NvDevice {
private: private:
struct AddressSpaceRegion { struct AddressSpaceRegion {
u8 *cpuPtr; u8 *ptr;
u64 size; u64 size;
bool fixed; bool fixed;
}; };

View File

@ -49,7 +49,7 @@ namespace skyline::service::nvdrv::device {
u32 align; // In u32 align; // In
u8 kind; // In u8 kind; // In
u8 _pad0_[7]; u8 _pad0_[7];
u8 *pointer; // InOut u8 *ptr; // InOut
} &data = buffer.as<Data>(); } &data = buffer.as<Data>();
try { try {
@ -58,10 +58,10 @@ namespace skyline::service::nvdrv::device {
object->flags = data.flags; object->flags = data.flags;
object->align = data.align; object->align = data.align;
object->kind = data.kind; object->kind = data.kind;
object->pointer = data.pointer; object->ptr = data.ptr;
object->status = NvMapObject::Status::Allocated; object->status = NvMapObject::Status::Allocated;
state.logger->Debug("Handle: 0x{:X}, HeapMask: 0x{:X}, Flags: {}, Align: 0x{:X}, Kind: {}, Pointer: 0x{:X}", data.handle, data.heapMask, data.flags, data.align, data.kind, data.pointer); state.logger->Debug("Handle: 0x{:X}, HeapMask: 0x{:X}, Flags: {}, Align: 0x{:X}, Kind: {}, Pointer: 0x{:X}", data.handle, data.heapMask, data.flags, data.align, data.kind, data.ptr);
return NvStatus::Success; return NvStatus::Success;
} catch (const std::out_of_range &) { } catch (const std::out_of_range &) {
state.logger->Warn("Invalid NvMap handle: 0x{:X}", data.handle); state.logger->Warn("Invalid NvMap handle: 0x{:X}", data.handle);
@ -73,7 +73,7 @@ namespace skyline::service::nvdrv::device {
struct Data { struct Data {
u32 handle; // In u32 handle; // In
u32 _pad0_; u32 _pad0_;
u8 *pointer; // Out u8 *ptr; // Out
u32 size; // Out u32 size; // Out
u32 flags; // Out u32 flags; // Out
} &data = buffer.as<Data>(); } &data = buffer.as<Data>();
@ -82,17 +82,17 @@ namespace skyline::service::nvdrv::device {
try { try {
auto &object{maps.at(data.handle - 1)}; auto &object{maps.at(data.handle - 1)};
if (object.use_count() > 1) { if (object.use_count() > 1) {
data.pointer = object->pointer; data.ptr = object->ptr;
data.flags = 0x0; data.flags = 0x0;
} else { } else {
data.pointer = nullptr; data.ptr = nullptr;
data.flags = 0x1; // Not free yet data.flags = 0x1; // Not free yet
} }
data.size = object->size; data.size = object->size;
object = nullptr; object = nullptr;
state.logger->Debug("Handle: 0x{:X} -> Pointer: 0x{:X}, Size: 0x{:X}, Flags: 0x{:X}", data.handle, data.pointer, data.size, data.flags); state.logger->Debug("Handle: 0x{:X} -> Pointer: 0x{:X}, Size: 0x{:X}, Flags: 0x{:X}", data.handle, data.ptr, data.size, data.flags);
return NvStatus::Success; return NvStatus::Success;
} catch (const std::out_of_range &) { } catch (const std::out_of_range &) {
state.logger->Warn("Invalid NvMap handle: 0x{:X}", data.handle); state.logger->Warn("Invalid NvMap handle: 0x{:X}", data.handle);

View File

@ -18,7 +18,7 @@ namespace skyline::service::nvdrv::device {
struct NvMapObject { struct NvMapObject {
u32 id; u32 id;
u32 size; u32 size;
u8 *pointer{}; u8 *ptr{};
u32 flags{}; //!< The flag of the memory (0 = Read Only, 1 = Read-Write) u32 flags{}; //!< The flag of the memory (0 = Read Only, 1 = Read-Write)
u32 align{}; u32 align{};
u32 heapMask{}; //!< This is set during Alloc and returned during Param u32 heapMask{}; //!< This is set during Alloc and returned during Param