skyline/app/src/main/cpp/skyline/common.h

650 lines
24 KiB
C++

// SPDX-License-Identifier: MPL-2.0
// Copyright © 2020 Skyline Team and Contributors (https://github.com/skyline-emu/)
#pragma once
#include <map>
#include <unordered_map>
#include <span>
#include <list>
#include <vector>
#include <span>
#include <fstream>
#include <mutex>
#include <shared_mutex>
#include <functional>
#include <thread>
#include <string>
#include <cstdint>
#include <stdexcept>
#include <string>
#include <sstream>
#include <memory>
#include <compare>
#include <sys/mman.h>
#include <fmt/format.h>
#include <frozen/unordered_map.h>
#include <frozen/string.h>
#include <jni.h>
#define FORCE_INLINE __attribute__((always_inline)) inline // NOLINT(cppcoreguidelines-macro-usage)
namespace fmt {
/**
* @brief A std::bitset formatter for {fmt}
*/
template<size_t N>
struct formatter<std::bitset<N>> : formatter<std::string> {
template<typename FormatContext>
constexpr auto format(const std::bitset<N> &s, FormatContext &ctx) {
return formatter<std::string>::format(s.to_string(), ctx);
}
};
}
namespace skyline {
using u128 = __uint128_t; //!< Unsigned 128-bit integer
using u64 = __uint64_t; //!< Unsigned 64-bit integer
using u32 = __uint32_t; //!< Unsigned 32-bit integer
using u16 = __uint16_t; //!< Unsigned 16-bit integer
using u8 = __uint8_t; //!< Unsigned 8-bit integer
using i128 = __int128_t; //!< Signed 128-bit integer
using i64 = __int64_t; //!< Signed 64-bit integer
using i32 = __int32_t; //!< Signed 32-bit integer
using i16 = __int16_t; //!< Signed 16-bit integer
using i8 = __int8_t; //!< Signed 8-bit integer
using KHandle = u32; //!< The type of a kernel handle
namespace frz = frozen;
/**
* @brief The result of an operation in HOS
* @url https://switchbrew.org/wiki/Error_codes
*/
union Result {
u32 raw{};
struct __attribute__((packed)) {
u16 module : 9;
u16 id : 12;
};
/**
* @note Success is 0, it's the only result that's not specific to a module
*/
constexpr Result() = default;
constexpr explicit Result(u16 module, u16 id) : module(module), id(id) {}
constexpr operator u32() const {
return raw;
}
};
/**
* @brief A wrapper around std::optional that also stores a HOS result code
* @tparam T The object type to hold
*/
template<typename T>
class ResultValue {
static_assert(!std::is_same<T, Result>::value);
private:
std::optional<T> value;
public:
Result result;
constexpr ResultValue(T value) : value(value) {};
constexpr ResultValue(Result result) : result(result) {};
template<typename U>
constexpr ResultValue(ResultValue<U> result) : result(result) {};
constexpr operator Result() const {
return result;
}
explicit constexpr operator bool() const {
return value.has_value();
}
constexpr T& operator*() {
return *value;
}
constexpr T* operator->() {
return &*value;
}
};
namespace constant {
// Display
constexpr u16 HandheldResolutionW{1280}; //!< The width component of the handheld resolution
constexpr u16 HandheldResolutionH{720}; //!< The height component of the handheld resolution
constexpr u16 DockedResolutionW{1920}; //!< The width component of the docked resolution
constexpr u16 DockedResolutionH{1080}; //!< The height component of the docked resolution
// Time
constexpr u64 NsInSecond{1000000000}; //!< The amount of nanoseconds in a second
constexpr u64 NsInDay{86400000000000UL}; //!< The amount of nanoseconds in a day
}
namespace util {
/**
* @brief A way to implicitly cast all pointers to uintptr_t, this is used for {fmt} as we use 0x{:X} to print pointers
* @note There's the exception of signed char pointers as they represent C Strings
* @note This does not cover std::shared_ptr or std::unique_ptr and those will have to be explicitly casted to uintptr_t or passed through fmt::ptr
*/
template<typename T>
constexpr auto FmtCast(T object) {
if constexpr (std::is_pointer<T>::value)
if constexpr (std::is_same<char, typename std::remove_cv<typename std::remove_pointer<T>::type>::type>::value)
return reinterpret_cast<typename std::common_type<char *, T>::type>(object);
else
return reinterpret_cast<const uintptr_t>(object);
else
return object;
}
/**
* @brief {fmt}::format but with FmtCast built into it
*/
template<typename S, typename... Args>
auto Format(S formatString, Args &&... args) {
return fmt::format(formatString, FmtCast(args)...);
}
}
/**
* @brief A wrapper over std::runtime_error with {fmt} formatting
*/
class exception : public std::runtime_error {
public:
template<typename S, typename... Args>
exception(const S &formatStr, Args &&... args) : runtime_error(fmt::format(formatStr, util::FmtCast(args)...)) {}
};
namespace util {
/**
* @brief Returns the current time in nanoseconds
* @return The current time in nanoseconds
*/
inline u64 GetTimeNs() {
u64 frequency;
asm("MRS %0, CNTFRQ_EL0" : "=r"(frequency));
u64 ticks;
asm("MRS %0, CNTVCT_EL0" : "=r"(ticks));
return ((ticks / frequency) * constant::NsInSecond) + (((ticks % frequency) * constant::NsInSecond + (frequency / 2)) / frequency);
}
/**
* @brief Returns the current time in arbitrary ticks
* @return The current time in ticks
*/
inline u64 GetTimeTicks() {
u64 ticks;
asm("MRS %0, CNTVCT_EL0" : "=r"(ticks));
return ticks;
}
/**
* @brief A way to implicitly convert a pointer to uintptr_t and leave it unaffected if it isn't a pointer
*/
template<typename T>
T PointerValue(T item) {
return item;
}
template<typename T>
uintptr_t PointerValue(T *item) {
return reinterpret_cast<uintptr_t>(item);
}
/**
* @brief A way to implicitly convert an integral to a pointer, if the return type is a pointer
*/
template<typename Return, typename T>
Return ValuePointer(T item) {
if constexpr (std::is_pointer<Return>::value)
return reinterpret_cast<Return>(item);
else
return item;
}
/**
* @return The value aligned up to the next multiple
* @note The multiple needs to be a power of 2
*/
template<typename TypeVal, typename TypeMul>
constexpr TypeVal AlignUp(TypeVal value, TypeMul multiple) {
multiple--;
return ValuePointer<TypeVal>((PointerValue(value) + multiple) & ~(multiple));
}
/**
* @return The value aligned down to the previous multiple
* @note The multiple needs to be a power of 2
*/
template<typename TypeVal, typename TypeMul>
constexpr TypeVal AlignDown(TypeVal value, TypeMul multiple) {
return ValuePointer<TypeVal>(PointerValue(value) & ~(multiple - 1));
}
/**
* @return If the address is aligned with the multiple
*/
template<typename TypeVal, typename TypeMul>
constexpr bool IsAligned(TypeVal value, TypeMul multiple) {
if ((multiple & (multiple - 1)) == 0)
return !(PointerValue(value) & (multiple - 1U));
else
return (PointerValue(value) % multiple) == 0;
}
/**
* @return If the value is page aligned
*/
template<typename TypeVal>
constexpr bool PageAligned(TypeVal value) {
return IsAligned(value, PAGE_SIZE);
}
/**
* @return If the value is word aligned
*/
template<typename TypeVal>
constexpr bool WordAligned(TypeVal value) {
return IsAligned(value, WORD_BIT / 8);
}
/**
* @param string The string to create a magic from
* @return The magic of the supplied string
*/
template<typename Type>
constexpr Type MakeMagic(std::string_view string) {
Type object{};
size_t offset{};
for (auto &character : string) {
object |= static_cast<Type>(character) << offset;
offset += sizeof(character) * 8;
}
return object;
}
constexpr u8 HexDigitToNibble(char digit) {
if (digit >= '0' && digit <= '9')
return digit - '0';
else if (digit >= 'a' && digit <= 'f')
return digit - 'a' + 10;
else if (digit >= 'A' && digit <= 'F')
return digit - 'A' + 10;
throw exception("Invalid hex character: '{}'", digit);
}
template<size_t Size>
constexpr std::array<u8, Size> HexStringToArray(std::string_view string) {
if (string.size() != Size * 2)
throw exception("String size: {} (Expected {})", string.size(), Size);
std::array<u8, Size> result;
for (size_t i{}; i < Size; i++) {
size_t index{i * 2};
result[i] = (HexDigitToNibble(string[index]) << 4) | HexDigitToNibble(string[index + 1]);
}
return result;
}
template<typename Type>
constexpr Type HexStringToInt(std::string_view string) {
if (string.size() > sizeof(Type) * 2)
throw exception("String size larger than type: {} (sizeof(Type): {})", string.size(), sizeof(Type));
Type result{};
size_t offset{(sizeof(Type) * 8) - 4};
for (size_t index{}; index < string.size(); index++, offset -= 4) {
char digit{string[index]};
if (digit >= '0' && digit <= '9')
result |= static_cast<Type>(digit - '0') << offset;
else if (digit >= 'a' && digit <= 'f')
result |= static_cast<Type>(digit - 'a' + 10) << offset;
else if (digit >= 'A' && digit <= 'F')
result |= static_cast<Type>(digit - 'A' + 10) << offset;
else
break;
}
return result >> (offset + 4);
}
template<size_t N>
constexpr std::array<u8, N> SwapEndianness(std::array<u8, N> in) {
std::reverse(in.begin(), in.end());
return in;
}
constexpr u64 SwapEndianness(u64 in) {
return __builtin_bswap64(in);
}
constexpr u32 SwapEndianness(u32 in) {
return __builtin_bswap32(in);
}
constexpr u16 SwapEndianness(u16 in) {
return __builtin_bswap16(in);
}
/**
* @brief A compile-time hash function as std::hash isn't constexpr
*/
constexpr std::size_t Hash(std::string_view view) {
return frz::elsa<frz::string>{}(frz::string(view.data(), view.size()), 0);
}
}
/**
* @brief A custom wrapper over span that adds several useful methods to it
* @note This class is completely transparent, it implicitly converts from and to span
*/
template<typename T, size_t Extent = std::dynamic_extent>
class span : public std::span<T, Extent> {
public:
using std::span<T, Extent>::span;
using std::span<T, Extent>::operator=;
typedef typename std::span<T, Extent>::element_type element_type;
typedef typename std::span<T, Extent>::size_type size_type;
constexpr span(const std::span<T, Extent> &spn) : std::span<T, Extent>(spn) {}
/**
* @brief We want to support implicitly casting from std::string_view -> span as it's just a specialization of a data view which span is a generic form of, the opposite doesn't hold true as not all data held by a span is string data therefore the conversion isn't implicit there
*/
template<typename Traits>
constexpr span(const std::basic_string_view<T, Traits> &string) : std::span<T, Extent>(const_cast<T *>(string.data()), string.size()) {}
template<typename Out>
constexpr Out &as() {
if (span::size_bytes() >= sizeof(Out))
return *reinterpret_cast<Out *>(span::data());
throw exception("Span size is less than Out type size (0x{:X}/0x{:X})", span::size_bytes(), sizeof(Out));
}
/**
* @param nullTerminated If true and the string is null-terminated, a view of it will be returned (not including the null terminator itself), otherwise the entire span will be returned as a string view
*/
constexpr std::string_view as_string(bool nullTerminated = false) {
return std::string_view(reinterpret_cast<char *>(span::data()), nullTerminated ? (std::find(span::begin(), span::end(), 0) - span::begin()) : span::size_bytes());
}
template<typename Out, size_t OutExtent = std::dynamic_extent>
constexpr span<Out> cast() {
if (util::IsAligned(span::size_bytes(), sizeof(Out)))
return span<Out, OutExtent>(reinterpret_cast<Out *>(span::data()), span::size_bytes() / sizeof(Out));
throw exception("Span size not aligned with Out type size (0x{:X}/0x{:X})", span::size_bytes(), sizeof(Out));
}
/**
* @brief Copies data from the supplied span into this one
* @param amount The amount of elements that need to be copied (in terms of the supplied span), 0 will try to copy the entirety of the other span
*/
template<typename In, size_t InExtent>
constexpr void copy_from(const span<In, InExtent> spn, size_type amount = 0) {
auto size{amount ? amount * sizeof(In) : spn.size_bytes()};
if (span::size_bytes() < size)
throw exception("Data being copied is larger than this span");
std::memmove(span::data(), spn.data(), size);
}
/**
* @brief Implicit type conversion for copy_from, this allows passing in std::vector/std::array in directly is automatically passed by reference which is important for any containers
*/
template<typename In>
constexpr void copy_from(const In &in, size_type amount = 0) {
copy_from(span<typename std::add_const<typename In::value_type>::type>(in), amount);
}
/** Base Class Functions that return an instance of it, we upcast them **/
template<size_t Count>
constexpr span<T, Count> first() const noexcept {
return std::span<T, Extent>::template first<Count>();
}
template<size_t Count>
constexpr span<T, Count> last() const noexcept {
return std::span<T, Extent>::template last<Count>();
}
constexpr span<element_type, std::dynamic_extent> first(size_type count) const noexcept {
return std::span<T, Extent>::first(count);
}
constexpr span<element_type, std::dynamic_extent> last(size_type count) const noexcept {
return std::span<T, Extent>::last(count);
}
template<size_t Offset, size_t Count = std::dynamic_extent>
constexpr auto subspan() const noexcept -> span<T, Count != std::dynamic_extent ? Count : Extent - Offset> {
return std::span<T, Extent>::template subspan<Offset, Count>();
}
constexpr span<T, std::dynamic_extent> subspan(size_type offset, size_type count = std::dynamic_extent) const noexcept {
return std::span<T, Extent>::subspan(offset, count);
}
};
/**
* @brief Deduction guides required for arguments to span, CTAD will fail for iterators, arrays and containers without this
*/
template<typename It, typename End, size_t Extent = std::dynamic_extent>
span(It, End) -> span<typename std::iterator_traits<It>::value_type, Extent>;
template<typename T, size_t Size>
span(T (&)[Size]) -> span<T, Size>;
template<typename T, size_t Size>
span(std::array<T, Size> &) -> span<T, Size>;
template<typename T, size_t Size>
span(const std::array<T, Size> &) -> span<const T, Size>;
template<typename Container>
span(Container &) -> span<typename Container::value_type>;
template<typename Container>
span(const Container &) -> span<const typename Container::value_type>;
/**
* @brief A wrapper around writing logs into a log file and logcat using Android Log APIs
*/
class Logger {
private:
std::ofstream logFile; //!< An output stream to the log file
std::mutex mutex; //!< Synchronizes all output I/O to ensure there are no races
public:
enum class LogLevel {
Error,
Warn,
Info,
Debug,
Verbose,
};
LogLevel configLevel; //!< The minimum level of logs to write
/**
* @param path The path of the log file
* @param configLevel The minimum level of logs to write
*/
Logger(const std::string &path, LogLevel configLevel);
/**
* @brief Writes the termination message to the log file
*/
~Logger();
/**
* @brief Update the tag in log messages with a new thread name
*/
static void UpdateTag();
/**
* @brief Writes a header, should only be used for emulation starting and ending
*/
void WriteHeader(const std::string &str);
void Write(LogLevel level, const std::string &str);
/**
* @brief A wrapper around a string which captures the calling function using Clang source location builtins
* @note A function needs to be declared for every argument template specialization as CTAD cannot work with implicit casting
* @url https://clang.llvm.org/docs/LanguageExtensions.html#source-location-builtins
*/
template<typename S>
struct FunctionString {
S string;
const char *function;
FunctionString(S string, const char *function = __builtin_FUNCTION()) : string(std::move(string)), function(function) {}
std::string operator*() {
return std::string(function) + ": " + std::string(string);
}
};
template<typename... Args>
void Error(FunctionString<const char*> formatString, Args &&... args) {
if (LogLevel::Error <= configLevel)
Write(LogLevel::Error, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Error(FunctionString<std::string> formatString, Args &&... args) {
if (LogLevel::Error <= configLevel)
Write(LogLevel::Error, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename S, typename... Args>
void ErrorNoPrefix(S formatString, Args &&... args) {
if (LogLevel::Error <= configLevel)
Write(LogLevel::Error, fmt::format(formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Warn(FunctionString<const char*> formatString, Args &&... args) {
if (LogLevel::Warn <= configLevel)
Write(LogLevel::Warn, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Warn(FunctionString<std::string> formatString, Args &&... args) {
if (LogLevel::Warn <= configLevel)
Write(LogLevel::Warn, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename S, typename... Args>
void WarnNoPrefix(S formatString, Args &&... args) {
if (LogLevel::Warn <= configLevel)
Write(LogLevel::Warn, fmt::format(formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Info(FunctionString<const char*> formatString, Args &&... args) {
if (LogLevel::Info <= configLevel)
Write(LogLevel::Info, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Info(FunctionString<std::string> formatString, Args &&... args) {
if (LogLevel::Info <= configLevel)
Write(LogLevel::Info, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename S, typename... Args>
void InfoNoPrefix(S formatString, Args &&... args) {
if (LogLevel::Info <= configLevel)
Write(LogLevel::Info, fmt::format(formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Debug(FunctionString<const char*> formatString, Args &&... args) {
if (LogLevel::Debug <= configLevel)
Write(LogLevel::Debug, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Debug(FunctionString<std::string> formatString, Args &&... args) {
if (LogLevel::Debug <= configLevel)
Write(LogLevel::Debug, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename S, typename... Args>
void DebugNoPrefix(S formatString, Args &&... args) {
if (LogLevel::Debug <= configLevel)
Write(LogLevel::Debug, fmt::format(formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Verbose(FunctionString<const char*> formatString, Args &&... args) {
if (LogLevel::Verbose <= configLevel)
Write(LogLevel::Verbose, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename... Args>
void Verbose(FunctionString<std::string> formatString, Args &&... args) {
if (LogLevel::Verbose <= configLevel)
Write(LogLevel::Verbose, fmt::format(*formatString, util::FmtCast(args)...));
}
template<typename S, typename... Args>
void VerboseNoPrefix(S formatString, Args &&... args) {
if (LogLevel::Verbose <= configLevel)
Write(LogLevel::Verbose, fmt::format(formatString, util::FmtCast(args)...));
}
};
class Settings;
namespace nce {
class NCE;
struct ThreadContext;
}
class JvmManager;
namespace gpu {
class GPU;
}
namespace kernel {
namespace type {
class KProcess;
class KThread;
}
class Scheduler;
class OS;
}
namespace audio {
class Audio;
}
namespace input {
class Input;
}
namespace loader {
class Loader;
}
/**
* @brief The state of the entire emulator is contained within this class, all objects related to emulation are tied into it
*/
struct DeviceState {
DeviceState(kernel::OS *os, std::shared_ptr<JvmManager> jvmManager, std::shared_ptr<Settings> settings, std::shared_ptr<Logger> logger);
kernel::OS *os;
std::shared_ptr<JvmManager> jvm;
std::shared_ptr<Settings> settings;
std::shared_ptr<Logger> logger;
std::shared_ptr<loader::Loader> loader;
std::shared_ptr<gpu::GPU> gpu;
std::shared_ptr<audio::Audio> audio;
std::shared_ptr<nce::NCE> nce;
std::shared_ptr<kernel::Scheduler> scheduler;
std::shared_ptr<kernel::type::KProcess> process;
static thread_local inline std::shared_ptr<kernel::type::KThread> thread{}; //!< The KThread of the thread which accesses this object
static thread_local inline nce::ThreadContext *ctx{}; //!< The context of the guest thread for the corresponding host thread
std::shared_ptr<input::Input> input;
};
}