skyline/app/src/main/cpp/skyline/common/address_space.h

180 lines
6.6 KiB
C++

// SPDX-License-Identifier: MPL-2.0
// Copyright © 2021 Skyline Team and Contributors (https://github.com/skyline-emu/)
#pragma once
#include <concepts>
#include <common.h>
namespace skyline {
template<typename VaType, size_t AddressSpaceBits>
concept AddressSpaceValid = std::is_unsigned_v<VaType> && sizeof(VaType) * 8 >= AddressSpaceBits;
struct EmptyStruct {};
/**
* @brief FlatAddressSpaceMap provides a generic VA->PA mapping implementation using a sorted vector
*/
template<typename VaType, VaType UnmappedVa, typename PaType, PaType UnmappedPa, bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo = EmptyStruct> requires AddressSpaceValid<VaType, AddressSpaceBits>
class FlatAddressSpaceMap {
private:
std::function<void(VaType, VaType)> unmapCallback{}; //!< Callback called when the mappings in an region have changed
protected:
/**
* @brief Represents a block of memory in the AS, the physical mapping is contiguous until another block with a different phys address is hit
*/
struct Block {
VaType virt{UnmappedVa}; //!< VA of the block
PaType phys{UnmappedPa}; //!< PA of the block, will increase 1-1 with VA until a new block is encountered
[[no_unique_address]] ExtraBlockInfo extraInfo;
Block() = default;
Block(VaType virt, PaType phys, ExtraBlockInfo extraInfo) : virt(virt), phys(phys), extraInfo(extraInfo) {}
constexpr bool Valid() {
return virt != UnmappedVa;
}
constexpr bool Mapped() {
return phys != UnmappedPa;
}
constexpr bool Unmapped() {
return phys == UnmappedPa;
}
bool operator<(const VaType &pVirt) const {
return virt < pVirt;
}
};
std::mutex blockMutex;
std::vector<Block> blocks{Block{}};
/**
* @brief Maps a PA range into the given AS region
* @note blockMutex MUST be locked when calling this
*/
void MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo);
/**
* @brief Unmaps the given range and merges it with other unmapped regions
* @note blockMutex MUST be locked when calling this
*/
void UnmapLocked(VaType virt, VaType size);
public:
static constexpr VaType VaMaximum{(1ULL << (AddressSpaceBits - 1)) + ((1ULL << (AddressSpaceBits - 1)) - 1)}; //!< The maximum VA that this AS can technically reach
VaType vaLimit{VaMaximum}; //!< A soft limit on the maximum VA of the AS
FlatAddressSpaceMap(VaType vaLimit, std::function<void(VaType, VaType)> unmapCallback = {});
FlatAddressSpaceMap() = default;
void Map(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo = {}) {
std::scoped_lock lock(blockMutex);
MapLocked(virt, phys, size, extraInfo);
}
void Unmap(VaType virt, VaType size) {
std::scoped_lock lock(blockMutex);
UnmapLocked(virt, size);
}
};
/**
* @brief Hold memory manager specific block info
*/
struct MemoryManagerBlockInfo {
bool sparseMapped;
};
/**
* @brief FlatMemoryManager specialises FlatAddressSpaceMap to focus on pointers as PAs, adding read/write functions and sparse mapping support
*/
template<typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits>
class FlatMemoryManager : public FlatAddressSpaceMap<VaType, UnmappedVa, u8 *, nullptr, true, AddressSpaceBits, MemoryManagerBlockInfo> {
private:
static constexpr u64 SparseMapSize{0x400000000}; //!< 16GiB pool size for sparse mappings returned by TranslateRange, this number is arbritary and should be large enough to fit the largest sparse mapping in the AS
u8 *sparseMap; //!< Pointer to a zero filled memory region that is returned by TranslateRange for sparse mappings
public:
FlatMemoryManager();
~FlatMemoryManager();
/**
* @return A placeholder address for sparse mapped regions, this means nothing
*/
static u8 *SparsePlaceholderAddress() {
return reinterpret_cast<u8 *>(0xCAFEBABE);
}
/**
* @brief Returns a vector of all physical ranges inside of the given virtual range
*/
std::vector<span<u8>> TranslateRange(VaType virt, VaType size);
void Read(u8 *destination, VaType virt, VaType size);
template<typename T>
void Read(span <T> destination, VaType virt) {
Read(reinterpret_cast<u8 *>(destination.data()), virt, destination.size_bytes());
}
template<typename T>
T Read(VaType virt) {
T obj;
Read(reinterpret_cast<u8 *>(&obj), virt, sizeof(T));
return obj;
}
void Write(VaType virt, u8 *source, VaType size);
template<typename T>
void Write(VaType virt, span <T> source) {
Write(virt, reinterpret_cast<u8 *>(source.data()), source.size_bytes());
}
template<typename T>
void Write(VaType virt, T source) {
Write(virt, reinterpret_cast<u8 *>(&source), sizeof(T));
}
};
/**
* @brief FlatMemoryManager specialises FlatAddressSpaceMap to work as an allocator, with an initial, fast linear pass and a subsequent slower pass that iterates until it finds a free block
*/
template<typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits>
class FlatAllocator : public FlatAddressSpaceMap<VaType, UnmappedVa, bool, false, false, AddressSpaceBits> {
private:
using Base = FlatAddressSpaceMap<VaType, UnmappedVa, bool, false, false, AddressSpaceBits>;
VaType currentLinearAllocEnd; //!< The end address for the initial linear allocation pass, once this reaches the AS limit the slower allocation path will be used
public:
VaType vaStart; //!< The base VA of the allocator, no allocations will be below this
FlatAllocator(VaType vaStart, VaType vaLimit);
/**
* @brief Allocates a region in the AS of the given size and returns its address
*/
VaType Allocate(VaType size);
/**
* @brief Marks the given region in the AS as allocated
*/
void AllocateFixed(VaType virt, VaType size);
/**
* @brief Frees an AS region so it can be used again
*/
void Free(VaType virt, VaType size);
};
}