skyline/app/src/main/cpp/skyline/common/address_space.inc

424 lines
18 KiB
C++

// SPDX-License-Identifier: MPL-2.0
// Copyright © 2021 Skyline Team and Contributors (https://github.com/skyline-emu/)
#include <common/trace.h>
#include <kernel/types/KProcess.h>
#include "address_space.h"
#define MAP_MEMBER(returnType) template<typename VaType, VaType UnmappedVa, typename PaType, PaType UnmappedPa, bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo> requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatAddressSpaceMap<VaType, UnmappedVa, PaType, UnmappedPa, PaContigSplit, AddressSpaceBits, ExtraBlockInfo>
#define MM_MEMBER(returnType) template<typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatMemoryManager<VaType, UnmappedVa, AddressSpaceBits>
#define ALLOC_MEMBER(returnType) template<typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatAllocator<VaType, UnmappedVa, AddressSpaceBits>
namespace skyline {
MAP_MEMBER()::FlatAddressSpaceMap(VaType vaLimit, std::function<void(VaType, VaType)> unmapCallback) :
vaLimit(vaLimit),
unmapCallback(std::move(unmapCallback)) {
if (vaLimit > VaMaximum)
throw exception("Invalid VA limit!");
}
MAP_MEMBER(void)::MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo) {
TRACE_EVENT("containers", "FlatAddressSpaceMap::Map");
VaType virtEnd{virt + size};
if (virtEnd > vaLimit)
throw exception("Trying to map a block past the VA limit: virtEnd: 0x{:X}, vaLimit: 0x{:X}", virtEnd, vaLimit);
auto blockEndSuccessor{std::lower_bound(blocks.begin(), blocks.end(), virtEnd)};
if (blockEndSuccessor == blocks.begin())
throw exception("Trying to map a block before the VA start: virtEnd: 0x{:X}", virtEnd);
auto blockEndPredecessor{std::prev(blockEndSuccessor)};
if (blockEndSuccessor != blocks.end()) {
// We have blocks in front of us, if one is directly in front then we don't have to add a tail
if (blockEndSuccessor->virt != virtEnd) {
PaType tailPhys{[&]() -> PaType {
if (!PaContigSplit || blockEndPredecessor->Unmapped())
return blockEndPredecessor->phys; // Always propagate unmapped regions rather than calculating offset
else
return blockEndPredecessor->phys + virtEnd - blockEndPredecessor->virt;
}()};
if (blockEndPredecessor->virt >= virt) {
// If this block's start would be overlapped by the map then reuse it as a tail block
blockEndPredecessor->virt = virtEnd;
blockEndPredecessor->phys = tailPhys;
blockEndPredecessor->extraInfo = blockEndPredecessor->extraInfo;
} else {
// Else insert a new one and we're done
blocks.insert(blockEndSuccessor, {Block(virt, phys, extraInfo), Block(virtEnd, tailPhys, blockEndPredecessor->extraInfo)});
if (unmapCallback)
unmapCallback(virt, size);
return;
}
}
} else {
// blockEndPredecessor will always be unmapped as blocks has to be terminated by an unmapped chunk
if (blockEndPredecessor != blocks.begin() && blockEndPredecessor->virt >= virt) {
// Move the unmapped block start backwards
blockEndPredecessor->virt = virtEnd;
} else {
// Else insert a new one and we're done
blocks.insert(blockEndSuccessor, {Block(virt, phys, extraInfo), Block(virtEnd, UnmappedPa, {})});
if (unmapCallback)
unmapCallback(virt, size);
return;
}
}
auto blockStartSuccessor{blockEndPredecessor};
// Walk the block vector to find the start successor as this is more efficient than another binary search in most scenarios
while (std::prev(blockStartSuccessor)->virt >= virt)
blockStartSuccessor--;
// Check that the start successor is either the end block or something in between
if (blockStartSuccessor->virt > virtEnd) {
throw exception("Unsorted block in AS map: virt: 0x{:X}", blockStartSuccessor->virt);
} else if (blockStartSuccessor->virt == virtEnd) {
// We need to create a new block as there are none spare that we would overwrite
blocks.insert(blockStartSuccessor, Block(virt, phys, extraInfo));
} else {
// Reuse a block that would otherwise be overwritten as a start block
blockStartSuccessor->virt = virt;
blockStartSuccessor->phys = phys;
blockStartSuccessor->extraInfo = extraInfo;
// Erase overwritten blocks
if (auto eraseStart{std::next(blockStartSuccessor)}; blockStartSuccessor != blockEndPredecessor) {
if (eraseStart == blockEndPredecessor)
throw exception("Trying to erase the end block of a newly mapped region!");
blocks.erase(eraseStart, blockEndPredecessor);
}
}
if (unmapCallback)
unmapCallback(virt, size);
}
MAP_MEMBER(void)::UnmapLocked(VaType virt, VaType size) {
TRACE_EVENT("containers", "FlatAddressSpaceMap::Unmap");
VaType virtEnd{virt + size};
if (virtEnd > vaLimit)
throw exception("Trying to map a block past the VA limit: virtEnd: 0x{:X}, vaLimit: 0x{:X}", virtEnd, vaLimit);
auto blockEndSuccessor{std::lower_bound(blocks.begin(), blocks.end(), virtEnd)};
if (blockEndSuccessor == blocks.begin())
throw exception("Trying to unmap a block before the VA start: virtEnd: 0x{:X}", virtEnd);
auto blockEndPredecessor{std::prev(blockEndSuccessor)};
auto walkBackToPredecessor{[&](auto iter) {
while (iter->virt >= virt)
iter--;
return iter;
}};
auto eraseBlocksWithEndUnmapped{[&](auto unmappedEnd) {
auto blockStartPredecessor{walkBackToPredecessor(unmappedEnd)};
auto blockStartSuccessor{std::next(blockStartPredecessor)};
auto eraseEnd{[&]() {
if (blockStartPredecessor->Unmapped()) {
// If the start predecessor is unmapped then we can erase everything in our region and be done
return std::next(unmappedEnd);
} else {
// Else reuse the end predecessor as the start of our unmapped region then erase all up to it
unmappedEnd->virt = virt;
return unmappedEnd;
}
}()};
// We can't have two unmapped regions after each other
if (eraseEnd == blockStartSuccessor || (blockStartPredecessor->Unmapped() && eraseEnd->Unmapped()))
throw exception("Multiple contiguous unmapped regions are unsupported!");
blocks.erase(blockStartSuccessor, eraseEnd);
}};
// We can avoid any splitting logic if these are the case
if (blockEndPredecessor->Unmapped()) {
if (blockEndPredecessor->virt > virt)
eraseBlocksWithEndUnmapped(blockEndPredecessor);
if (unmapCallback)
unmapCallback(virt, size);
return; // The region is unmapped, bail out early
} else if (blockEndSuccessor->virt == virtEnd && blockEndSuccessor->Unmapped()) {
eraseBlocksWithEndUnmapped(blockEndSuccessor);
if (unmapCallback)
unmapCallback(virt, size);
return; // The region is unmapped here and doesn't need splitting, bail out early
} else if (blockEndSuccessor == blocks.end()) {
// This should never happen as the end should always follow an unmapped block
throw exception("Unexpected Memory Manager state!");
} else if (blockEndSuccessor->virt != virtEnd) {
// If one block is directly in front then we don't have to add a tail
// The previous block is mapped so we will need to add a tail with an offset
PaType tailPhys{[&]() {
if constexpr (PaContigSplit)
return blockEndPredecessor->phys + virtEnd - blockEndPredecessor->virt;
else
return blockEndPredecessor->phys;
}()};
if (blockEndPredecessor->virt >= virt) {
// If this block's start would be overlapped by the unmap then reuse it as a tail block
blockEndPredecessor->virt = virtEnd;
blockEndPredecessor->phys = tailPhys;
} else {
blocks.insert(blockEndSuccessor, {Block(virt, UnmappedPa, {}), Block(virtEnd, tailPhys, blockEndPredecessor->extraInfo)});
if (unmapCallback)
unmapCallback(virt, size);
return; // The previous block is mapped and ends before
}
}
// Walk the block vector to find the start predecessor as this is more efficient than another binary search in most scenarios
auto blockStartPredecessor{walkBackToPredecessor(blockEndPredecessor)};
auto blockStartSuccessor{std::next(blockStartPredecessor)};
if (blockStartSuccessor->virt > virtEnd) {
throw exception("Unsorted block in AS map: virt: 0x{:X}", blockStartSuccessor->virt);
} else if (blockStartSuccessor->virt == virtEnd) {
// There are no blocks between the start and the end that would let us skip inserting a new one for head
// The previous block is may be unmapped, if so we don't need to insert any unmaps after it
if (blockStartPredecessor->Mapped())
blocks.insert(blockStartSuccessor, Block(virt, UnmappedPa, {}));
} else if (blockStartPredecessor->Unmapped()) {
// If the previous block is unmapped
blocks.erase(blockStartSuccessor, blockEndPredecessor);
} else {
// Add in the unmapped block header
blockStartSuccessor->virt = virt;
blockStartSuccessor->phys = UnmappedPa;
// Erase overwritten blocks, skipping the first one as we have written the unmapped start block there
if (auto eraseStart{std::next(blockStartSuccessor)}; blockStartSuccessor != blockEndPredecessor) {
if (eraseStart == blockEndPredecessor)
throw exception("Trying to erase the end block of a newly unmapped region!");
blocks.erase(eraseStart, blockEndPredecessor);
}
}
if (unmapCallback)
unmapCallback(virt, size);
}
MM_MEMBER()::FlatMemoryManager() {
sparseMap = static_cast<u8 *>(mmap(0, SparseMapSize, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0));
if (!sparseMap)
throw exception("Failed to mmap sparse map!");
}
MM_MEMBER()::~FlatMemoryManager() {
munmap(sparseMap, SparseMapSize);
}
MM_MEMBER(std::vector<span<u8>>)::TranslateRange(VaType virt, VaType size) {
TRACE_EVENT("containers", "FlatMemoryManager::TranslateRange");
std::scoped_lock lock(this->blockMutex);
VaType virtEnd{virt + size};
auto successor{std::upper_bound(this->blocks.begin(), this->blocks.end(), virt, [] (auto virt, const auto &block) {
return virt < block.virt;
})};
auto predecessor{std::prev(successor)};
u8 *blockPhys{predecessor->phys + (virt - predecessor->virt)};
VaType blockSize{std::min(successor->virt - virt, size)};
std::vector<span<u8>> ranges;
while (size) {
// Return a zeroed out map to emulate sparse mappings
if (predecessor->extraInfo.sparseMapped) {
if (blockSize > SparseMapSize)
throw exception("Size of the sparse map is too small to fit block of size: 0x{:X}", blockSize);
blockPhys = sparseMap;
}
ranges.push_back(span(blockPhys, blockSize));
size -= blockSize;
if (size) {
predecessor = successor++;
blockPhys = predecessor->phys;
blockSize = std::min(successor->virt - predecessor->virt, size);
}
}
return ranges;
}
MM_MEMBER(void)::Read(u8 *destination, VaType virt, VaType size) {
TRACE_EVENT("containers", "FlatMemoryManager::Read");
std::scoped_lock lock(this->blockMutex);
VaType virtEnd{virt + size};
auto successor{std::upper_bound(this->blocks.begin(), this->blocks.end(), virt, [] (auto virt, const auto &block) {
return virt < block.virt;
})};
auto predecessor{std::prev(successor)};
u8 *blockPhys{predecessor->phys + (virt - predecessor->virt)};
VaType blockReadSize{std::min(successor->virt - virt, size)};
// Reads may span across multiple individual blocks
while (size) {
if (predecessor->phys == nullptr) {
throw exception("Page fault at 0x{:X}", predecessor->virt);
} else {
if (predecessor->extraInfo.sparseMapped) // Sparse mappings read all zeroes
std::memset(destination, 0, blockReadSize);
else
std::memcpy(destination, blockPhys, blockReadSize);
}
destination += blockReadSize;
size -= blockReadSize;
if (size) {
predecessor = successor++;
blockPhys = predecessor->phys;
blockReadSize = std::min(successor->virt - predecessor->virt, size);
}
}
}
MM_MEMBER(void)::Write(VaType virt, u8 *source, VaType size) {
TRACE_EVENT("containers", "FlatMemoryManager::Write");
std::scoped_lock lock(this->blockMutex);
VaType virtEnd{virt + size};
auto successor{std::upper_bound(this->blocks.begin(), this->blocks.end(), virt, [] (auto virt, const auto &block) {
return virt < block.virt;
})};
auto predecessor{std::prev(successor)};
u8 *blockPhys{predecessor->phys + (virt - predecessor->virt)};
VaType blockWriteSize{std::min(successor->virt - virt, size)};
// Writes may span across multiple individual blocks
while (size) {
if (predecessor->phys == nullptr) {
throw exception("Page fault at 0x{:X}", predecessor->virt);
} else {
if (!predecessor->extraInfo.sparseMapped) // Sparse mappings ignore writes
std::memcpy(blockPhys, source, blockWriteSize);
}
source += blockWriteSize;
size -= blockWriteSize;
if (size) {
predecessor = successor++;
blockPhys = predecessor->phys;
blockWriteSize = std::min(successor->virt - predecessor->virt, size);
}
}
}
ALLOC_MEMBER()::FlatAllocator(VaType vaStart, VaType vaLimit) : Base(vaLimit), vaStart(vaStart), currentLinearAllocEnd(vaStart) {}
ALLOC_MEMBER(VaType)::Allocate(VaType size) {
TRACE_EVENT("containers", "FlatAllocator::Allocate");
std::scoped_lock lock(this->blockMutex);
VaType allocStart{UnmappedVa};
VaType allocEnd{currentLinearAllocEnd + size};
// Avoid searching backwards in the address space if possible
if (allocEnd >= currentLinearAllocEnd && allocEnd <= this->vaLimit) {
auto allocEndSuccessor{std::lower_bound(this->blocks.begin(), this->blocks.end(), allocEnd)};
if (allocEndSuccessor == this->blocks.begin())
throw exception("First block in AS map is invalid!");
auto allocEndPredecessor{std::prev(allocEndSuccessor)};
if (allocEndPredecessor->virt <= currentLinearAllocEnd) {
allocStart = currentLinearAllocEnd;
} else {
// Skip over fixed any mappings in front of us
while (allocEndSuccessor != this->blocks.end()) {
if (allocEndSuccessor->virt - allocEndPredecessor->virt < size || allocEndPredecessor->Mapped() ) {
allocStart = allocEndPredecessor->virt;
break;
}
allocEndPredecessor = allocEndSuccessor++;
// Use the VA limit to calculate if we can fit in the final block since it has no successor
if (allocEndSuccessor == this->blocks.end()) {
allocEnd = allocEndPredecessor->virt + size;
if (allocEnd >= allocEndPredecessor->virt && allocEnd <= this->vaLimit)
allocStart = allocEndPredecessor->virt;
}
}
}
}
if (allocStart != UnmappedVa) {
currentLinearAllocEnd = allocStart + size;
} else { // If linear allocation overflows the AS then find a gap
if (this->blocks.size() <= 2)
throw exception("Unexpected allocator state!");
auto searchPredecessor{this->blocks.begin()};
auto searchSuccessor{std::next(searchPredecessor)};
while (searchSuccessor != this->blocks.end() &&
(searchSuccessor->virt - searchPredecessor->virt < size || searchPredecessor->Mapped())) {
searchPredecessor = searchSuccessor++;
}
if (searchSuccessor != this->blocks.end())
allocStart = searchPredecessor->virt;
else
throw exception("Unexpected allocator state!");
}
this->MapLocked(allocStart, true, size, {});
return allocStart;
}
ALLOC_MEMBER(void)::AllocateFixed(VaType virt, VaType size) {
this->Map(virt, true, size);
}
ALLOC_MEMBER(void)::Free(VaType virt, VaType size) {
this->Unmap(virt, size);
}
}