snes9xgx/source/snes9x/cpuaddr.h

535 lines
16 KiB
C
Raw Permalink Normal View History

/**********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com),
Nach (n-a-c-h@users.sourceforge.net), and
zones (kasumitokoduck@yahoo.com)
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com)
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley,
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001-2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight,
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound DSP emulator code is derived from SNEeSe and OpenSPC:
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x filter
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
**********************************************************************************/
#ifndef _CPUADDR_H_
#define _CPUADDR_H_
typedef enum {
NONE = 0,
READ = 1,
WRITE = 2,
MODIFY = 3,
JUMP = 5,
JSR = 8
} AccessMode;
STATIC inline uint8 Immediate8 (AccessMode a) {
uint8 val = CPU.PCBase[Registers.PCw];
if(a&READ) OpenBus = val;
AddCycles(CPU.MemSpeed);
Registers.PCw++;
return val;
}
STATIC inline uint8 Immediate8Slow (AccessMode a) {
uint8 val = S9xGetByte(Registers.PBPC);
if(a&READ) OpenBus = val;
Registers.PCw++;
return val;
}
STATIC inline uint16 Immediate16 (AccessMode a) {
uint16 val = READ_WORD(CPU.PCBase+Registers.PCw);
if(a&READ) OpenBus = (uint8)(val>>8);
AddCycles(CPU.MemSpeedx2);
Registers.PCw+=2;
return val;
}
STATIC inline uint16 Immediate16Slow (AccessMode a) {
uint16 val = S9xGetWord(Registers.PBPC, WRAP_BANK);
if(a&READ) OpenBus = (uint8)(val>>8);
Registers.PCw+=2;
return val;
}
STATIC inline uint32 RelativeSlow (AccessMode a) { // branch $xx
int8 offset = Immediate8Slow(a);
return ((int16)Registers.PCw + offset) & 0xffff;
}
STATIC inline uint32 Relative (AccessMode a) { // branch $xx
int8 offset = Immediate8(a);
return ((int16)Registers.PCw + offset) & 0xffff;
}
STATIC inline uint32 RelativeLongSlow (AccessMode a) { // BRL $xxxx
int16 offset = Immediate16Slow(a);
return ((int32)Registers.PCw + offset) & 0xffff;
}
STATIC inline uint32 RelativeLong (AccessMode a) { // BRL $xxxx
int16 offset = Immediate16(a);
return ((int32)Registers.PCw + offset) & 0xffff;
}
STATIC inline uint32 AbsoluteIndexedIndirectSlow (AccessMode a) { // (a,X)
uint16 addr;
if(a&JSR){
// JSR (a,X) pushes the old address in the middle of loading the new.
// OpenBus needs to be set to account for this.
addr = Immediate8Slow(READ);
if(a==JSR) OpenBus = Registers.PCl;
addr |= Immediate8Slow(READ)<<8;
} else {
addr = Immediate16Slow(READ);
}
AddCycles(ONE_CYCLE);
addr+=Registers.X.W;
// Address load wraps within the bank
uint16 addr2 = S9xGetWord(ICPU.ShiftedPB | addr, WRAP_BANK);
OpenBus = addr2>>8;
return addr2;
}
STATIC inline uint32 AbsoluteIndexedIndirect (AccessMode a) { // (a,X)
uint16 addr = Immediate16Slow(READ);
addr+=Registers.X.W;
// Address load wraps within the bank
uint16 addr2 = S9xGetWord(ICPU.ShiftedPB | addr, WRAP_BANK);
OpenBus = addr2>>8;
return addr2;
}
STATIC inline uint32 AbsoluteIndirectLongSlow (AccessMode a) { // [a]
uint16 addr = Immediate16Slow(READ);
// No info on wrapping, but it doesn't matter anyway due to mirroring
uint32 addr2 = S9xGetWord(addr);
OpenBus=addr2>>8;
addr2 |= (OpenBus = S9xGetByte(addr+2))<<16;
return addr2;
}
STATIC inline uint32 AbsoluteIndirectLong (AccessMode a) { // [a]
uint16 addr = Immediate16(READ);
// No info on wrapping, but it doesn't matter anyway due to mirroring
uint32 addr2 = S9xGetWord(addr);
OpenBus=addr2>>8;
addr2 |= (OpenBus = S9xGetByte(addr+2))<<16;
return addr2;
}
STATIC inline uint32 AbsoluteIndirectSlow (AccessMode a) { // (a)
// No info on wrapping, but it doesn't matter anyway due to mirroring
uint16 addr2 = S9xGetWord(Immediate16Slow(READ));
OpenBus=addr2>>8;
return addr2;
}
STATIC inline uint32 AbsoluteIndirect (AccessMode a) { // (a)
// No info on wrapping, but it doesn't matter anyway due to mirroring
uint16 addr2 = S9xGetWord(Immediate16(READ));
OpenBus=addr2>>8;
return addr2;
}
STATIC inline uint32 AbsoluteSlow (AccessMode a) { // a
return ICPU.ShiftedDB|Immediate16Slow(a);
}
STATIC inline uint32 Absolute (AccessMode a) { // a
return ICPU.ShiftedDB|Immediate16(a);
}
STATIC inline uint32 AbsoluteLongSlow (AccessMode a) { // l
uint32 addr = Immediate16Slow(READ);
// JSR l pushes the old bank in the middle of loading the new.
// OpenBus needs to be set to account for this.
if(a==JSR) OpenBus = Registers.PB;
addr |= Immediate8Slow(a)<<16;
return addr;
}
STATIC inline uint32 AbsoluteLong (AccessMode a) { // l
uint32 addr = READ_3WORD(CPU.PCBase+Registers.PCw);
AddCycles(CPU.MemSpeedx2+CPU.MemSpeed);
if(a&READ) OpenBus = addr>>16;
Registers.PCw+=3;
return addr;
}
STATIC inline uint32 DirectSlow (AccessMode a) { // d
uint16 addr = Immediate8Slow(a) + Registers.D.W;
if(Registers.DL!=0) AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 Direct (AccessMode a) { // d
uint16 addr = Immediate8(a) + Registers.D.W;
if(Registers.DL!=0) AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 DirectIndirectSlow (AccessMode a) { // (d)
uint32 addr = S9xGetWord(DirectSlow(READ),
(!CheckEmulation() || Registers.DL)?WRAP_BANK:WRAP_PAGE);
if(a&READ) OpenBus=(uint8)(addr>>8);
addr |= ICPU.ShiftedDB;
return addr;
}
STATIC inline uint32 DirectIndirectE0 (AccessMode a) { // (d)
uint32 addr = S9xGetWord(Direct(READ));
if(a&READ) OpenBus = (uint8)(addr>>8);
addr |= ICPU.ShiftedDB;
return addr;
}
STATIC inline uint32 DirectIndirectE1 (AccessMode a) { // (d)
uint32 addr = S9xGetWord(DirectSlow(READ),
Registers.DL?WRAP_BANK:WRAP_PAGE);
if(a&READ) OpenBus=(uint8)(addr>>8);
addr |= ICPU.ShiftedDB;
return addr;
}
STATIC inline uint32 DirectIndirectIndexedSlow (AccessMode a) { // (d),Y
uint32 addr = DirectIndirectSlow(a);
if(a&WRITE || !CheckIndex() || (addr&0xff)+Registers.YL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 DirectIndirectIndexedE0X0 (AccessMode a) { // (d),Y
uint32 addr = DirectIndirectE0(a);
AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 DirectIndirectIndexedE0X1 (AccessMode a) { // (d),Y
uint32 addr = DirectIndirectE0(a);
if(a&WRITE || (addr&0xff)+Registers.YL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 DirectIndirectIndexedE1 (AccessMode a) { // (d),Y
uint32 addr = DirectIndirectE1(a);
if(a&WRITE || (addr&0xff)+Registers.YL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 DirectIndirectLongSlow (AccessMode a) { // [d]
uint16 addr = DirectSlow(READ);
uint32 addr2 = S9xGetWord(addr);
OpenBus=addr2>>8;
addr2 |= (OpenBus = S9xGetByte(addr+2))<<16;
return addr2;
}
STATIC inline uint32 DirectIndirectLong (AccessMode a) { // [d]
uint16 addr = Direct(READ);
uint32 addr2 = S9xGetWord(addr);
OpenBus=addr2>>8;
addr2 |= (OpenBus = S9xGetByte(addr+2))<<16;
return addr2;
}
STATIC inline uint32 DirectIndirectIndexedLongSlow (AccessMode a) { // [d],Y
return DirectIndirectLongSlow(a) + Registers.Y.W;
}
STATIC inline uint32 DirectIndirectIndexedLong (AccessMode a) { // [d],Y
return DirectIndirectLong(a) + Registers.Y.W;
}
STATIC inline uint32 DirectIndexedXSlow (AccessMode a) { // d,X
pair addr;
addr.W = DirectSlow(a);
if(!CheckEmulation() || Registers.DL){
addr.W+=Registers.X.W;
} else {
addr.B.l+=Registers.XL;
}
AddCycles(ONE_CYCLE);
return addr.W;
}
STATIC inline uint32 DirectIndexedXE0 (AccessMode a) { // d,X
uint16 addr = Direct(a) + Registers.X.W;
AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 DirectIndexedXE1 (AccessMode a) { // d,X
if(Registers.DL){
return DirectIndexedXE0(a);
} else {
pair addr;
addr.W = Direct(a);
addr.B.l+=Registers.XL;
AddCycles(ONE_CYCLE);
return addr.W;
}
}
STATIC inline uint32 DirectIndexedYSlow (AccessMode a) { // d,Y
pair addr;
addr.W = DirectSlow(a);
if(!CheckEmulation() || Registers.DL){
addr.W+=Registers.Y.W;
} else {
addr.B.l+=Registers.YL;
}
AddCycles(ONE_CYCLE);
return addr.W;
}
STATIC inline uint32 DirectIndexedYE0 (AccessMode a) { // d,Y
uint16 addr = Direct(a) + Registers.Y.W;
AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 DirectIndexedYE1 (AccessMode a) { // d,Y
if(Registers.DL){
return DirectIndexedYE0(a);
} else {
pair addr;
addr.W = Direct(a);
addr.B.l+=Registers.YL;
AddCycles(ONE_CYCLE);
return addr.W;
}
}
STATIC inline uint32 DirectIndexedIndirectSlow (AccessMode a) { // (d,X)
uint32 addr = S9xGetWord(DirectIndexedXSlow(READ),
(!CheckEmulation() || Registers.DL)?WRAP_BANK:WRAP_PAGE);
if(a&READ) OpenBus=(uint8)(addr>>8);
return ICPU.ShiftedDB|addr;
}
STATIC inline uint32 DirectIndexedIndirectE0 (AccessMode a) { // (d,X)
uint32 addr = S9xGetWord(DirectIndexedXE0(READ));
if(a&READ) OpenBus = (uint8)(addr>>8);
return ICPU.ShiftedDB|addr;
}
STATIC inline uint32 DirectIndexedIndirectE1 (AccessMode a) { // (d,X)
uint32 addr = S9xGetWord(DirectIndexedXE1(READ),
Registers.DL?WRAP_BANK:WRAP_PAGE);
if(a&READ) OpenBus=(uint8)(addr>>8);
return ICPU.ShiftedDB|addr;
}
STATIC inline uint32 AbsoluteIndexedXSlow (AccessMode a) { // a,X
uint32 addr = AbsoluteSlow(a);
if(a&WRITE || !CheckIndex() || (addr&0xff)+Registers.XL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.X.W);
}
STATIC inline uint32 AbsoluteIndexedXX0 (AccessMode a) { // a,X
uint32 addr = Absolute(a);
AddCycles(ONE_CYCLE);
return (addr + Registers.X.W);
}
STATIC inline uint32 AbsoluteIndexedXX1 (AccessMode a) { // a,X
uint32 addr = Absolute(a);
if(a&WRITE || (addr&0xff)+Registers.XL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.X.W);
}
STATIC inline uint32 AbsoluteIndexedYSlow (AccessMode a) { // a,Y
uint32 addr = AbsoluteSlow(a);
if(a&WRITE || !CheckIndex() || (addr&0xff)+Registers.YL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 AbsoluteIndexedYX0 (AccessMode a) { // a,Y
uint32 addr = Absolute(a);
AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 AbsoluteIndexedYX1 (AccessMode a) { // a,Y
uint32 addr = Absolute(a);
if(a&WRITE || (addr&0xff)+Registers.YL>=0x100) AddCycles(ONE_CYCLE);
return (addr + Registers.Y.W);
}
STATIC inline uint32 AbsoluteLongIndexedXSlow (AccessMode a) { // l,X
return (AbsoluteLongSlow(a) + Registers.X.W);
}
STATIC inline uint32 AbsoluteLongIndexedX (AccessMode a) { // l,X
return (AbsoluteLong(a) + Registers.X.W);
}
STATIC inline uint32 StackRelativeSlow (AccessMode a) { // d,S
uint16 addr = Immediate8Slow(a) + Registers.S.W;
AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 StackRelative (AccessMode a) { // d,S
uint16 addr = Immediate8(a) + Registers.S.W;
AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 StackRelativeIndirectIndexedSlow (AccessMode a) { // (d,S),Y
uint32 addr=S9xGetWord(StackRelativeSlow(READ));
if(a&READ) OpenBus = (uint8)(addr>>8);
addr = (addr+Registers.Y.W+ICPU.ShiftedDB)&0xffffff;
AddCycles(ONE_CYCLE);
return addr;
}
STATIC inline uint32 StackRelativeIndirectIndexed (AccessMode a) { // (d,S),Y
uint32 addr=S9xGetWord(StackRelative(READ));
if(a&READ) OpenBus = (uint8)(addr>>8);
addr = (addr+Registers.Y.W+ICPU.ShiftedDB)&0xffffff;
AddCycles(ONE_CYCLE);
return addr;
}
#endif