/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2010 BearOso, OV2 BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2010 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2010 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2010 zones Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #ifndef _GETSET_H_ #define _GETSET_H_ #include "cpuexec.h" #include "dsp.h" #include "sa1.h" #include "spc7110.h" #include "c4.h" #include "obc1.h" #include "seta.h" #include "bsx.h" #include "msu1.h" #if (S9X_ACCURACY_LEVEL >= 2) #define addCyclesInMemoryAccess \ if (!CPU.InDMAorHDMA) \ { \ CPU.Cycles += speed; \ while (CPU.Cycles >= CPU.NextEvent) \ S9xDoHEventProcessing(); \ } #define addCyclesInMemoryAccess_x2 \ if (!CPU.InDMAorHDMA) \ { \ CPU.Cycles += speed << 1; \ while (CPU.Cycles >= CPU.NextEvent) \ S9xDoHEventProcessing(); \ } #else #define addCyclesInMemoryAccess \ if (!CPU.InDMAorHDMA) \ CPU.Cycles += speed; #define addCyclesInMemoryAccess_x2 \ if (!CPU.InDMAorHDMA) \ CPU.Cycles += speed << 1; #endif extern uint8 OpenBus; static inline int32 memory_speed (uint32 address) { if (address & 0x408000) { if (address & 0x800000) return (CPU.FastROMSpeed); return (SLOW_ONE_CYCLE); } if ((address + 0x6000) & 0x4000) return (SLOW_ONE_CYCLE); if ((address - 0x4000) & 0x7e00) return (ONE_CYCLE); return (TWO_CYCLES); } inline uint8 S9xGetByte (uint32 Address) { int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *GetAddress = Memory.Map[block]; int32 speed = memory_speed(Address); uint8 byte; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN if (Memory.BlockIsRAM[block]) CPU.WaitAddress = CPU.PBPCAtOpcodeStart; #endif byte = *(GetAddress + (Address & 0xffff)); addCyclesInMemoryAccess; return (byte); } switch ((pint) GetAddress) { case CMemory::MAP_CPU: byte = S9xGetCPU(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_PPU: if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100) return (OpenBus); byte = S9xGetPPU(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: // Address & 0x7fff : offset into bank // Address & 0xff0000 : bank // bank >> 1 | offset : SRAM address, unbound // unbound & SRAMMask : SRAM offset byte = *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_LOROM_SRAM_B: byte = *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_RONLY_SRAM: byte = *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_BWRAM: byte = *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_DSP: byte = S9xGetDSP(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SPC7110_ROM: byte = S9xGetSPC7110Byte(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SPC7110_DRAM: byte = S9xGetSPC7110(0x4800); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_C4: byte = S9xGetC4(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_OBC_RAM: byte = S9xGetOBC1(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SETA_DSP: byte = S9xGetSetaDSP(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SETA_RISC: byte = S9xGetST018(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_BSX: byte = S9xGetBSX(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_NONE: default: byte = OpenBus; addCyclesInMemoryAccess; return (byte); } } inline uint16 S9xGetWord (uint32 Address, enum s9xwrap_t w = WRAP_NONE) { uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff)); if ((Address & mask) == mask) { PC_t a; OpenBus = S9xGetByte(Address); switch (w) { case WRAP_PAGE: a.xPBPC = Address; a.B.xPCl++; return (OpenBus | (S9xGetByte(a.xPBPC) << 8)); case WRAP_BANK: a.xPBPC = Address; a.W.xPC++; return (OpenBus | (S9xGetByte(a.xPBPC) << 8)); case WRAP_NONE: default: return (OpenBus | (S9xGetByte(Address + 1) << 8)); } } int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *GetAddress = Memory.Map[block]; int32 speed = memory_speed(Address); uint16 word; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN if (Memory.BlockIsRAM[block]) CPU.WaitAddress = CPU.PBPCAtOpcodeStart; #endif word = READ_WORD(GetAddress + (Address & 0xffff)); addCyclesInMemoryAccess_x2; return (word); } switch ((pint) GetAddress) { case CMemory::MAP_CPU: word = S9xGetCPU(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetCPU((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_PPU: if (CPU.InDMAorHDMA) { OpenBus = S9xGetByte(Address); return (OpenBus | (S9xGetByte(Address + 1) << 8)); } word = S9xGetPPU(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetPPU((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: if (Memory.SRAMMask >= MEMMAP_MASK) word = READ_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); else word = (*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask))) | ((*(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask))) << 8); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_LOROM_SRAM_B: if (Multi.sramMaskB >= MEMMAP_MASK) word = READ_WORD(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); else word = (*(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB))) | ((*(Multi.sramB + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Multi.sramMaskB))) << 8); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_RONLY_SRAM: if (Memory.SRAMMask >= MEMMAP_MASK) word = READ_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)); else word = (*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) | (*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) << 8)); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_BWRAM: word = READ_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_DSP: word = S9xGetDSP(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetDSP((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SPC7110_ROM: word = S9xGetSPC7110Byte(Address); addCyclesInMemoryAccess; word |= S9xGetSPC7110Byte(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SPC7110_DRAM: word = S9xGetSPC7110(0x4800); addCyclesInMemoryAccess; word |= S9xGetSPC7110(0x4800) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_C4: word = S9xGetC4(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetC4((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_OBC_RAM: word = S9xGetOBC1(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetOBC1((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SETA_DSP: word = S9xGetSetaDSP(Address); addCyclesInMemoryAccess; word |= S9xGetSetaDSP(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SETA_RISC: word = S9xGetST018(Address); addCyclesInMemoryAccess; word |= S9xGetST018(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_BSX: word = S9xGetBSX(Address); addCyclesInMemoryAccess; word |= S9xGetBSX(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_NONE: default: word = OpenBus | (OpenBus << 8); addCyclesInMemoryAccess_x2; return (word); } } inline void S9xSetByte (uint8 Byte, uint32 Address) { #ifdef CPU_SHUTDOWN CPU.WaitAddress = 0xffffffff; #endif int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *SetAddress = Memory.WriteMap[block]; int32 speed = memory_speed(Address); if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN SetAddress += (Address & 0xffff); *SetAddress = Byte; addCyclesInMemoryAccess; if (Settings.SA1) { if (SetAddress == SA1.WaitByteAddress1 || SetAddress == SA1.WaitByteAddress2) { SA1.Executing = SA1.S9xOpcodes != NULL; SA1.WaitCounter = 0; } } #else *(SetAddress + (Address & 0xffff)) = Byte; addCyclesInMemoryAccess; #endif return; } switch ((pint) SetAddress) { case CMemory::MAP_CPU: S9xSetCPU(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_PPU: if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100) return; S9xSetPPU(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_LOROM_SRAM: if (Memory.SRAMMask) { *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = Byte; CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess; return; case CMemory::MAP_LOROM_SRAM_B: if (Multi.sramMaskB) { *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)) = Byte; CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess; return; case CMemory::MAP_HIROM_SRAM: if (Memory.SRAMMask) { *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = Byte; CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess; return; case CMemory::MAP_BWRAM: *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)) = Byte; CPU.SRAMModified = TRUE; addCyclesInMemoryAccess; return; case CMemory::MAP_SA1RAM: *(Memory.SRAM + (Address & 0xffff)) = Byte; SA1.Executing = !SA1.Waiting; addCyclesInMemoryAccess; return; case CMemory::MAP_DSP: S9xSetDSP(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_C4: S9xSetC4(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_OBC_RAM: S9xSetOBC1(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_SETA_DSP: S9xSetSetaDSP(Byte, Address); addCyclesInMemoryAccess; return; case CMemory::MAP_SETA_RISC: S9xSetST018(Byte, Address); addCyclesInMemoryAccess; return; case CMemory::MAP_BSX: S9xSetBSX(Byte, Address); addCyclesInMemoryAccess; return; case CMemory::MAP_NONE: default: addCyclesInMemoryAccess; return; } } inline void S9xSetWord (uint16 Word, uint32 Address, enum s9xwrap_t w = WRAP_NONE, enum s9xwriteorder_t o = WRITE_01) { uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff)); if ((Address & mask) == mask) { PC_t a; if (!o) S9xSetByte((uint8) Word, Address); switch (w) { case WRAP_PAGE: a.xPBPC = Address; a.B.xPCl++; S9xSetByte(Word >> 8, a.xPBPC); break; case WRAP_BANK: a.xPBPC = Address; a.W.xPC++; S9xSetByte(Word >> 8, a.xPBPC); break; case WRAP_NONE: default: S9xSetByte(Word >> 8, Address + 1); break; } if (o) S9xSetByte((uint8) Word, Address); return; } #ifdef CPU_SHUTDOWN CPU.WaitAddress = 0xffffffff; #endif int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *SetAddress = Memory.WriteMap[block]; int32 speed = memory_speed(Address); if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN SetAddress += (Address & 0xffff); WRITE_WORD(SetAddress, Word); addCyclesInMemoryAccess_x2; if (Settings.SA1) { if (SetAddress == SA1.WaitByteAddress1 || SetAddress == SA1.WaitByteAddress2) { SA1.Executing = SA1.S9xOpcodes != NULL; SA1.WaitCounter = 0; } } #else WRITE_WORD(SetAddress + (Address & 0xffff), Word); addCyclesInMemoryAccess_x2; #endif return; } switch ((pint) SetAddress) { case CMemory::MAP_CPU: if (o) { S9xSetCPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetCPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetCPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetCPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_PPU: if (CPU.InDMAorHDMA) { if ((Address & 0xff00) != 0x2100) S9xSetPPU((uint8) Word, Address & 0xffff); if (((Address + 1) & 0xff00) != 0x2100) S9xSetPPU(Word >> 8, (Address + 1) & 0xffff); return; } if (o) { S9xSetPPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetPPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetPPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetPPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_LOROM_SRAM: if (Memory.SRAMMask) { if (Memory.SRAMMask >= MEMMAP_MASK) WRITE_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask), Word); else { *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = (uint8) Word; *(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask)) = Word >> 8; } CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess_x2; return; case CMemory::MAP_LOROM_SRAM_B: if (Multi.sramMaskB) { if (Multi.sramMaskB >= MEMMAP_MASK) WRITE_WORD(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB), Word); else { *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)) = (uint8) Word; *(Multi.sramB + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Multi.sramMaskB)) = Word >> 8; } CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess_x2; return; case CMemory::MAP_HIROM_SRAM: if (Memory.SRAMMask) { if (Memory.SRAMMask >= MEMMAP_MASK) WRITE_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask), Word); else { *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = (uint8) Word; *(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) = Word >> 8; } CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess_x2; return; case CMemory::MAP_BWRAM: WRITE_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000), Word); CPU.SRAMModified = TRUE; addCyclesInMemoryAccess_x2; return; case CMemory::MAP_SA1RAM: WRITE_WORD(Memory.SRAM + (Address & 0xffff), Word); SA1.Executing = !SA1.Waiting; addCyclesInMemoryAccess_x2; return; case CMemory::MAP_DSP: if (o) { S9xSetDSP(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetDSP((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetDSP((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetDSP(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_C4: if (o) { S9xSetC4(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetC4((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetC4((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetC4(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_OBC_RAM: if (o) { S9xSetOBC1(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetOBC1((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetOBC1((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetOBC1(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_SETA_DSP: if (o) { S9xSetSetaDSP(Word >> 8, Address + 1); addCyclesInMemoryAccess; S9xSetSetaDSP((uint8) Word, Address); addCyclesInMemoryAccess; return; } else { S9xSetSetaDSP((uint8) Word, Address); addCyclesInMemoryAccess; S9xSetSetaDSP(Word >> 8, Address + 1); addCyclesInMemoryAccess; return; } case CMemory::MAP_SETA_RISC: if (o) { S9xSetST018(Word >> 8, Address + 1); addCyclesInMemoryAccess; S9xSetST018((uint8) Word, Address); addCyclesInMemoryAccess; return; } else { S9xSetST018((uint8) Word, Address); addCyclesInMemoryAccess; S9xSetST018(Word >> 8, Address + 1); addCyclesInMemoryAccess; return; } case CMemory::MAP_BSX: if (o) { S9xSetBSX(Word >> 8, Address + 1); addCyclesInMemoryAccess; S9xSetBSX((uint8) Word, Address); addCyclesInMemoryAccess; return; } else { S9xSetBSX((uint8) Word, Address); addCyclesInMemoryAccess; S9xSetBSX(Word >> 8, Address + 1); addCyclesInMemoryAccess; return; } case CMemory::MAP_NONE: default: addCyclesInMemoryAccess_x2; return; } } inline void S9xSetPCBase (uint32 Address) { Registers.PBPC = Address & 0xffffff; ICPU.ShiftedPB = Address & 0xff0000; int block; uint8 *GetAddress = Memory.Map[block = ((Address & 0xffffff) >> MEMMAP_SHIFT)]; CPU.MemSpeed = memory_speed(Address); CPU.MemSpeedx2 = CPU.MemSpeed << 1; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { CPU.PCBase = GetAddress; return; } switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) CPU.PCBase = NULL; else CPU.PCBase = Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff); return; case CMemory::MAP_LOROM_SRAM_B: if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK) CPU.PCBase = NULL; else CPU.PCBase = Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB) - (Address & 0xffff); return; case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) CPU.PCBase = NULL; else CPU.PCBase = Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff); return; case CMemory::MAP_BWRAM: CPU.PCBase = Memory.BWRAM - 0x6000 - (Address & 0x8000); return; case CMemory::MAP_SA1RAM: CPU.PCBase = Memory.SRAM; return; case CMemory::MAP_SPC7110_ROM: CPU.PCBase = S9xGetBasePointerSPC7110(Address); return; case CMemory::MAP_C4: CPU.PCBase = S9xGetBasePointerC4(Address & 0xffff); return; case CMemory::MAP_OBC_RAM: CPU.PCBase = S9xGetBasePointerOBC1(Address & 0xffff); return; case CMemory::MAP_BSX: CPU.PCBase = S9xGetBasePointerBSX(Address); return; case CMemory::MAP_NONE: default: CPU.PCBase = NULL; return; } } inline uint8 * S9xGetBasePointer (uint32 Address) { uint8 *GetAddress = Memory.Map[(Address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (GetAddress); switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff)); case CMemory::MAP_LOROM_SRAM_B: if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB) - (Address & 0xffff)); case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff)); case CMemory::MAP_BWRAM: return (Memory.BWRAM - 0x6000 - (Address & 0x8000)); case CMemory::MAP_SA1RAM: return (Memory.SRAM); case CMemory::MAP_SPC7110_ROM: return (S9xGetBasePointerSPC7110(Address)); case CMemory::MAP_C4: return (S9xGetBasePointerC4(Address & 0xffff)); case CMemory::MAP_OBC_RAM: return (S9xGetBasePointerOBC1(Address & 0xffff)); case CMemory::MAP_NONE: default: return (NULL); } } inline uint8 * S9xGetMemPointer (uint32 Address) { uint8 *GetAddress = Memory.Map[(Address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (GetAddress + (Address & 0xffff)); switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); case CMemory::MAP_LOROM_SRAM_B: if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)); case CMemory::MAP_BWRAM: return (Memory.BWRAM - 0x6000 + (Address & 0x7fff)); case CMemory::MAP_SA1RAM: return (Memory.SRAM + (Address & 0xffff)); case CMemory::MAP_SPC7110_ROM: return (S9xGetBasePointerSPC7110(Address) + (Address & 0xffff)); case CMemory::MAP_C4: return (S9xGetMemPointerC4(Address & 0xffff)); case CMemory::MAP_OBC_RAM: return (S9xGetMemPointerOBC1(Address & 0xffff)); case CMemory::MAP_NONE: default: return (NULL); } } #endif