/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2011 BearOso, OV2 BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2011 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2011 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones MSU-1 code (c) Copyright 2016 qwertymodo Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include #include "snes9x.h" #include "apu.h" #include "msu1.h" #include "snapshot.h" #include "display.h" #include "linear_resampler.h" #include "hermite_resampler.h" #define APU_DEFAULT_INPUT_RATE 32040 #define APU_MINIMUM_SAMPLE_COUNT 512 #define APU_MINIMUM_SAMPLE_BLOCK 128 #define APU_NUMERATOR_NTSC 15664 #define APU_DENOMINATOR_NTSC 328125 #define APU_NUMERATOR_PAL 34176 #define APU_DENOMINATOR_PAL 709379 #define APU_DEFAULT_RESAMPLER HermiteResampler SNES_SPC *spc_core = NULL; static uint8 APUROM[64] = { 0xCD, 0xEF, 0xBD, 0xE8, 0x00, 0xC6, 0x1D, 0xD0, 0xFC, 0x8F, 0xAA, 0xF4, 0x8F, 0xBB, 0xF5, 0x78, 0xCC, 0xF4, 0xD0, 0xFB, 0x2F, 0x19, 0xEB, 0xF4, 0xD0, 0xFC, 0x7E, 0xF4, 0xD0, 0x0B, 0xE4, 0xF5, 0xCB, 0xF4, 0xD7, 0x00, 0xFC, 0xD0, 0xF3, 0xAB, 0x01, 0x10, 0xEF, 0x7E, 0xF4, 0x10, 0xEB, 0xBA, 0xF6, 0xDA, 0x00, 0xBA, 0xF4, 0xC4, 0xF4, 0xDD, 0x5D, 0xD0, 0xDB, 0x1F, 0x00, 0x00, 0xC0, 0xFF }; namespace spc { static apu_callback sa_callback = NULL; static void *extra_data = NULL; static bool8 sound_in_sync = TRUE; static bool8 sound_enabled = FALSE; static int buffer_size; static int lag_master = 0; static int lag = 0; static uint8 *landing_buffer = NULL; static uint8 *shrink_buffer = NULL; static Resampler *resampler = NULL; static int32 reference_time; static uint32 remainder; static const int timing_hack_numerator = SNES_SPC::tempo_unit; static int timing_hack_denominator = SNES_SPC::tempo_unit; /* Set these to NTSC for now. Will change to PAL in S9xAPUTimingSetSpeedup if necessary on game load. */ static uint32 ratio_numerator = APU_NUMERATOR_NTSC; static uint32 ratio_denominator = APU_DENOMINATOR_NTSC; static double dynamic_rate_multiplier = 1.0; } namespace msu { static int buffer_size; static uint8 *landing_buffer = NULL; static Resampler *resampler = NULL; static int resample_buffer_size = -1; static uint8 *resample_buffer = NULL; } static void EightBitize (uint8 *, int); static void DeStereo (uint8 *, int); static void ReverseStereo (uint8 *, int); void UpdatePlaybackRate (void); static void from_apu_to_state (uint8 **, void *, size_t); static void to_apu_from_state (uint8 **, void *, size_t); static void SPCSnapshotCallback (void); static inline int S9xAPUGetClock (int32); static inline int S9xAPUGetClockRemainder (int32); static void EightBitize (uint8 *buffer, int sample_count) { uint8 *buf8 = (uint8 *) buffer; int16 *buf16 = (int16 *) buffer; for (int i = 0; i < sample_count; i++) buf8[i] = (uint8) ((buf16[i] / 256) + 128); } static void DeStereo (uint8 *buffer, int sample_count) { int16 *buf = (int16 *) buffer; int32 s1, s2; for (int i = 0; i < (sample_count >> 1); i++) { s1 = (int32) buf[2 * i]; s2 = (int32) buf[2 * i + 1]; buf[i] = (int16) ((s1 + s2) >> 1); } } static void ReverseStereo (uint8 *src_buffer, int sample_count) { int16 *buffer = (int16 *) src_buffer; for (int i = 0; i < sample_count; i += 2) { buffer[i + 1] ^= buffer[i]; buffer[i] ^= buffer[i + 1]; buffer[i + 1] ^= buffer[i]; } } bool8 S9xMixSamples (uint8 *buffer, int sample_count) { static int shrink_buffer_size = -1; uint8 *dest; if (!Settings.SixteenBitSound || !Settings.Stereo) { /* We still need both stereo samples for generating the mono sample */ if (!Settings.Stereo) sample_count <<= 1; /* We still have to generate 16-bit samples for bit-dropping, too */ if (shrink_buffer_size < (sample_count << 1)) { delete[] spc::shrink_buffer; spc::shrink_buffer = new uint8[sample_count << 1]; shrink_buffer_size = sample_count << 1; } dest = spc::shrink_buffer; } else dest = buffer; if (Settings.MSU1 && msu::resample_buffer_size < (sample_count << 3)) { delete[] msu::resample_buffer; msu::resample_buffer = new uint8[sample_count << 3]; msu::resample_buffer_size = sample_count << 3; } if (Settings.Mute) { memset(dest, 0, sample_count << 1); spc::resampler->clear(); if(Settings.MSU1) msu::resampler->clear(); return (FALSE); } else { if (spc::resampler->avail() >= (sample_count + spc::lag)) { spc::resampler->read((short *) dest, sample_count); if (spc::lag == spc::lag_master) spc::lag = 0; if (Settings.MSU1) { if (msu::resampler->avail() >= sample_count) { msu::resampler->read((short *)msu::resample_buffer, sample_count); for (int32 i = 0; i < sample_count; ++i) *((int16*)(dest+(i * 2))) += *((int16*)(msu::resample_buffer+(i * 2))); } else // should never occur assert(0); } } else { memset(buffer, (Settings.SixteenBitSound ? 0 : 128), (sample_count << (Settings.SixteenBitSound ? 1 : 0)) >> (Settings.Stereo ? 0 : 1)); if (spc::lag == 0) spc::lag = spc::lag_master; return (FALSE); } } if (Settings.ReverseStereo && Settings.Stereo) ReverseStereo(dest, sample_count); if (!Settings.Stereo || !Settings.SixteenBitSound) { if (!Settings.Stereo) { DeStereo(dest, sample_count); sample_count >>= 1; } if (!Settings.SixteenBitSound) EightBitize(dest, sample_count); memcpy(buffer, dest, (sample_count << (Settings.SixteenBitSound ? 1 : 0))); } return (TRUE); } int S9xGetSampleCount (void) { return (spc::resampler->avail() >> (Settings.Stereo ? 0 : 1)); } #ifdef GEKKO void S9xIncreaseDynamicRateMultiplier () { if(spc::dynamic_rate_multiplier != 1.001) { spc::dynamic_rate_multiplier = 1.001; UpdatePlaybackRate(); } } void S9xResetDynamicRateMultiplier () { if(spc::dynamic_rate_multiplier != 1.0) { spc::dynamic_rate_multiplier = 1.0; UpdatePlaybackRate(); } } #endif void S9xFinalizeSamples (void) { bool drop_current_msu1_samples = TRUE; if (!Settings.Mute) { drop_current_msu1_samples = FALSE; if (!spc::resampler->push((short *) spc::landing_buffer, spc_core->sample_count())) { /* We weren't able to process the entire buffer. Potential overrun. */ spc::sound_in_sync = FALSE; S9xIncreaseDynamicRateMultiplier(); if (Settings.SoundSync && !Settings.TurboMode) return; // since we drop the current dsp samples we also want to drop generated msu1 samples drop_current_msu1_samples = TRUE; } } // only generate msu1 if we really consumed the dsp samples (sample_count() resets at end of function), // otherwise we will generate multiple times for the same samples - so this needs to be after all early // function returns if (Settings.MSU1) { // generate the same number of msu1 samples as dsp samples were generated S9xMSU1SetOutput((int16 *)msu::landing_buffer, msu::buffer_size); S9xMSU1Generate(spc_core->sample_count()); if (!drop_current_msu1_samples && !msu::resampler->push((short *)msu::landing_buffer, S9xMSU1Samples())) { // should not occur, msu buffer is larger and we drop msu samples if spc buffer overruns assert(0); } } if (!Settings.SoundSync || Settings.TurboMode || Settings.Mute) spc::sound_in_sync = TRUE; else if (spc::resampler->space_empty() >= spc::resampler->space_filled()) spc::sound_in_sync = TRUE; else { S9xIncreaseDynamicRateMultiplier (); spc::sound_in_sync = FALSE; } if(spc::sound_in_sync) { S9xResetDynamicRateMultiplier (); } spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); } void S9xLandSamples (void) { if (spc::sa_callback != NULL) spc::sa_callback(spc::extra_data); else S9xFinalizeSamples(); } void S9xClearSamples (void) { spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); spc::lag = spc::lag_master; } bool8 S9xSyncSound (void) { if (!Settings.SoundSync || spc::sound_in_sync) return (TRUE); S9xLandSamples(); return (spc::sound_in_sync); } void S9xSetSamplesAvailableCallback (apu_callback callback, void *data) { spc::sa_callback = callback; spc::extra_data = data; } void UpdatePlaybackRate (void) { if (Settings.SoundInputRate == 0) Settings.SoundInputRate = APU_DEFAULT_INPUT_RATE; double time_ratio = (double) Settings.SoundInputRate * spc::timing_hack_numerator / (Settings.SoundPlaybackRate * spc::timing_hack_denominator); if (Settings.DynamicRateControl) { time_ratio *= spc::dynamic_rate_multiplier; } spc::resampler->time_ratio(time_ratio); if (Settings.MSU1) { time_ratio = (44100.0 / Settings.SoundPlaybackRate) * (Settings.SoundInputRate / 32040.0); msu::resampler->time_ratio(time_ratio); } } bool8 S9xInitSound (int buffer_ms, int lag_ms) { // buffer_ms : buffer size given in millisecond // lag_ms : allowable time-lag given in millisecond int sample_count = buffer_ms * 32040 / 1000; int lag_sample_count = lag_ms * 32040 / 1000; spc::lag_master = lag_sample_count; if (Settings.Stereo) spc::lag_master <<= 1; spc::lag = spc::lag_master; if (sample_count < APU_MINIMUM_SAMPLE_COUNT) sample_count = APU_MINIMUM_SAMPLE_COUNT; spc::buffer_size = sample_count; if (Settings.Stereo) spc::buffer_size <<= 1; if (Settings.SixteenBitSound) spc::buffer_size <<= 1; msu::buffer_size = sample_count << 3; // Always 16-bit, Stereo; x2 to never overflow before dsp buffer printf("Sound buffer size: %d (%d samples)\n", spc::buffer_size, sample_count); if (spc::landing_buffer) delete[] spc::landing_buffer; spc::landing_buffer = new uint8[spc::buffer_size * 2]; if (!spc::landing_buffer) return (FALSE); if (msu::landing_buffer) delete[] msu::landing_buffer; msu::landing_buffer = (uint8*) new uint32[msu::buffer_size / 2]; // Ensure 4-byte alignment if (!msu::landing_buffer) return (FALSE); /* The resampler and spc unit use samples (16-bit short) as arguments. Use 2x in the resampler for buffer leveling with SoundSync */ if (!spc::resampler) { spc::resampler = new APU_DEFAULT_RESAMPLER(spc::buffer_size >> (Settings.SoundSync ? 0 : 1)); if (!spc::resampler) { delete[] spc::landing_buffer; return (FALSE); } } else spc::resampler->resize(spc::buffer_size >> (Settings.SoundSync ? 0 : 1)); if (!msu::resampler) { msu::resampler = new APU_DEFAULT_RESAMPLER(msu::buffer_size >> (Settings.SoundSync ? 0 : 1)); if (!msu::resampler) { delete[] msu::landing_buffer; return (FALSE); } } else msu::resampler->resize(msu::buffer_size); spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); UpdatePlaybackRate(); spc::sound_enabled = S9xOpenSoundDevice(); return (spc::sound_enabled); } void S9xSetSoundControl (uint8 voice_switch) { spc_core->dsp_set_stereo_switch(voice_switch << 8 | voice_switch); } void S9xSetSoundMute (bool8 mute) { Settings.Mute = mute; if (!spc::sound_enabled) Settings.Mute = TRUE; } void S9xDumpSPCSnapshot (void) { spc_core->dsp_dump_spc_snapshot(); } static void SPCSnapshotCallback (void) { S9xSPCDump(S9xGetFilenameInc((".spc"), SPC_DIR)); printf("Dumped key-on triggered spc snapshot.\n"); } bool8 S9xInitAPU (void) { spc_core = new SNES_SPC; if (!spc_core) return (FALSE); spc_core->init(); spc_core->init_rom(APUROM); spc_core->dsp_set_spc_snapshot_callback(SPCSnapshotCallback); spc::landing_buffer = NULL; spc::shrink_buffer = NULL; spc::resampler = NULL; msu::resampler = NULL; return (TRUE); } void S9xDeinitAPU (void) { if (spc_core) { delete spc_core; spc_core = NULL; } if (spc::resampler) { delete spc::resampler; spc::resampler = NULL; } if (spc::landing_buffer) { delete[] spc::landing_buffer; spc::landing_buffer = NULL; } if (spc::shrink_buffer) { delete[] spc::shrink_buffer; spc::shrink_buffer = NULL; } if (msu::resampler) { delete msu::resampler; msu::resampler = NULL; } if (msu::landing_buffer) { delete[] msu::landing_buffer; msu::landing_buffer = NULL; } if (msu::resample_buffer) { delete[] msu::resample_buffer; msu::resample_buffer = NULL; } S9xMSU1DeInit(); } static inline int S9xAPUGetClock (int32 cpucycles) { return (spc::ratio_numerator * (cpucycles - spc::reference_time) + spc::remainder) / spc::ratio_denominator; } static inline int S9xAPUGetClockRemainder (int32 cpucycles) { return (spc::ratio_numerator * (cpucycles - spc::reference_time) + spc::remainder) % spc::ratio_denominator; } uint8 S9xAPUReadPort (int port) { return ((uint8) spc_core->read_port(S9xAPUGetClock(CPU.Cycles), port)); } void S9xAPUWritePort (int port, uint8 byte) { spc_core->write_port(S9xAPUGetClock(CPU.Cycles), port, byte); } void S9xAPUSetReferenceTime (int32 cpucycles) { spc::reference_time = cpucycles; } void S9xAPUExecute (void) { /* Accumulate partial APU cycles */ spc_core->end_frame(S9xAPUGetClock(CPU.Cycles)); spc::remainder = S9xAPUGetClockRemainder(CPU.Cycles); S9xAPUSetReferenceTime(CPU.Cycles); } void S9xAPUEndScanline (void) { S9xAPUExecute(); if (spc_core->sample_count() >= APU_MINIMUM_SAMPLE_BLOCK || !spc::sound_in_sync) S9xLandSamples(); } void S9xAPUTimingSetSpeedup (int ticks) { if (ticks != 0) printf("APU speedup hack: %d\n", ticks); spc::timing_hack_denominator = SNES_SPC::tempo_unit - ticks; spc_core->set_tempo(spc::timing_hack_denominator); spc::ratio_numerator = Settings.PAL ? APU_NUMERATOR_PAL : APU_NUMERATOR_NTSC; spc::ratio_denominator = Settings.PAL ? APU_DENOMINATOR_PAL : APU_DENOMINATOR_NTSC; spc::ratio_denominator = spc::ratio_denominator * spc::timing_hack_denominator / spc::timing_hack_numerator; UpdatePlaybackRate(); } void S9xAPUAllowTimeOverflow (bool allow) { spc_core->spc_allow_time_overflow(allow); } void S9xResetAPU (void) { spc::reference_time = 0; spc::remainder = 0; spc_core->reset(); spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); } void S9xSoftResetAPU (void) { spc::reference_time = 0; spc::remainder = 0; spc_core->soft_reset(); spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); } static void from_apu_to_state (uint8 **buf, void *var, size_t size) { memcpy(*buf, var, size); *buf += size; } static void to_apu_from_state (uint8 **buf, void *var, size_t size) { memcpy(var, *buf, size); *buf += size; } void S9xAPUSaveState (uint8 *block) { uint8 *ptr = block; spc_core->copy_state(&ptr, from_apu_to_state); SET_LE32(ptr, spc::reference_time); ptr += sizeof(int32); SET_LE32(ptr, spc::remainder); } void S9xAPULoadState (uint8 *block) { uint8 *ptr = block; S9xResetAPU(); spc_core->copy_state(&ptr, to_apu_from_state); spc::reference_time = GET_LE32(ptr); ptr += sizeof(int32); spc::remainder = GET_LE32(ptr); } bool8 S9xSPCDump (const char *filename) { FILE *fs; uint8 buf[SNES_SPC::spc_file_size]; size_t ignore; fs = fopen(filename, "wb"); if (!fs) return (FALSE); S9xSetSoundMute(TRUE); spc_core->init_header(buf); spc_core->save_spc(buf); ignore = fwrite(buf, SNES_SPC::spc_file_size, 1, fs); fclose(fs); S9xSetSoundMute(FALSE); return (TRUE); }