/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ #include #include "../snes9x.h" #include "apu.h" #include "../msu1.h" #include "../snapshot.h" #include "../display.h" #include "hermite_resampler.h" #define APU_DEFAULT_INPUT_RATE 32040 #define APU_MINIMUM_SAMPLE_COUNT 512 #define APU_MINIMUM_SAMPLE_BLOCK 128 #define APU_NUMERATOR_NTSC 15664 #define APU_DENOMINATOR_NTSC 328125 #define APU_NUMERATOR_PAL 34176 #define APU_DENOMINATOR_PAL 709379 SNES_SPC *spc_core = NULL; static uint8 APUROM[64] = { 0xCD, 0xEF, 0xBD, 0xE8, 0x00, 0xC6, 0x1D, 0xD0, 0xFC, 0x8F, 0xAA, 0xF4, 0x8F, 0xBB, 0xF5, 0x78, 0xCC, 0xF4, 0xD0, 0xFB, 0x2F, 0x19, 0xEB, 0xF4, 0xD0, 0xFC, 0x7E, 0xF4, 0xD0, 0x0B, 0xE4, 0xF5, 0xCB, 0xF4, 0xD7, 0x00, 0xFC, 0xD0, 0xF3, 0xAB, 0x01, 0x10, 0xEF, 0x7E, 0xF4, 0x10, 0xEB, 0xBA, 0xF6, 0xDA, 0x00, 0xBA, 0xF4, 0xC4, 0xF4, 0xDD, 0x5D, 0xD0, 0xDB, 0x1F, 0x00, 0x00, 0xC0, 0xFF }; namespace spc { static apu_callback sa_callback = NULL; static void *extra_data = NULL; static bool8 sound_in_sync = TRUE; static bool8 sound_enabled = FALSE; static int buffer_size; static int lag_master = 0; static int lag = 0; static uint8 *landing_buffer = NULL; static uint8 *shrink_buffer = NULL; static Resampler *resampler = NULL; static int32 reference_time; static uint32 remainder; static const int timing_hack_numerator = SNES_SPC::tempo_unit; static int timing_hack_denominator = SNES_SPC::tempo_unit; /* Set these to NTSC for now. Will change to PAL in S9xAPUTimingSetSpeedup if necessary on game load. */ static uint32 ratio_numerator = APU_NUMERATOR_NTSC; static uint32 ratio_denominator = APU_DENOMINATOR_NTSC; static double dynamic_rate_multiplier = 1.0; } namespace msu { static int buffer_size; static uint8 *landing_buffer = NULL; static Resampler *resampler = NULL; static int resample_buffer_size = -1; static uint8 *resample_buffer = NULL; } static void EightBitize (uint8 *, int); static void DeStereo (uint8 *, int); static void ReverseStereo (uint8 *, int); void UpdatePlaybackRate (void); static void from_apu_to_state (uint8 **, void *, size_t); static void to_apu_from_state (uint8 **, void *, size_t); static void SPCSnapshotCallback (void); static inline int S9xAPUGetClock (int32); static inline int S9xAPUGetClockRemainder (int32); static void EightBitize (uint8 *buffer, int sample_count) { uint8 *buf8 = (uint8 *) buffer; int16 *buf16 = (int16 *) buffer; for (int i = 0; i < sample_count; i++) buf8[i] = (uint8) ((buf16[i] / 256) + 128); } static void DeStereo (uint8 *buffer, int sample_count) { int16 *buf = (int16 *) buffer; int32 s1, s2; for (int i = 0; i < (sample_count >> 1); i++) { s1 = (int32) buf[2 * i]; s2 = (int32) buf[2 * i + 1]; buf[i] = (int16) ((s1 + s2) >> 1); } } static void ReverseStereo (uint8 *src_buffer, int sample_count) { int16 *buffer = (int16 *) src_buffer; for (int i = 0; i < sample_count; i += 2) { buffer[i + 1] ^= buffer[i]; buffer[i] ^= buffer[i + 1]; buffer[i + 1] ^= buffer[i]; } } bool8 S9xMixSamples (uint8 *buffer, int sample_count) { static int shrink_buffer_size = -1; uint8 *dest; if (!Settings.SixteenBitSound || !Settings.Stereo) { /* We still need both stereo samples for generating the mono sample */ if (!Settings.Stereo) sample_count <<= 1; /* We still have to generate 16-bit samples for bit-dropping, too */ if (shrink_buffer_size < (sample_count << 1)) { delete[] spc::shrink_buffer; spc::shrink_buffer = new uint8[sample_count << 1]; shrink_buffer_size = sample_count << 1; } dest = spc::shrink_buffer; } else dest = buffer; if (Settings.MSU1 && msu::resample_buffer_size < (sample_count << 3)) { delete[] msu::resample_buffer; msu::resample_buffer = new uint8[sample_count << 3]; msu::resample_buffer_size = sample_count << 3; } if (Settings.Mute) { memset(dest, 0, sample_count << 1); spc::resampler->clear(); if(Settings.MSU1) msu::resampler->clear(); return (FALSE); } else { if (spc::resampler->avail() >= (sample_count + spc::lag)) { spc::resampler->read((short *) dest, sample_count); if (spc::lag == spc::lag_master) spc::lag = 0; if (Settings.MSU1) { if (msu::resampler->avail() >= sample_count) { msu::resampler->read((short *)msu::resample_buffer, sample_count); for (int32 i = 0; i < sample_count; ++i) *((int16*)(dest+(i * 2))) += *((int16*)(msu::resample_buffer+(i * 2))); } } } else { memset(buffer, (Settings.SixteenBitSound ? 0 : 128), (sample_count << (Settings.SixteenBitSound ? 1 : 0)) >> (Settings.Stereo ? 0 : 1)); if (spc::lag == 0) spc::lag = spc::lag_master; return (FALSE); } } if (Settings.ReverseStereo && Settings.Stereo) ReverseStereo(dest, sample_count); if (!Settings.Stereo || !Settings.SixteenBitSound) { if (!Settings.Stereo) { DeStereo(dest, sample_count); sample_count >>= 1; } if (!Settings.SixteenBitSound) EightBitize(dest, sample_count); memcpy(buffer, dest, (sample_count << (Settings.SixteenBitSound ? 1 : 0))); } return (TRUE); } int S9xGetSampleCount (void) { return (spc::resampler->avail() >> (Settings.Stereo ? 0 : 1)); } void S9xFinalizeSamples (void) { bool drop_current_msu1_samples = TRUE; if (!Settings.Mute) { drop_current_msu1_samples = FALSE; if (!spc::resampler->push((short *) spc::landing_buffer, spc_core->sample_count())) { /* We weren't able to process the entire buffer. Potential overrun. */ spc::sound_in_sync = FALSE; if (Settings.SoundSync && !Settings.TurboMode) return; // since we drop the current dsp samples we also want to drop generated msu1 samples drop_current_msu1_samples = TRUE; } } // only generate msu1 if we really consumed the dsp samples (sample_count() resets at end of function), // otherwise we will generate multiple times for the same samples - so this needs to be after all early // function returns if (Settings.MSU1) { // generate the same number of msu1 samples as dsp samples were generated S9xMSU1SetOutput((int16 *)msu::landing_buffer, msu::buffer_size); S9xMSU1Generate(spc_core->sample_count()); if (!drop_current_msu1_samples && !msu::resampler->push((short *)msu::landing_buffer, S9xMSU1Samples())) { // should not occur, msu buffer is larger and we drop msu samples if spc buffer overruns } } if (!Settings.SoundSync || Settings.TurboMode || Settings.Mute) spc::sound_in_sync = TRUE; else if (spc::resampler->space_empty() >= spc::resampler->space_filled()) spc::sound_in_sync = TRUE; else spc::sound_in_sync = FALSE; spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); } void S9xLandSamples (void) { if (spc::sa_callback != NULL) spc::sa_callback(spc::extra_data); else S9xFinalizeSamples(); } void S9xClearSamples (void) { spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); spc::lag = spc::lag_master; } bool8 S9xSyncSound (void) { if (!Settings.SoundSync || spc::sound_in_sync) return (TRUE); S9xLandSamples(); return (spc::sound_in_sync); } void S9xSetSamplesAvailableCallback (apu_callback callback, void *data) { spc::sa_callback = callback; spc::extra_data = data; } void S9xUpdateDynamicRate (double rate) { if(spc::dynamic_rate_multiplier != rate) { spc::dynamic_rate_multiplier = rate; UpdatePlaybackRate(); } } void UpdatePlaybackRate (void) { if (Settings.SoundInputRate == 0) Settings.SoundInputRate = APU_DEFAULT_INPUT_RATE; double time_ratio = (double) Settings.SoundInputRate * spc::timing_hack_numerator / (Settings.SoundPlaybackRate * spc::timing_hack_denominator); if (Settings.DynamicRateControl) { time_ratio *= spc::dynamic_rate_multiplier; } spc::resampler->time_ratio(time_ratio); if (Settings.MSU1) { time_ratio = (44100.0 / Settings.SoundPlaybackRate) * (Settings.SoundInputRate / 32040.0); msu::resampler->time_ratio(time_ratio); } } bool8 S9xInitSound (int buffer_ms, int lag_ms) { // buffer_ms : buffer size given in millisecond // lag_ms : allowable time-lag given in millisecond int sample_count = buffer_ms * 32040 / 1000; int lag_sample_count = lag_ms * 32040 / 1000; spc::lag_master = lag_sample_count; if (Settings.Stereo) spc::lag_master <<= 1; spc::lag = spc::lag_master; if (sample_count < APU_MINIMUM_SAMPLE_COUNT) sample_count = APU_MINIMUM_SAMPLE_COUNT; spc::buffer_size = sample_count; if (Settings.Stereo) spc::buffer_size <<= 1; if (Settings.SixteenBitSound) spc::buffer_size <<= 1; msu::buffer_size = sample_count << 3; // Always 16-bit, Stereo; x2 to never overflow before dsp buffer printf("Sound buffer size: %d (%d samples)\n", spc::buffer_size, sample_count); if (spc::landing_buffer) delete[] spc::landing_buffer; spc::landing_buffer = new uint8[spc::buffer_size * 2]; if (!spc::landing_buffer) return (FALSE); if (msu::landing_buffer) delete[] msu::landing_buffer; msu::landing_buffer = (uint8*) new uint32[msu::buffer_size / 2]; // Ensure 4-byte alignment if (!msu::landing_buffer) return (FALSE); /* The resampler and spc unit use samples (16-bit short) as arguments. Use 2x in the resampler for buffer leveling with SoundSync */ if (!spc::resampler) { spc::resampler = new HermiteResampler(spc::buffer_size >> (Settings.SoundSync ? 0 : 1)); if (!spc::resampler) { delete[] spc::landing_buffer; return (FALSE); } } else spc::resampler->resize(spc::buffer_size >> (Settings.SoundSync ? 0 : 1)); if (!msu::resampler) { msu::resampler = new HermiteResampler(msu::buffer_size >> (Settings.SoundSync ? 0 : 1)); if (!msu::resampler) { delete[] msu::landing_buffer; return (FALSE); } } else msu::resampler->resize(msu::buffer_size); spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); UpdatePlaybackRate(); spc::sound_enabled = S9xOpenSoundDevice(); return (spc::sound_enabled); } void S9xSetSoundControl (uint8 voice_switch) { spc_core->dsp_set_stereo_switch(voice_switch << 8 | voice_switch); } void S9xSetSoundMute (bool8 mute) { Settings.Mute = mute; if (!spc::sound_enabled) Settings.Mute = TRUE; } void S9xDumpSPCSnapshot (void) { spc_core->dsp_dump_spc_snapshot(); } static void SPCSnapshotCallback (void) { S9xSPCDump(S9xGetFilenameInc((".spc"), SPC_DIR)); printf("Dumped key-on triggered spc snapshot.\n"); } bool8 S9xInitAPU (void) { spc_core = new SNES_SPC; if (!spc_core) return (FALSE); spc_core->init(); spc_core->init_rom(APUROM); spc_core->dsp_set_spc_snapshot_callback(SPCSnapshotCallback); spc::landing_buffer = NULL; spc::shrink_buffer = NULL; spc::resampler = NULL; msu::resampler = NULL; return (TRUE); } void S9xDeinitAPU (void) { if (spc_core) { delete spc_core; spc_core = NULL; } if (spc::resampler) { delete spc::resampler; spc::resampler = NULL; } if (spc::landing_buffer) { delete[] spc::landing_buffer; spc::landing_buffer = NULL; } if (spc::shrink_buffer) { delete[] spc::shrink_buffer; spc::shrink_buffer = NULL; } if (msu::resampler) { delete msu::resampler; msu::resampler = NULL; } if (msu::landing_buffer) { delete[] msu::landing_buffer; msu::landing_buffer = NULL; } if (msu::resample_buffer) { delete[] msu::resample_buffer; msu::resample_buffer = NULL; } S9xMSU1DeInit(); } static inline int S9xAPUGetClock (int32 cpucycles) { return (spc::ratio_numerator * (cpucycles - spc::reference_time) + spc::remainder) / spc::ratio_denominator; } static inline int S9xAPUGetClockRemainder (int32 cpucycles) { return (spc::ratio_numerator * (cpucycles - spc::reference_time) + spc::remainder) % spc::ratio_denominator; } uint8 S9xAPUReadPort (int port) { return ((uint8) spc_core->read_port(S9xAPUGetClock(CPU.Cycles), port)); } void S9xAPUWritePort (int port, uint8 byte) { spc_core->write_port(S9xAPUGetClock(CPU.Cycles), port, byte); } void S9xAPUSetReferenceTime (int32 cpucycles) { spc::reference_time = cpucycles; } void S9xAPUExecute (void) { /* Accumulate partial APU cycles */ spc_core->end_frame(S9xAPUGetClock(CPU.Cycles)); spc::remainder = S9xAPUGetClockRemainder(CPU.Cycles); S9xAPUSetReferenceTime(CPU.Cycles); } void S9xAPUEndScanline (void) { S9xAPUExecute(); if (spc_core->sample_count() >= APU_MINIMUM_SAMPLE_BLOCK || !spc::sound_in_sync) S9xLandSamples(); } void S9xAPUTimingSetSpeedup (int ticks) { if (ticks != 0) printf("APU speedup hack: %d\n", ticks); spc::timing_hack_denominator = SNES_SPC::tempo_unit - ticks; spc_core->set_tempo(spc::timing_hack_denominator); spc::ratio_numerator = Settings.PAL ? APU_NUMERATOR_PAL : APU_NUMERATOR_NTSC; spc::ratio_denominator = Settings.PAL ? APU_DENOMINATOR_PAL : APU_DENOMINATOR_NTSC; spc::ratio_denominator = spc::ratio_denominator * spc::timing_hack_denominator / spc::timing_hack_numerator; UpdatePlaybackRate(); } void S9xAPUAllowTimeOverflow (bool allow) { spc_core->spc_allow_time_overflow(allow); } void S9xResetAPU (void) { spc::reference_time = 0; spc::remainder = 0; spc_core->reset(); spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); } void S9xSoftResetAPU (void) { spc::reference_time = 0; spc::remainder = 0; spc_core->soft_reset(); spc_core->set_output((SNES_SPC::sample_t *) spc::landing_buffer, spc::buffer_size >> 1); spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); } static void from_apu_to_state (uint8 **buf, void *var, size_t size) { memcpy(*buf, var, size); *buf += size; } static void to_apu_from_state (uint8 **buf, void *var, size_t size) { memcpy(var, *buf, size); *buf += size; } void S9xAPUSaveState (uint8 *block) { uint8 *ptr = block; spc_core->copy_state(&ptr, from_apu_to_state); SET_LE32(ptr, spc::reference_time); ptr += sizeof(int32); SET_LE32(ptr, spc::remainder); } void S9xAPULoadState (uint8 *block) { uint8 *ptr = block; S9xResetAPU(); spc_core->copy_state(&ptr, to_apu_from_state); spc::reference_time = GET_LE32(ptr); ptr += sizeof(int32); spc::remainder = GET_LE32(ptr); } bool8 S9xSPCDump (const char *filename) { FILE *fs; uint8 buf[SNES_SPC::spc_file_size]; size_t ignore; fs = fopen(filename, "wb"); if (!fs) return (FALSE); S9xSetSoundMute(TRUE); spc_core->init_header(buf); spc_core->save_spc(buf); ignore = fwrite(buf, SNES_SPC::spc_file_size, 1, fs); fclose(fs); S9xSetSoundMute(FALSE); return (TRUE); }