/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2018 BearOso, OV2 (c) Copyright 2017 qwertymodo (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) S-SMP emulator code used in 1.54+ (c) Copyright 2016 byuu SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2018 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2018 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Libretro port (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include "snes9x.h" #include "memmap.h" #include "fxinst.h" #include "fxemu.h" static void FxReset (struct FxInfo_s *); static void fx_readRegisterSpace (void); static void fx_writeRegisterSpace (void); static void fx_updateRamBank (uint8); static void fx_dirtySCBR (void); static bool8 fx_checkStartAddress (void); static uint32 FxEmulate (uint32); static void FxCacheWriteAccess (uint16); static void FxFlushCache (void); void S9xInitSuperFX (void) { memset((uint8 *) &GSU, 0, sizeof(struct FxRegs_s)); } void S9xResetSuperFX (void) { // FIXME: Snes9x only runs the SuperFX at the end of every line. // 5823405 is a magic number that seems to work for most games. #ifdef GEKKO SuperFX.speedPerLine = (uint32) (Settings.SuperFXSpeedPerLine * ((1.0f / Memory.ROMFramesPerSecond) / ((float) (Timings.V_Max)))); #else SuperFX.speedPerLine = (uint32) (5823405 * ((1.0 / (float) Memory.ROMFramesPerSecond) / ((float) (Timings.V_Max)))); #endif SuperFX.oneLineDone = FALSE; SuperFX.vFlags = 0; CPU.IRQExternal = FALSE; FxReset(&SuperFX); } void S9xSetSuperFX (uint8 byte, uint16 address) { switch (address) { case 0x3030: if ((Memory.FillRAM[0x3030] ^ byte) & FLG_G) { Memory.FillRAM[0x3030] = byte; if (byte & FLG_G) { if (!SuperFX.oneLineDone) { S9xSuperFXExec(); SuperFX.oneLineDone = TRUE; } } else FxFlushCache(); } else Memory.FillRAM[0x3030] = byte; break; case 0x3031: Memory.FillRAM[0x3031] = byte; break; case 0x3033: Memory.FillRAM[0x3033] = byte; break; case 0x3034: Memory.FillRAM[0x3034] = byte & 0x7f; break; case 0x3036: Memory.FillRAM[0x3036] = byte & 0x7f; break; case 0x3037: Memory.FillRAM[0x3037] = byte; break; case 0x3038: Memory.FillRAM[0x3038] = byte; fx_dirtySCBR(); break; case 0x3039: Memory.FillRAM[0x3039] = byte; break; case 0x303a: Memory.FillRAM[0x303a] = byte; break; case 0x303b: break; case 0x303c: Memory.FillRAM[0x303c] = byte; fx_updateRamBank(byte); break; case 0x303f: Memory.FillRAM[0x303f] = byte; break; case 0x301f: Memory.FillRAM[0x301f] = byte; Memory.FillRAM[0x3000 + GSU_SFR] |= FLG_G; if (!SuperFX.oneLineDone) { S9xSuperFXExec(); SuperFX.oneLineDone = TRUE; } break; default: Memory.FillRAM[address] = byte; if (address >= 0x3100) FxCacheWriteAccess(address); break; } } uint8 S9xGetSuperFX (uint16 address) { uint8 byte; byte = Memory.FillRAM[address]; if (address == 0x3031) { CPU.IRQExternal = FALSE; Memory.FillRAM[0x3031] = byte & 0x7f; } return (byte); } void S9xSuperFXExec (void) { if ((Memory.FillRAM[0x3000 + GSU_SFR] & FLG_G) && (Memory.FillRAM[0x3000 + GSU_SCMR] & 0x18) == 0x18) { FxEmulate(((Memory.FillRAM[0x3000 + GSU_CLSR] & 1) ? SuperFX.speedPerLine * 2 : SuperFX.speedPerLine) * Settings.SuperFXClockMultiplier / 100); uint16 GSUStatus = Memory.FillRAM[0x3000 + GSU_SFR] | (Memory.FillRAM[0x3000 + GSU_SFR + 1] << 8); if ((GSUStatus & (FLG_G | FLG_IRQ)) == FLG_IRQ) CPU.IRQExternal = TRUE; } } static void FxReset (struct FxInfo_s *psFxInfo) { // Clear all internal variables memset((uint8 *) &GSU, 0, sizeof(struct FxRegs_s)); // Set default registers GSU.pvSreg = GSU.pvDreg = &R0; // Set RAM and ROM pointers GSU.pvRegisters = psFxInfo->pvRegisters; GSU.nRamBanks = psFxInfo->nRamBanks; GSU.pvRam = psFxInfo->pvRam; GSU.nRomBanks = psFxInfo->nRomBanks; GSU.pvRom = psFxInfo->pvRom; GSU.vPrevScreenHeight = ~0; GSU.vPrevMode = ~0; // The GSU can't access more than 2mb (16mbits) if (GSU.nRomBanks > 0x20) GSU.nRomBanks = 0x20; // Clear FxChip register space memset(GSU.pvRegisters, 0, 0x300); // Set FxChip version Number GSU.pvRegisters[0x3b] = 0; // Make ROM bank table for (int i = 0; i < 256; i++) { uint32 b = i & 0x7f; if (b >= 0x40) { if (GSU.nRomBanks > 1) b %= GSU.nRomBanks; else b &= 1; GSU.apvRomBank[i] = &GSU.pvRom[b << 16]; } else { b %= GSU.nRomBanks * 2; GSU.apvRomBank[i] = &GSU.pvRom[(b << 16) + 0x200000]; } } // Make RAM bank table for (int i = 0; i < 4; i++) { GSU.apvRamBank[i] = &GSU.pvRam[(i % GSU.nRamBanks) << 16]; GSU.apvRomBank[0x70 + i] = GSU.apvRamBank[i]; } // Start with a nop in the pipe GSU.vPipe = 0x01; // Set pointer to GSU cache GSU.pvCache = &GSU.pvRegisters[0x100]; fx_readRegisterSpace(); } static void fx_readRegisterSpace (void) { static uint32 avHeight[] = { 128, 160, 192, 256 }; static uint32 avMult[] = { 16, 32, 32, 64 }; uint8 *p; int n; GSU.vErrorCode = 0; // Update R0-R15 p = GSU.pvRegisters; for (int i = 0; i < 16; i++) { GSU.avReg[i] = *p++; GSU.avReg[i] += ((uint32) (*p++)) << 8; } // Update other registers p = GSU.pvRegisters; GSU.vStatusReg = (uint32) p[GSU_SFR]; GSU.vStatusReg |= ((uint32) p[GSU_SFR + 1]) << 8; GSU.vPrgBankReg = (uint32) p[GSU_PBR]; GSU.vRomBankReg = (uint32) p[GSU_ROMBR]; GSU.vRamBankReg = ((uint32) p[GSU_RAMBR]) & (FX_RAM_BANKS - 1); GSU.vCacheBaseReg = (uint32) p[GSU_CBR]; GSU.vCacheBaseReg |= ((uint32) p[GSU_CBR + 1]) << 8; // Update status register variables GSU.vZero = !(GSU.vStatusReg & FLG_Z); GSU.vSign = (GSU.vStatusReg & FLG_S) << 12; GSU.vOverflow = (GSU.vStatusReg & FLG_OV) << 16; GSU.vCarry = (GSU.vStatusReg & FLG_CY) >> 2; // Set bank pointers GSU.pvRamBank = GSU.apvRamBank[GSU.vRamBankReg & 0x3]; GSU.pvRomBank = GSU.apvRomBank[GSU.vRomBankReg]; GSU.pvPrgBank = GSU.apvRomBank[GSU.vPrgBankReg]; // Set screen pointers GSU.pvScreenBase = &GSU.pvRam[USEX8(p[GSU_SCBR]) << 10]; n = (int) (!!(p[GSU_SCMR] & 0x04)); n |= ((int) (!!(p[GSU_SCMR] & 0x20))) << 1; GSU.vScreenHeight = GSU.vScreenRealHeight = avHeight[n]; GSU.vMode = p[GSU_SCMR] & 0x03; if (n == 3) GSU.vScreenSize = (256 / 8) * (256 / 8) * 32; else GSU.vScreenSize = (GSU.vScreenHeight / 8) * (256 / 8) * avMult[GSU.vMode]; if (GSU.vPlotOptionReg & 0x10) // OBJ Mode (for drawing into sprites) GSU.vScreenHeight = 256; if (GSU.pvScreenBase + GSU.vScreenSize > GSU.pvRam + (GSU.nRamBanks * 65536)) GSU.pvScreenBase = GSU.pvRam + (GSU.nRamBanks * 65536) - GSU.vScreenSize; GSU.pfPlot = fx_PlotTable[GSU.vMode]; GSU.pfRpix = fx_PlotTable[GSU.vMode + 5]; fx_OpcodeTable[0x04c] = GSU.pfPlot; fx_OpcodeTable[0x14c] = GSU.pfRpix; fx_OpcodeTable[0x24c] = GSU.pfPlot; fx_OpcodeTable[0x34c] = GSU.pfRpix; fx_computeScreenPointers(); //fx_backupCache(); } static void fx_writeRegisterSpace (void) { uint8 *p; p = GSU.pvRegisters; for (int i = 0; i < 16; i++) { *p++ = (uint8) GSU.avReg[i]; *p++ = (uint8) (GSU.avReg[i] >> 8); } // Update status register if (USEX16(GSU.vZero) == 0) SF(Z); else CF(Z); if (GSU.vSign & 0x8000) SF(S); else CF(S); if (GSU.vOverflow >= 0x8000 || GSU.vOverflow < -0x8000) SF(OV); else CF(OV); if (GSU.vCarry) SF(CY); else CF(CY); p = GSU.pvRegisters; p[GSU_SFR] = (uint8) GSU.vStatusReg; p[GSU_SFR + 1] = (uint8) (GSU.vStatusReg >> 8); p[GSU_PBR] = (uint8) GSU.vPrgBankReg; p[GSU_ROMBR] = (uint8) GSU.vRomBankReg; p[GSU_RAMBR] = (uint8) GSU.vRamBankReg; p[GSU_CBR] = (uint8) GSU.vCacheBaseReg; p[GSU_CBR + 1] = (uint8) (GSU.vCacheBaseReg >> 8); //fx_restoreCache(); } // Update RamBankReg and RAM Bank pointer static void fx_updateRamBank (uint8 byte) { // Update BankReg and Bank pointer GSU.vRamBankReg = (uint32) byte & (FX_RAM_BANKS - 1); GSU.pvRamBank = GSU.apvRamBank[byte & 0x3]; } // SCBR write seen. We need to update our cached screen pointers static void fx_dirtySCBR (void) { GSU.vSCBRDirty = TRUE; } static bool8 fx_checkStartAddress (void) { // Check if we start inside the cache if (GSU.bCacheActive && R15 >= GSU.vCacheBaseReg && R15 < (GSU.vCacheBaseReg + 512)) return (TRUE); /* // Check if we're in an unused area if (GSU.vPrgBankReg < 0x40 && R15 < 0x8000) return (FALSE); */ if (GSU.vPrgBankReg >= 0x60 && GSU.vPrgBankReg <= 0x6f) return (FALSE); if (GSU.vPrgBankReg >= 0x74) return (FALSE); // Check if we're in RAM and the RAN flag is not set if (GSU.vPrgBankReg >= 0x70 && GSU.vPrgBankReg <= 0x73 && !(SCMR & (1 << 3))) return (FALSE); // If not, we're in ROM, so check if the RON flag is set if (!(SCMR & (1 << 4))) return (FALSE); return (TRUE); } // Execute until the next stop instruction static uint32 FxEmulate (uint32 nInstructions) { uint32 vCount; // Read registers and initialize GSU session fx_readRegisterSpace(); // Check if the start address is valid if (!fx_checkStartAddress()) { CF(G); fx_writeRegisterSpace(); /* GSU.vIllegalAddress = (GSU.vPrgBankReg << 24) | R15; return (FX_ERROR_ILLEGAL_ADDRESS); */ return (0); } // Execute GSU session CF(IRQ); /* if (GSU.bBreakPoint) vCount = fx_run_to_breakpoint(nInstructions); else */ vCount = fx_run(nInstructions); // Store GSU registers fx_writeRegisterSpace(); // Check for error code if (GSU.vErrorCode) return (GSU.vErrorCode); else return (vCount); } void fx_computeScreenPointers (void) { if (GSU.vMode != GSU.vPrevMode || GSU.vPrevScreenHeight != GSU.vScreenHeight || GSU.vSCBRDirty) { GSU.vSCBRDirty = FALSE; // Make a list of pointers to the start of each screen column switch (GSU.vScreenHeight) { case 128: switch (GSU.vMode) { case 0: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = i << 8; } break; case 1: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = i << 9; } break; case 2: case 3: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = i << 10; } break; } break; case 160: switch (GSU.vMode) { case 0: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = (i << 8) + (i << 6); } break; case 1: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = (i << 9) + (i << 7); } break; case 2: case 3: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = (i << 10) + (i << 8); } break; } break; case 192: switch (GSU.vMode) { case 0: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = (i << 8) + (i << 7); } break; case 1: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = (i << 9) + (i << 8); } break; case 2: case 3: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = (i << 10) + (i << 9); } break; } break; case 256: switch (GSU.vMode) { case 0: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 9) + ((i & 0xf) << 8); GSU.x[i] = ((i & 0x10) << 8) + ((i & 0xf) << 4); } break; case 1: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 10) + ((i & 0xf) << 9); GSU.x[i] = ((i & 0x10) << 9) + ((i & 0xf) << 5); } break; case 2: case 3: for (int i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 11) + ((i & 0xf) << 10); GSU.x[i] = ((i & 0x10) << 10) + ((i & 0xf) << 6); } break; } break; } GSU.vPrevMode = GSU.vMode; GSU.vPrevScreenHeight = GSU.vScreenHeight; } } // Write access to the cache static void FxCacheWriteAccess (uint16 vAddress) { /* if (!GSU.bCacheActive) { uint8 v = GSU.pvCache[GSU.pvCache[vAddress & 0x1ff]; fx_setCache(); GSU.pvCache[GSU.pvCache[vAddress & 0x1ff] = v; } */ if ((vAddress & 0x00f) == 0x00f) GSU.vCacheFlags |= 1 << ((vAddress & 0x1f0) >> 4); } static void FxFlushCache (void) { GSU.vCacheFlags = 0; GSU.vCacheBaseReg = 0; GSU.bCacheActive = FALSE; //GSU.vPipe = 0x1; } void fx_flushCache (void) { //fx_restoreCache(); GSU.vCacheFlags = 0; GSU.bCacheActive = FALSE; } /* static void fx_setCache (void) { uint32 c; GSU.bCacheActive = TRUE; GSU.pvRegisters[0x3e] &= 0xf0; c = (uint32) GSU.pvRegisters[0x3e]; c |= ((uint32) GSU.pvRegisters[0x3f]) << 8; if (c == GSU.vCacheBaseReg) return; GSU.vCacheBaseReg = c; GSU.vCacheFlags = 0; if (c < (0x10000 - 512)) { const uint8 *t = &ROM(c); memcpy(GSU.pvCache, t, 512); } else { const uint8 *t1, *t2; uint32 i = 0x10000 - c; t1 = &ROM(c); t2 = &ROM(0); memcpy(GSU.pvCache, t1, i); memcpy(&GSU.pvCache[i], t2, 512 - i); } } */ /* static void fx_backupCache (void) { uint32 v = GSU.vCacheFlags; uint32 c = USEX16(GSU.vCacheBaseReg); if (v) { for (int i = 0; i < 32; i++) { if (v & 1) { if (c < (0x10000 - 16)) { uint8 *t = &GSU.pvPrgBank[c]; memcpy(&GSU.avCacheBackup[i << 4], t, 16); memcpy(t, &GSU.pvCache[i << 4], 16); } else { uint8 *t1, *t2; uint32 a = 0x10000 - c; t1 = &GSU.pvPrgBank[c]; t2 = &GSU.pvPrgBank[0]; memcpy(&GSU.avCacheBackup[i << 4], t1, a); memcpy(t1, &GSU.pvCache[i << 4], a); memcpy(&GSU.avCacheBackup[(i << 4) + a], t2, 16 - a); memcpy(t2, &GSU.pvCache[(i << 4) + a], 16 - a); } } c = USEX16(c + 16); v >>= 1; } } } */ /* static void fx_restoreCache() { uint32 v = GSU.vCacheFlags; uint32 c = USEX16(GSU.vCacheBaseReg); if (v) { for (int i = 0; i < 32; i++) { if (v & 1) { if (c < (0x10000 - 16)) { uint8 *t = &GSU.pvPrgBank[c]; memcpy(t, &GSU.avCacheBackup[i << 4], 16); memcpy(&GSU.pvCache[i << 4], t, 16); } else { uint8 *t1, *t2; uint32 a = 0x10000 - c; t1 = &GSU.pvPrgBank[c]; t2 = &GSU.pvPrgBank[0]; memcpy(t1, &GSU.avCacheBackup[i << 4], a); memcpy(&GSU.pvCache[i << 4], t1, a); memcpy(t2, &GSU.avCacheBackup[(i << 4) + a], 16 - a); memcpy(&GSU.pvCache[(i << 4) + a], t2, 16 - a); } } c = USEX16(c + 16); v >>= 1; } } } */ // Breakpoints /* static void FxBreakPointSet (uint32 vAddress) { GSU.bBreakPoint = TRUE; GSU.vBreakPoint = USEX16(vAddress); } */ /* static void FxBreakPointClear (void) { GSU.bBreakPoint = FALSE; } */ // Step by step execution /* static uint32 FxStepOver (uint32 nInstructions) { uint32 vCount; fx_readRegisterSpace(); if (!fx_checkStartAddress()) { CF(G); #if 0 GSU.vIllegalAddress = (GSU.vPrgBankReg << 24) | R15; return (FX_ERROR_ILLEGAL_ADDRESS); #else return (0); #endif } if (PIPE >= 0xf0) GSU.vStepPoint = USEX16(R15 + 3); else if ((PIPE >= 0x05 && PIPE <= 0x0f) || (PIPE >= 0xa0 && PIPE <= 0xaf)) GSU.vStepPoint = USEX16(R15 + 2); else GSU.vStepPoint = USEX16(R15 + 1); vCount = fx_step_over(nInstructions); fx_writeRegisterSpace(); if (GSU.vErrorCode) return (GSU.vErrorCode); else return (vCount); } */ // Errors /* static int FxGetErrorCode (void) { return (GSU.vErrorCode); } */ /* static int FxGetIllegalAddress (void) { return (GSU.vIllegalAddress); } */ // Access to internal registers /* static uint32 FxGetColorRegister (void) { return (GSU.vColorReg & 0xff); } */ /* static uint32 FxGetPlotOptionRegister (void) { return (GSU.vPlotOptionReg & 0x1f); } */ /* static uint32 FxGetSourceRegisterIndex (void) { return (GSU.pvSreg - GSU.avReg); } */ /* static uint32 FxGetDestinationRegisterIndex (void) { return (GSU.pvDreg - GSU.avReg); } */ // Get the byte currently in the pipe /* static uint8 FxPipe (void) { return (GSU.vPipe); } */