/********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com), Nach (n-a-c-h@users.sourceforge.net), and zones (kasumitokoduck@yahoo.com) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com) Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley, Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001-2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight, Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound DSP emulator code is derived from SNEeSe and OpenSPC: (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x filter (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. **********************************************************************************/ #include "fxemu.h" #include "fxinst.h" #include #include #include /* The FxChip Emulator's internal variables */ struct FxRegs_s GSU = FxRegs_s_null; uint32 (**fx_ppfFunctionTable)(uint32) = 0; void (**fx_ppfPlotTable)() = 0; void (**fx_ppfOpcodeTable)() = 0; #if 0 void fx_setCache() { uint32 c; GSU.bCacheActive = TRUE; GSU.pvRegisters[0x3e] &= 0xf0; c = (uint32)GSU.pvRegisters[0x3e]; c |= ((uint32)GSU.pvRegisters[0x3f])<<8; if(c == GSU.vCacheBaseReg) return; GSU.vCacheBaseReg = c; GSU.vCacheFlags = 0; if(c < (0x10000-512)) { uint8 const* t = &ROM(c); memcpy(GSU.pvCache,t,512); } else { uint8 const* t1; uint8 const* t2; uint32 i = 0x10000 - c; t1 = &ROM(c); t2 = &ROM(0); memcpy(GSU.pvCache,t1,i); memcpy(&GSU.pvCache[i],t2,512-i); } } #endif void FxCacheWriteAccess(uint16 vAddress) { #if 0 if(!GSU.bCacheActive) { uint8 v = GSU.pvCache[GSU.pvCache[vAddress&0x1ff]; fx_setCache(); GSU.pvCache[GSU.pvCache[vAddress&0x1ff] = v; } #endif if((vAddress & 0x00f) == 0x00f) GSU.vCacheFlags |= 1 << ((vAddress&0x1f0) >> 4); } void FxFlushCache() { GSU.vCacheFlags = 0; GSU.vCacheBaseReg = 0; GSU.bCacheActive = FALSE; // GSU.vPipe = 0x1; } static void fx_backupCache() { #if 0 uint32 i; uint32 v = GSU.vCacheFlags; uint32 c = USEX16(GSU.vCacheBaseReg); if(v) for(i=0; i<32; i++) { if(v&1) { if(c < (0x10000-16)) { uint8 * t = &GSU.pvPrgBank[c]; memcpy(&GSU.avCacheBackup[i<<4],t,16); memcpy(t,&GSU.pvCache[i<<4],16); } else { uint8 * t1; uint8 * t2; uint32 a = 0x10000 - c; t1 = &GSU.pvPrgBank[c]; t2 = &GSU.pvPrgBank[0]; memcpy(&GSU.avCacheBackup[i<<4],t1,a); memcpy(t1,&GSU.pvCache[i<<4],a); memcpy(&GSU.avCacheBackup[(i<<4)+a],t2,16-a); memcpy(t2,&GSU.pvCache[(i<<4)+a],16-a); } } c = USEX16(c+16); v >>= 1; } #endif } static void fx_restoreCache() { #if 0 uint32 i; uint32 v = GSU.vCacheFlags; uint32 c = USEX16(GSU.vCacheBaseReg); if(v) for(i=0; i<32; i++) { if(v&1) { if(c < (0x10000-16)) { uint8 * t = &GSU.pvPrgBank[c]; memcpy(t,&GSU.avCacheBackup[i<<4],16); memcpy(&GSU.pvCache[i<<4],t,16); } else { uint8 * t1; uint8 * t2; uint32 a = 0x10000 - c; t1 = &GSU.pvPrgBank[c]; t2 = &GSU.pvPrgBank[0]; memcpy(t1,&GSU.avCacheBackup[i<<4],a); memcpy(&GSU.pvCache[i<<4],t1,a); memcpy(t2,&GSU.avCacheBackup[(i<<4)+a],16-a); memcpy(&GSU.pvCache[(i<<4)+a],t2,16-a); } } c = USEX16(c+16); v >>= 1; } #endif } void fx_flushCache() { fx_restoreCache(); GSU.vCacheFlags = 0; GSU.bCacheActive = FALSE; } void fx_updateRamBank(uint8 Byte) { // Update BankReg and Bank pointer GSU.vRamBankReg = (uint32)Byte & (FX_RAM_BANKS-1); GSU.pvRamBank = GSU.apvRamBank[Byte & 0x3]; } static void fx_readRegisterSpace() { int i; uint8 *p; static uint32 avHeight[] = { 128, 160, 192, 256 }; static uint32 avMult[] = { 16, 32, 32, 64 }; GSU.vErrorCode = 0; /* Update R0-R15 */ p = GSU.pvRegisters; for(i=0; i<16; i++) { GSU.avReg[i] = *p++; GSU.avReg[i] += ((uint32)(*p++)) << 8; } /* Update other registers */ p = GSU.pvRegisters; GSU.vStatusReg = (uint32)p[GSU_SFR]; GSU.vStatusReg |= ((uint32)p[GSU_SFR+1]) << 8; GSU.vPrgBankReg = (uint32)p[GSU_PBR]; GSU.vRomBankReg = (uint32)p[GSU_ROMBR]; GSU.vRamBankReg = ((uint32)p[GSU_RAMBR]) & (FX_RAM_BANKS-1); GSU.vCacheBaseReg = (uint32)p[GSU_CBR]; GSU.vCacheBaseReg |= ((uint32)p[GSU_CBR+1]) << 8; /* Update status register variables */ GSU.vZero = !(GSU.vStatusReg & FLG_Z); GSU.vSign = (GSU.vStatusReg & FLG_S) << 12; GSU.vOverflow = (GSU.vStatusReg & FLG_OV) << 16; GSU.vCarry = (GSU.vStatusReg & FLG_CY) >> 2; /* Set bank pointers */ GSU.pvRamBank = GSU.apvRamBank[GSU.vRamBankReg & 0x3]; GSU.pvRomBank = GSU.apvRomBank[GSU.vRomBankReg]; GSU.pvPrgBank = GSU.apvRomBank[GSU.vPrgBankReg]; /* Set screen pointers */ GSU.pvScreenBase = &GSU.pvRam[ USEX8(p[GSU_SCBR]) << 10 ]; i = (int)(!!(p[GSU_SCMR] & 0x04)); i |= ((int)(!!(p[GSU_SCMR] & 0x20))) << 1; GSU.vScreenHeight = GSU.vScreenRealHeight = avHeight[i]; GSU.vMode = p[GSU_SCMR] & 0x03; #if 0 if(GSU.vMode == 2) error illegal color depth GSU.vMode; #endif if(i == 3) GSU.vScreenSize = (256/8) * (256/8) * 32; else GSU.vScreenSize = (GSU.vScreenHeight/8) * (256/8) * avMult[GSU.vMode]; if (GSU.vPlotOptionReg & 0x10) { /* OBJ Mode (for drawing into sprites) */ GSU.vScreenHeight = 256; } #if 0 if(GSU.pvScreenBase + GSU.vScreenSize > GSU.pvRam + (GSU.nRamBanks * 65536)) error illegal address for screen base register #else if(GSU.pvScreenBase + GSU.vScreenSize > GSU.pvRam + (GSU.nRamBanks * 65536)) GSU.pvScreenBase = GSU.pvRam + (GSU.nRamBanks * 65536) - GSU.vScreenSize; #endif GSU.pfPlot = fx_apfPlotTable[GSU.vMode]; GSU.pfRpix = fx_apfPlotTable[GSU.vMode + 5]; fx_ppfOpcodeTable[0x04c] = GSU.pfPlot; fx_ppfOpcodeTable[0x14c] = GSU.pfRpix; fx_ppfOpcodeTable[0x24c] = GSU.pfPlot; fx_ppfOpcodeTable[0x34c] = GSU.pfRpix; fx_computeScreenPointers (); fx_backupCache(); } void fx_dirtySCBR() { GSU.vSCBRDirty = TRUE; } void fx_computeScreenPointers () { if (GSU.vMode != GSU.vPrevMode || GSU.vPrevScreenHeight != GSU.vScreenHeight || GSU.vSCBRDirty) { int i; GSU.vSCBRDirty = FALSE; /* Make a list of pointers to the start of each screen column */ switch (GSU.vScreenHeight) { case 128: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = i << 8; } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = i << 9; } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = i << 10; } break; } break; case 160: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = (i << 8) + (i << 6); } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = (i << 9) + (i << 7); } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = (i << 10) + (i << 8); } break; } break; case 192: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = (i << 8) + (i << 7); } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = (i << 9) + (i << 8); } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = (i << 10) + (i << 9); } break; } break; case 256: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 9) + ((i & 0xf) << 8); GSU.x[i] = ((i & 0x10) << 8) + ((i & 0xf) << 4); } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 10) + ((i & 0xf) << 9); GSU.x[i] = ((i & 0x10) << 9) + ((i & 0xf) << 5); } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 11) + ((i & 0xf) << 10); GSU.x[i] = ((i & 0x10) << 10) + ((i & 0xf) << 6); } break; } break; } GSU.vPrevMode = GSU.vMode; GSU.vPrevScreenHeight = GSU.vScreenHeight; } } static void fx_writeRegisterSpace() { int i; uint8 *p; p = GSU.pvRegisters; for(i=0; i<16; i++) { *p++ = (uint8)GSU.avReg[i]; *p++ = (uint8)(GSU.avReg[i] >> 8); } /* Update status register */ if( USEX16(GSU.vZero) == 0 ) SF(Z); else CF(Z); if( GSU.vSign & 0x8000 ) SF(S); else CF(S); if(GSU.vOverflow >= 0x8000 || GSU.vOverflow < -0x8000) SF(OV); else CF(OV); if(GSU.vCarry) SF(CY); else CF(CY); p = GSU.pvRegisters; p[GSU_SFR] = (uint8)GSU.vStatusReg; p[GSU_SFR+1] = (uint8)(GSU.vStatusReg>>8); p[GSU_PBR] = (uint8)GSU.vPrgBankReg; p[GSU_ROMBR] = (uint8)GSU.vRomBankReg; p[GSU_RAMBR] = (uint8)GSU.vRamBankReg; p[GSU_CBR] = (uint8)GSU.vCacheBaseReg; p[GSU_CBR+1] = (uint8)(GSU.vCacheBaseReg>>8); fx_restoreCache(); } /* Reset the FxChip */ void FxReset(struct FxInit_s *psFxInfo) { int i; static uint32 (**appfFunction[])(uint32) = { &fx_apfFunctionTable[0], #if 0 &fx_a_apfFunctionTable[0], &fx_r_apfFunctionTable[0], &fx_ar_apfFunctionTable[0], #endif }; static void (**appfPlot[])() = { &fx_apfPlotTable[0], #if 0 &fx_a_apfPlotTable[0], &fx_r_apfPlotTable[0], &fx_ar_apfPlotTable[0], #endif }; static void (**appfOpcode[])() = { &fx_apfOpcodeTable[0], #if 0 &fx_a_apfOpcodeTable[0], &fx_r_apfOpcodeTable[0], &fx_ar_apfOpcodeTable[0], #endif }; /* Get function pointers for the current emulation mode */ fx_ppfFunctionTable = appfFunction[psFxInfo->vFlags & 0x3]; fx_ppfPlotTable = appfPlot[psFxInfo->vFlags & 0x3]; fx_ppfOpcodeTable = appfOpcode[psFxInfo->vFlags & 0x3]; /* Clear all internal variables */ memset((uint8*)&GSU,0,sizeof(struct FxRegs_s)); /* Set default registers */ GSU.pvSreg = GSU.pvDreg = &R0; /* Set RAM and ROM pointers */ GSU.pvRegisters = psFxInfo->pvRegisters; GSU.nRamBanks = psFxInfo->nRamBanks; GSU.pvRam = psFxInfo->pvRam; GSU.nRomBanks = psFxInfo->nRomBanks; GSU.pvRom = psFxInfo->pvRom; GSU.vPrevScreenHeight = ~0; GSU.vPrevMode = ~0; /* The GSU can't access more than 2mb (16mbits) */ if(GSU.nRomBanks > 0x20) GSU.nRomBanks = 0x20; /* Clear FxChip register space */ memset(GSU.pvRegisters,0,0x300); /* Set FxChip version Number */ GSU.pvRegisters[0x3b] = 0; /* Make ROM bank table */ for(i=0; i<256; i++) { uint32 b = i & 0x7f; if (b >= 0x40) { if (GSU.nRomBanks > 1) b %= GSU.nRomBanks; else b &= 1; GSU.apvRomBank[i] = &GSU.pvRom[ b << 16 ]; } else { b %= GSU.nRomBanks * 2; GSU.apvRomBank[i] = &GSU.pvRom[ (b << 16) + 0x200000]; } } /* Make RAM bank table */ for(i=0; i<4; i++) { GSU.apvRamBank[i] = &GSU.pvRam[(i % GSU.nRamBanks) << 16]; GSU.apvRomBank[0x70 + i] = GSU.apvRamBank[i]; } /* Start with a nop in the pipe */ GSU.vPipe = 0x01; /* Set pointer to GSU cache */ GSU.pvCache = &GSU.pvRegisters[0x100]; fx_readRegisterSpace(); } static uint8 fx_checkStartAddress() { /* Check if we start inside the cache */ if(GSU.bCacheActive && R15 >= GSU.vCacheBaseReg && R15 < (GSU.vCacheBaseReg+512)) return TRUE; /* Check if we're in an unused area */ #if 0 if(GSU.vPrgBankReg < 0x40 && R15 < 0x8000) return FALSE; #endif if(GSU.vPrgBankReg >= 0x60 && GSU.vPrgBankReg <= 0x6f) return FALSE; if(GSU.vPrgBankReg >= 0x74) return FALSE; /* Check if we're in RAM and the RAN flag is not set */ if(GSU.vPrgBankReg >= 0x70 && GSU.vPrgBankReg <= 0x73 && !(SCMR&(1<<3)) ) return FALSE; /* If not, we're in ROM, so check if the RON flag is set */ if(!(SCMR&(1<<4))) return FALSE; return TRUE; } /* Execute until the next stop instruction */ int FxEmulate(uint32 nInstructions) { uint32 vCount; /* Read registers and initialize GSU session */ fx_readRegisterSpace(); /* Check if the start address is valid */ if(!fx_checkStartAddress()) { CF(G); fx_writeRegisterSpace(); #if 0 GSU.vIllegalAddress = (GSU.vPrgBankReg << 24) | R15; return FX_ERROR_ILLEGAL_ADDRESS; #else return 0; #endif } /* Execute GSU session */ CF(IRQ); if(GSU.bBreakPoint) vCount = fx_ppfFunctionTable[FX_FUNCTION_RUN_TO_BREAKPOINT](nInstructions); else vCount = fx_ppfFunctionTable[FX_FUNCTION_RUN](nInstructions); /* Store GSU registers */ fx_writeRegisterSpace(); /* Check for error code */ if(GSU.vErrorCode) return GSU.vErrorCode; else return vCount; } /* Breakpoints */ void FxBreakPointSet(uint32 vAddress) { GSU.bBreakPoint = TRUE; GSU.vBreakPoint = USEX16(vAddress); } void FxBreakPointClear() { GSU.bBreakPoint = FALSE; } /* Step by step execution */ int FxStepOver(uint32 nInstructions) { uint32 vCount; fx_readRegisterSpace(); /* Check if the start address is valid */ if(!fx_checkStartAddress()) { CF(G); #if 0 GSU.vIllegalAddress = (GSU.vPrgBankReg << 24) | R15; return FX_ERROR_ILLEGAL_ADDRESS; #else return 0; #endif } if( PIPE >= 0xf0 ) GSU.vStepPoint = USEX16(R15+3); else if( (PIPE >= 0x05 && PIPE <= 0x0f) || (PIPE >= 0xa0 && PIPE <= 0xaf) ) GSU.vStepPoint = USEX16(R15+2); else GSU.vStepPoint = USEX16(R15+1); vCount = fx_ppfFunctionTable[FX_FUNCTION_STEP_OVER](nInstructions); fx_writeRegisterSpace(); if(GSU.vErrorCode) return GSU.vErrorCode; else return vCount; } /* Errors */ int FxGetErrorCode() { return GSU.vErrorCode; } int FxGetIllegalAddress() { return GSU.vIllegalAddress; } /* Access to internal registers */ uint32 FxGetColorRegister() { return GSU.vColorReg & 0xff; } uint32 FxGetPlotOptionRegister() { return GSU.vPlotOptionReg & 0x1f; } uint32 FxGetSourceRegisterIndex() { return GSU.pvSreg - GSU.avReg; } uint32 FxGetDestinationRegisterIndex() { return GSU.pvDreg - GSU.avReg; } uint8 FxPipe() { return GSU.vPipe; }