/********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com), Nach (n-a-c-h@users.sourceforge.net), and zones (kasumitokoduck@yahoo.com) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com) Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley, Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001-2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight, Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound DSP emulator code is derived from SNEeSe and OpenSPC: (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x filter (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. **********************************************************************************/ #ifndef _GETSET_H_ #define _GETSET_H_ #include "ppu.h" #include "dsp1.h" #include "cpuexec.h" #include "sa1.h" #include "spc7110.h" #include "obc1.h" #include "seta.h" #include "bsx.h" extern "C" { extern uint8 OpenBus; } INLINE uint8 S9xGetByte (uint32 Address) { int block; uint8 *GetAddress = Memory.Map [block = ((Address&0xffffff) >> MEMMAP_SHIFT)]; if(!CPU.InDMA) CPU.Cycles += Memory.MemorySpeed [block]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN if (Memory.BlockIsRAM [block]) CPU.WaitAddress = CPU.PBPCAtOpcodeStart; #endif return (*(GetAddress + (Address & 0xffff))); } switch ((pint) GetAddress) { case CMemory::MAP_PPU: if(CPU.InDMA && (Address&0xff00)==0x2100) return OpenBus; return (S9xGetPPU (Address & 0xffff)); case CMemory::MAP_CPU: return (S9xGetCPU (Address & 0xffff)); case CMemory::MAP_DSP: return (S9xGetDSP (Address & 0xffff)); case CMemory::MAP_SA1RAM: case CMemory::MAP_LOROM_SRAM: //Address &0x7FFF -offset into bank //Address&0xFF0000 -bank //bank>>1 | offset = s-ram address, unbound //unbound & SRAMMask = Sram offset return (*(Memory.SRAM + ((((Address&0xFF0000)>>1) |(Address&0x7FFF)) &Memory.SRAMMask))); case CMemory::MAP_RONLY_SRAM: case CMemory::MAP_HIROM_SRAM: return (*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask))); case CMemory::MAP_BWRAM: return (*(Memory.BWRAM + ((Address & 0x7fff) - 0x6000))); case CMemory::MAP_C4: return (S9xGetC4 (Address & 0xffff)); case CMemory::MAP_SPC7110_ROM: #ifdef SPC7110_DEBUG printf("reading spc7110 ROM (byte) at %06X\n", Address); #endif return S9xGetSPC7110Byte(Address); case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG printf("reading Bank 50 (byte)\n"); #endif return S9xGetSPC7110(0x4800); case CMemory::MAP_OBC_RAM: return GetOBC1(Address & 0xffff); case CMemory::MAP_SETA_DSP: return S9xGetSetaDSP(Address); case CMemory::MAP_SETA_RISC: return S9xGetST018(Address); case CMemory::MAP_BSX: return S9xGetBSX(Address); case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("DEBUG R(B) %06x\n", Address); #endif default: case CMemory::MAP_NONE: return OpenBus; } } #ifdef NO_INLINE_SET_GET INLINE uint16 S9xGetWord (uint32 Address, enum s9xwrap_t w) #else INLINE uint16 S9xGetWord (uint32 Address, enum s9xwrap_t w=WRAP_NONE) #endif { uint32 mask=MEMMAP_MASK&(w==WRAP_PAGE?0xff:(w==WRAP_BANK?0xffff:0xffffff)); if ((Address & mask) == mask) { OpenBus=S9xGetByte(Address); switch(w){ case WRAP_PAGE: { PC_t a; a.xPBPC = Address; a.B.xPCl++; return (OpenBus | (S9xGetByte (a.xPBPC) << 8)); } case WRAP_BANK: { PC_t a; a.xPBPC = Address; a.W.xPC++; return (OpenBus | (S9xGetByte (a.xPBPC) << 8)); } case WRAP_NONE: default: return (OpenBus | (S9xGetByte (Address + 1) << 8)); } } int block; uint8 *GetAddress = Memory.Map [block = ((Address&0xffffff) >> MEMMAP_SHIFT)]; if(!CPU.InDMA) CPU.Cycles += (Memory.MemorySpeed [block]<<1); if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN if (Memory.BlockIsRAM [block]) CPU.WaitAddress = CPU.PBPCAtOpcodeStart; #endif return READ_WORD(GetAddress + (Address & 0xffff)); } switch ((pint) GetAddress) { case CMemory::MAP_PPU: if(CPU.InDMA){ OpenBus=S9xGetByte (Address); return (OpenBus | (S9xGetByte (Address + 1) << 8)); } return (S9xGetPPU (Address & 0xffff) | (S9xGetPPU ((Address + 1) & 0xffff) << 8)); case CMemory::MAP_CPU: return (S9xGetCPU (Address & 0xffff) | (S9xGetCPU ((Address + 1) & 0xffff) << 8)); case CMemory::MAP_DSP: #ifdef DSP_DUMMY_LOOPS printf("Get DSP Word @ %06X\n", Address); #endif return (S9xGetDSP (Address & 0xffff) | (S9xGetDSP ((Address + 1) & 0xffff) << 8)); case CMemory::MAP_SA1RAM: case CMemory::MAP_LOROM_SRAM: //Address &0x7FFF -offset into bank //Address&0xFF0000 -bank //bank>>1 | offset = s-ram address, unbound //unbound & SRAMMask = Sram offset if(Memory.SRAMMask>=MEMMAP_MASK){ return READ_WORD(Memory.SRAM + ((((Address&0xFF0000)>>1) |(Address&0x7FFF)) &Memory.SRAMMask)); } else { /* no READ_WORD here, since if Memory.SRAMMask=0x7ff * then the high byte doesn't follow the low byte. */ return (*(Memory.SRAM + ((((Address&0xFF0000)>>1) |(Address&0x7FFF)) &Memory.SRAMMask)))| ((*(Memory.SRAM + (((((Address+1)&0xFF0000)>>1) |((Address+1)&0x7FFF)) &Memory.SRAMMask)))<<8); } case CMemory::MAP_RONLY_SRAM: case CMemory::MAP_HIROM_SRAM: if(Memory.SRAMMask>=MEMMAP_MASK){ return READ_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)); } else { /* no READ_WORD here, since if Memory.SRAMMask=0x7ff * then the high byte doesn't follow the low byte. */ return (*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) | (*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) << 8)); } case CMemory::MAP_BWRAM: return READ_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)); case CMemory::MAP_C4: return (S9xGetC4 (Address & 0xffff) | (S9xGetC4 ((Address + 1) & 0xffff) << 8)); case CMemory::MAP_SPC7110_ROM: #ifdef SPC7110_DEBUG printf("reading spc7110 ROM (word) at %06X\n", Address); #endif return (S9xGetSPC7110Byte(Address)| (S9xGetSPC7110Byte (Address+1))<<8); case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG printf("reading Bank 50 (word)\n"); #endif return (S9xGetSPC7110(0x4800)| (S9xGetSPC7110 (0x4800) << 8)); case CMemory::MAP_OBC_RAM: return GetOBC1(Address&0xFFFF)| (GetOBC1((Address+1)&0xFFFF)<<8); case CMemory::MAP_SETA_DSP: return S9xGetSetaDSP(Address)| (S9xGetSetaDSP((Address+1))<<8); case CMemory::MAP_SETA_RISC: return S9xGetST018(Address)| (S9xGetST018((Address+1))<<8); case CMemory::MAP_BSX: return S9xGetBSX(Address)| (S9xGetBSX((Address+1))<<8); case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("DEBUG R(W) %06x\n", Address); #endif default: case CMemory::MAP_NONE: return (OpenBus | (OpenBus<<8)); } } INLINE void S9xSetByte (uint8 Byte, uint32 Address) { #if defined(CPU_SHUTDOWN) CPU.WaitAddress = 0xffffffff; #endif int block; uint8 *SetAddress = Memory.WriteMap [block = ((Address&0xffffff) >> MEMMAP_SHIFT)]; if (!CPU.InDMA) CPU.Cycles += Memory.MemorySpeed [block]; if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN SetAddress += Address & 0xffff; if (SetAddress == SA1.WaitByteAddress1 || SetAddress == SA1.WaitByteAddress2) { SA1.Executing = SA1.S9xOpcodes != NULL; SA1.WaitCounter = 0; } *SetAddress = Byte; #else *(SetAddress + (Address & 0xffff)) = Byte; #endif return; } switch ((pint) SetAddress) { case CMemory::MAP_PPU: if(CPU.InDMA && (Address&0xff00)==0x2100) return; S9xSetPPU (Byte, Address & 0xffff); return; case CMemory::MAP_CPU: S9xSetCPU (Byte, Address & 0xffff); return; case CMemory::MAP_DSP: #ifdef DSP_DUMMY_LOOPS printf("DSP Byte: %02X to %06X\n", Byte, Address); #endif S9xSetDSP (Byte, Address & 0xffff); return; case CMemory::MAP_LOROM_SRAM: if (Memory.SRAMMask) { *(Memory.SRAM + ((((Address&0xFF0000)>>1)|(Address&0x7FFF))& Memory.SRAMMask))=Byte; CPU.SRAMModified = TRUE; } return; case CMemory::MAP_HIROM_SRAM: if (Memory.SRAMMask) { *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = Byte; CPU.SRAMModified = TRUE; } return; case CMemory::MAP_BWRAM: *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)) = Byte; CPU.SRAMModified = TRUE; return; case CMemory::MAP_SA1RAM: *(Memory.SRAM + (Address & 0xffff)) = Byte; SA1.Executing = !SA1.Waiting; break; case CMemory::MAP_C4: S9xSetC4 (Byte, Address & 0xffff); return; case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG printf("Writing Byte at %06X\n", Address); #endif s7r.bank50[(Address & 0xffff)]= (uint8) Byte; break; case CMemory::MAP_OBC_RAM: SetOBC1(Byte, Address &0xFFFF); return; case CMemory::MAP_SETA_DSP: S9xSetSetaDSP(Byte,Address); return; case CMemory::MAP_SETA_RISC: S9xSetST018(Byte,Address); return; case CMemory::MAP_BSX: S9xSetBSX(Byte,Address); return; case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("W(B) %06x\n", Address); #endif default: case CMemory::MAP_NONE: return; } } #ifdef NO_INLINE_SET_GET INLINE void S9xSetWord (uint16 Word, uint32 Address, enum s9xwrap_t w, enum s9xwriteorder_t o) #else INLINE void S9xSetWord (uint16 Word, uint32 Address, enum s9xwrap_t w=WRAP_NONE, enum s9xwriteorder_t o=WRITE_01) #endif { uint32 mask=MEMMAP_MASK&(w==WRAP_PAGE?0xff:(w==WRAP_BANK?0xffff:0xffffff)); if ((Address & mask) == mask) { if(!o) S9xSetByte(Word&0x00FF, Address); switch(w){ case WRAP_PAGE: { PC_t a; a.xPBPC = Address; a.B.xPCl++; S9xSetByte(Word>>8, a.xPBPC); } case WRAP_BANK: { PC_t a; a.xPBPC = Address; a.W.xPC++; S9xSetByte(Word>>8, a.xPBPC); } case WRAP_NONE: default: S9xSetByte(Word>>8, Address+1); } if(o) S9xSetByte(Word&0x00FF, Address); return; } #if defined(CPU_SHUTDOWN) CPU.WaitAddress = 0xffffffff; #endif int block; uint8 *SetAddress = Memory.WriteMap [block = ((Address&0xffffff) >> MEMMAP_SHIFT)]; if (!CPU.InDMA) CPU.Cycles += Memory.MemorySpeed [block] << 1; if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { #ifdef CPU_SHUTDOWN SetAddress += Address & 0xffff; if (SetAddress == SA1.WaitByteAddress1 || SetAddress == SA1.WaitByteAddress2) { SA1.Executing = SA1.S9xOpcodes != NULL; SA1.WaitCounter = 0; } WRITE_WORD(SetAddress, Word); #else WRITE_WORD(SetAddress + (Address & 0xffff), Word); #endif return; } switch ((pint) SetAddress) { case CMemory::MAP_PPU: if(CPU.InDMA){ if((Address&0xff00)!=0x2100) S9xSetPPU((uint8)Word, Address&0xffff); if(((Address+1)&0xff00)!=0x2100) S9xSetPPU(Word>>8, (Address+1)&0xffff); return; } if(o){ S9xSetPPU (Word >> 8, (Address & 0xffff) + 1); S9xSetPPU ((uint8) Word, Address & 0xffff); } else { S9xSetPPU ((uint8) Word, Address & 0xffff); S9xSetPPU (Word >> 8, (Address & 0xffff) + 1); } return; case CMemory::MAP_CPU: if(o){ S9xSetCPU (Word >> 8, (Address & 0xffff) + 1); S9xSetCPU ((uint8) Word, (Address & 0xffff)); } else { S9xSetCPU ((uint8) Word, (Address & 0xffff)); S9xSetCPU (Word >> 8, (Address & 0xffff) + 1); } return; case CMemory::MAP_DSP: #ifdef DSP_DUMMY_LOOPS printf("DSP Word: %04X to %06X\n", Word, Address); #endif if(o){ S9xSetDSP (Word >> 8, (Address & 0xffff) + 1); S9xSetDSP ((uint8) Word, (Address & 0xffff)); } else { S9xSetDSP ((uint8) Word, (Address & 0xffff)); S9xSetDSP (Word >> 8, (Address & 0xffff) + 1); } return; case CMemory::MAP_LOROM_SRAM: if (Memory.SRAMMask) { if(Memory.SRAMMask>=MEMMAP_MASK){ WRITE_WORD(Memory.SRAM + ((((Address&0xFF0000)>>1)|(Address&0x7FFF))&Memory.SRAMMask), Word); } else { /* no WRITE_WORD here, since if Memory.SRAMMask=0x7ff * then the high byte doesn't follow the low byte. */ *(Memory.SRAM + ((((Address&0xFF0000)>>1)|(Address&0x7FFF))& Memory.SRAMMask)) = (uint8) Word; *(Memory.SRAM + (((((Address+1)&0xFF0000)>>1)|((Address+1)&0x7FFF))& Memory.SRAMMask)) = Word >> 8; } CPU.SRAMModified = TRUE; } return; case CMemory::MAP_HIROM_SRAM: if (Memory.SRAMMask) { if(Memory.SRAMMask>=MEMMAP_MASK){ WRITE_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3) & Memory.SRAMMask)), Word); } else { /* no WRITE_WORD here, since if Memory.SRAMMask=0x7ff * then the high byte doesn't follow the low byte. */ *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3) & Memory.SRAMMask))) = (uint8) Word; *(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3) & Memory.SRAMMask))) = (uint8) (Word >> 8); } CPU.SRAMModified = TRUE; } return; case CMemory::MAP_BWRAM: WRITE_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000), Word); CPU.SRAMModified = TRUE; return; case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG printf("Writing Word at %06X\n", Address); #endif WRITE_WORD(s7r.bank50+(Address & 0xffff), Word); break; case CMemory::MAP_SA1RAM: WRITE_WORD(Memory.SRAM + (Address & 0xffff), Word); SA1.Executing = !SA1.Waiting; break; case CMemory::MAP_C4: if(o){ S9xSetC4 ((uint8) (Word >> 8), (Address + 1) & 0xffff); S9xSetC4 (Word & 0xff, Address & 0xffff); } else { S9xSetC4 (Word & 0xff, Address & 0xffff); S9xSetC4 ((uint8) (Word >> 8), (Address + 1) & 0xffff); } return; case CMemory::MAP_OBC_RAM: if(o){ SetOBC1((uint8) (Word >> 8), (Address + 1) & 0xffff); SetOBC1(Word & 0xff, Address &0xFFFF); } else { SetOBC1(Word & 0xff, Address &0xFFFF); SetOBC1 ((uint8) (Word >> 8), (Address + 1) & 0xffff); } return; case CMemory::MAP_SETA_DSP: if(o){ S9xSetSetaDSP ((uint8) (Word >> 8),(Address + 1)); S9xSetSetaDSP (Word & 0xff, Address); } else { S9xSetSetaDSP (Word & 0xff, Address); S9xSetSetaDSP ((uint8) (Word >> 8),(Address + 1)); } return; case CMemory::MAP_SETA_RISC: if(o){ S9xSetST018 ((uint8) (Word >> 8),(Address + 1)); S9xSetST018 (Word & 0xff, Address); } else { S9xSetST018 (Word & 0xff, Address); S9xSetST018 ((uint8) (Word >> 8),(Address + 1)); } return; case CMemory::MAP_BSX: if(o){ S9xSetBSX ((uint8) (Word >> 8),(Address + 1)); S9xSetBSX (Word & 0xff, Address); } else { S9xSetBSX (Word & 0xff, Address); S9xSetBSX ((uint8) (Word >> 8),(Address + 1)); } return; case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("W(W) %06x\n", Address); #endif default: case CMemory::MAP_NONE: return; } } INLINE uint8 *GetBasePointer (uint32 Address) { uint8 *GetAddress = Memory.Map [((Address&0xffffff) >> MEMMAP_SHIFT)]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (GetAddress); switch ((pint) GetAddress) { // case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG // printf("Getting Base pointer to DRAM\n"); #endif // { // return s7r.bank50; // } case CMemory::MAP_SPC7110_ROM: #ifdef SPC7110_DEBUG printf("Getting Base pointer to SPC7110ROM\n"); #endif return Get7110BasePtr(Address); case CMemory::MAP_SA1RAM: return (Memory.SRAM); case CMemory::MAP_LOROM_SRAM: if((Memory.SRAMMask&MEMMAP_MASK)!=MEMMAP_MASK) return NULL; return (Memory.SRAM + ((((Address&0xFF0000)>>1)|(Address&0x7FFF)) & Memory.SRAMMask) - (Address&0xffff)); case CMemory::MAP_BWRAM: return (Memory.BWRAM - 0x6000 - (Address&0x8000)); case CMemory::MAP_HIROM_SRAM: if((Memory.SRAMMask&MEMMAP_MASK)!=MEMMAP_MASK) return NULL; return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask) - (Address&0xffff)); case CMemory::MAP_C4: return S9xGetBasePointerC4(Address); case CMemory::MAP_OBC_RAM: return GetBasePointerOBC1(Address); case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("GBP %06x\n", Address); #endif default: case CMemory::MAP_NONE: return (0); } } INLINE uint8 *S9xGetMemPointer (uint32 Address) { uint8 *GetAddress = Memory.Map [((Address&0xffffff) >> MEMMAP_SHIFT)]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (GetAddress + (Address&0xffff)); switch ((pint) GetAddress) { // case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG // printf("Getting Mem pointer to DRAM\n"); #endif // { // return s7r.bank50 + (Address&0xffff); // } case CMemory::MAP_SPC7110_ROM: #ifdef SPC7110_DEBUG printf("Getting Mem pointer to SPC7110ROM\n"); #endif return Get7110BasePtr(Address) + (Address&0xffff); case CMemory::MAP_SA1RAM: return (Memory.SRAM + (Address&0xffff)); case CMemory::MAP_LOROM_SRAM: if((Memory.SRAMMask&MEMMAP_MASK)!=MEMMAP_MASK) return NULL; return (Memory.SRAM + ((((Address&0xFF0000)>>1)|(Address&0x7FFF)) & Memory.SRAMMask)); case CMemory::MAP_BWRAM: return (Memory.BWRAM - 0x6000 + (Address&0x7fff)); case CMemory::MAP_HIROM_SRAM: if((Memory.SRAMMask&MEMMAP_MASK)!=MEMMAP_MASK) return NULL; return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)); case CMemory::MAP_C4: return S9xGetBasePointerC4(Address) + (Address&0xffff); case CMemory::MAP_OBC_RAM: return GetMemPointerOBC1(Address); case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("GMP %06x\n", Address); #endif default: case CMemory::MAP_NONE: return (0); } } INLINE void S9xSetPCBase (uint32 Address) { Registers.PBPC = Address & 0xffffff; ICPU.ShiftedPB = Address & 0xff0000; int block; uint8 *GetAddress = Memory.Map [block = ((Address&0xffffff) >> MEMMAP_SHIFT)]; CPU.MemSpeed = Memory.MemorySpeed [block]; CPU.MemSpeedx2 = CPU.MemSpeed << 1; if (GetAddress >= (uint8 *) CMemory::MAP_LAST){ CPU.PCBase = GetAddress; return; } switch ((pint) GetAddress) { // case CMemory::MAP_SPC7110_DRAM: #ifdef SPC7110_DEBUG // printf("Getting Base pointer to DRAM\n"); #endif // { // CPU.PCBase = s7r.bank50; // return; // } case CMemory::MAP_SPC7110_ROM: #ifdef SPC7110_DEBUG printf("Getting Base pointer to SPC7110ROM\n"); #endif CPU.PCBase = Get7110BasePtr(Address); return; case CMemory::MAP_SA1RAM: CPU.PCBase = Memory.SRAM; return; case CMemory::MAP_LOROM_SRAM: if((Memory.SRAMMask&MEMMAP_MASK)!=MEMMAP_MASK){ CPU.PCBase = NULL; } else { CPU.PCBase = (Memory.SRAM + ((((Address&0xFF0000)>>1)|(Address&0x7FFF)) & Memory.SRAMMask)) - (Address&0xffff); } return; case CMemory::MAP_BWRAM: CPU.PCBase = (Memory.BWRAM - 0x6000 - (Address&0x8000)); return; case CMemory::MAP_HIROM_SRAM: if((Memory.SRAMMask&MEMMAP_MASK)!=MEMMAP_MASK){ CPU.PCBase = NULL; } else { CPU.PCBase = (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) - (Address&0xffff); } return; case CMemory::MAP_C4: CPU.PCBase = S9xGetBasePointerC4(Address); return; case CMemory::MAP_OBC_RAM: CPU.PCBase = GetBasePointerOBC1(Address); return; case CMemory::MAP_BSX: CPU.PCBase = S9xGetPasePointerBSX(Address); return; case CMemory::MAP_DEBUG: #ifdef DEBUGGER printf ("SBP %06x\n", Address); #endif default: case CMemory::MAP_NONE: CPU.PCBase = NULL; return; } } #endif