/********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2007 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com) Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley, Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001-2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight, Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound DSP emulator code is derived from SNEeSe and OpenSPC: (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2007 zones Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. **********************************************************************************/ // Anonymous wrote: // Large thanks to John Weidman for all his initial research // Thanks to Seph3 for his modem notes #include #include "memmap.h" #include "display.h" #include "bsx.h" //#define BSX_DEBUG #define BIOS_SIZE 0x100000 #define FLASH_SIZE 0x200000 #define PSRAM_SIZE 0x80000 #define Map Memory.Map #define BlockIsRAM Memory.BlockIsRAM #define BlockIsROM Memory.BlockIsROM #define RAM Memory.RAM #define SRAM Memory.SRAM #define PSRAM Memory.BSRAM #define BIOSROM Memory.BIOSROM #define MAP_BSX Memory.MAP_BSX #define MAP_CPU Memory.MAP_CPU #define MAP_PPU Memory.MAP_PPU #define MAP_NONE Memory.MAP_NONE struct SBSX_RTC { int hours; int minutes; int seconds; int ticks; }; struct SBSX_RTC BSX_RTC; // flash card vendor information const uint8 flashcard[20] = { 0x4D, 0x00, 0x50, 0x00, // vendor id 0x00, 0x00, // ? 0x2B, 0x00, // 2MB Flash (1MB = 0x2A) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; const uint8 init2192[32] = // FIXME { 00, 00, 00, 00, 00, // unknown 01, 01, 00, 00, 00, 00, // seconds (?) 00, // minutes 00, // hours 10, 10, 10, 10, 10, // unknown 10, 10, 10, 10, 10, // dummy 00, 00, 00, 00, 00, 00, 00, 00, 00 }; bool8 FlashMode; uint32 FlashSize; uint8 *MapROM, *FlashROM; static void BSX_Map_SNES(void); static void BSX_Map_LoROM(void); static void BSX_Map_HiROM(void); static void BSX_Map_MMC(void); static void BSX_Map_FlashIO(void); static void BSX_Map_SRAM(void); static void BSX_Map_PSRAM(void); static void BSX_Map_BIOS(void); static void BSX_Map_RAM(void); static void BSX_Map_Dirty(void); static void BSX_Map(void); static void BSX_Set_Bypass_FlashIO(uint16, uint8); static uint8 BSX_Get_Bypass_FlashIO(uint16); static bool8 BSX_LoadBIOS(void); static void map_psram_mirror_sub(uint32); static int is_bsx(unsigned char *); static void BSX_Map_SNES(void) { // These maps will be partially overwritten int c; // Banks 00->3F and 80->BF for (c = 0; c < 0x400; c += 16) { Map[c + 0] = Map[c + 0x800] = RAM; Map[c + 1] = Map[c + 0x801] = RAM; BlockIsRAM[c + 0] = BlockIsRAM[c + 0x800] = TRUE; BlockIsRAM[c + 1] = BlockIsRAM[c + 0x801] = TRUE; Map[c + 2] = Map[c + 0x802] = (uint8 *) MAP_PPU; Map[c + 3] = Map[c + 0x803] = (uint8 *) MAP_PPU; Map[c + 4] = Map[c + 0x804] = (uint8 *) MAP_CPU; Map[c + 5] = Map[c + 0x805] = (uint8 *) MAP_CPU; Map[c + 6] = Map[c + 0x806] = (uint8 *) MAP_NONE; Map[c + 7] = Map[c + 0x807] = (uint8 *) MAP_NONE; } } static void BSX_Map_LoROM(void) { // These maps will be partially overwritten int i, c; // Banks 00->3F and 80->BF for (c = 0; c < 0x400; c += 16) { for (i = c + 8; i < c + 16; i++) { Map[i] = Map[i + 0x800] = &MapROM[(c << 11) % FlashSize] - 0x8000; BlockIsRAM[i] = BlockIsRAM[i + 0x800] = BSX.write_enable; BlockIsROM[i] = BlockIsROM[i + 0x800] = !BSX.write_enable; } } // Banks 40->7F and C0->FF for (c = 0; c < 0x400; c += 16) { for (i = c; i < c + 8; i++) Map[i + 0x400] = Map[i + 0xC00] = &MapROM[(c << 11) % FlashSize]; for (i = c + 8; i < c + 16; i++) Map[i + 0x400] = Map[i + 0xC00] = &MapROM[(c << 11) % FlashSize] - 0x8000; for (i = c; i < c + 16; i++) { BlockIsRAM[i + 0x400] = BlockIsRAM[i + 0xC00] = BSX.write_enable; BlockIsROM[i + 0x400] = BlockIsROM[i + 0xC00] = !BSX.write_enable; } } } static void BSX_Map_HiROM(void) { // These maps will be partially overwritten int i, c; // Banks 00->3F and 80->BF for (c = 0; c < 0x400; c += 16) { for (i = c + 8; i < c + 16; i++) { Map[i] = Map[i + 0x800] = &MapROM[(c << 12) % FlashSize]; BlockIsRAM[i] = BlockIsRAM[i + 0x800] = BSX.write_enable; BlockIsROM[i] = BlockIsROM[i + 0x800] = !BSX.write_enable; } } // Banks 40->7F and C0->FF for (c = 0; c < 0x400; c += 16) { for (i = c; i < c + 16; i++) { Map[i + 0x400] = Map[i + 0xC00] = &MapROM[(c << 12) % FlashSize]; BlockIsRAM[i + 0x400] = BlockIsRAM[i + 0xC00] = BSX.write_enable; BlockIsROM[i + 0x400] = BlockIsROM[i + 0xC00] = !BSX.write_enable; } } } static void BSX_Map_MMC(void) { int c; // Banks 01->0E:5000-5FFF for (c = 0x010; c < 0x0F0; c += 16) { Map[c + 5] = (uint8 *) MAP_BSX; BlockIsRAM[c + 5] = BlockIsROM[c + 5] = FALSE; } } static void BSX_Map_FlashIO(void) { int c; if (BSX.MMC[0x0C] || BSX.MMC[0x0D]) { // Bank C0:0000, 2AAA, 5555, FF00-FF1F for (c = 0; c < 16; c++) { Map[c + 0xC00] = (uint8 *) MAP_BSX; BlockIsRAM[c + 0xC00] = TRUE; BlockIsROM[c + 0xC00] = FALSE; } } } static void BSX_Map_SRAM(void) { int c; // Banks 10->17:5000-5FFF for (c = 0x100; c < 0x180; c += 16) { Map[c + 5] = (uint8 *) SRAM + ((c & 0x70) << 8) - 0x5000; BlockIsRAM[c + 5] = TRUE; BlockIsROM[c + 5] = FALSE; } } static void map_psram_mirror_sub(uint32 bank) { int i, c; bank <<= 4; if (BSX.MMC[0x02]) { for (c = 0; c < 0x100; c += 16) { for (i = c; i < c + 16; i++) { Map[i + bank] = &PSRAM[(c << 12) % PSRAM_SIZE]; BlockIsRAM[i + bank] = TRUE; BlockIsROM[i + bank] = FALSE; } } } else { for (c = 0; c < 0x100; c += 16) { for (i = c; i < c + 8; i++) Map[i + bank] = &PSRAM[(c << 11) % PSRAM_SIZE]; for (i = c + 8; i < c + 16; i++) Map[i + bank] = &PSRAM[(c << 11) % PSRAM_SIZE] - 0x8000; for (i = c; i < c + 16; i++) { BlockIsRAM[i + bank] = TRUE; BlockIsROM[i + bank] = FALSE; } } } } static void BSX_Map_PSRAM(void) { int c; // Banks 70->77:0000-FFFF // FIXME: could be toggled by $03 for (c = 0; c < 0x80; c++) { Map[c + 0x700] = &PSRAM[((c & 0x70) << 12) % PSRAM_SIZE]; BlockIsRAM[c + 0x700] = TRUE; BlockIsROM[c + 0x700] = FALSE; } // Banks 20->3F:6000-7FFF mirrors 70->77:6000-7FFF for (c = 0x200; c < 0x400; c += 16) { Map[c + 6] = &PSRAM[((c & 0x70) << 12) % PSRAM_SIZE]; Map[c + 7] = &PSRAM[((c & 0x70) << 12) % PSRAM_SIZE]; BlockIsRAM[c + 6] = TRUE; BlockIsRAM[c + 7] = TRUE; BlockIsROM[c + 6] = FALSE; BlockIsROM[c + 7] = FALSE; } if (!BSX.MMC[0x05]) // Banks 40->4F:0000-FFFF mirrors 70->77:0000-7FFF map_psram_mirror_sub(0x40); if (!BSX.MMC[0x06]) // Banks 50->5F:0000-FFFF mirrors 70->77:0000-7FFF map_psram_mirror_sub(0x50); // FIXME if (!BSX.MMC[0x03]) // Banks 60->6F:0000-FFFF mirrors 70->77:0000-7FFF (?) map_psram_mirror_sub(0x60); } static void BSX_Map_BIOS(void) { int i,c; // Banks 00->1F:8000-FFFF if (BSX.MMC[0x07]) { for (c = 0; c < 0x200; c += 16) { for (i = c + 8; i < c + 16; i++) { Map[i] = &BIOSROM[(c << 11) % BIOS_SIZE] - 0x8000; BlockIsRAM[i] = FALSE; BlockIsROM[i] = TRUE; } } } // Banks 80->9F:8000-FFFF if (BSX.MMC[0x08]) { for (c = 0; c < 0x200; c += 16) { for (i = c + 8; i < c + 16; i++) { Map[i + 0x800] = &BIOSROM[(c << 11) % BIOS_SIZE] - 0x8000; BlockIsRAM[i + 0x800] = FALSE; BlockIsROM[i + 0x800] = TRUE; } } } } static void BSX_Map_RAM(void) { int c; // Banks 7E->7F for (c = 0; c < 16; c++) { Map[c + 0x7E0] = RAM; Map[c + 0x7F0] = RAM + 0x10000; BlockIsRAM[c + 0x7E0] = TRUE; BlockIsRAM[c + 0x7F0] = TRUE; BlockIsROM[c + 0x7E0] = FALSE; BlockIsROM[c + 0x7F0] = FALSE; } } static void BSX_Map_Dirty(void) { // for the quick bank change int i, c; // Banks 00->1F and 80->9F:8000-FFFF if (BSX.MMC[0x02]) { for (c = 0; c < 0x200; c += 16) { for (i = c + 8; i < c + 16; i++) { Map[i] = Map[i + 0x800] = &MapROM[(c << 12) % FlashSize]; BlockIsRAM[i] = BlockIsRAM[i + 0x800] = BSX.write_enable; BlockIsROM[i] = BlockIsROM[i + 0x800] = !BSX.write_enable; } } } else { for (c = 0; c < 0x200; c += 16) { for (i = c + 8; i < c + 16; i++) { Map[i] = Map[i + 0x800] = &MapROM[(c << 11) % FlashSize] - 0x8000; BlockIsRAM[i] = BlockIsRAM[i + 0x800] = BSX.write_enable; BlockIsROM[i] = BlockIsROM[i + 0x800] = !BSX.write_enable; } } } } static void BSX_Map(void) { #ifdef BSX_DEBUG printf("BS: Remapping\n"); for (int i = 0; i < 32; i++) printf("BS: MMC %02X: %d\n", i, BSX.MMC[i]); #endif memcpy(BSX.prevMMC, BSX.MMC, sizeof(BSX.MMC)); // Do a quick bank change if (BSX.dirty2 && !BSX.dirty) { BSX_Map_Dirty(); BSX_Map_BIOS(); BSX.dirty2 = FALSE; Memory.map_WriteProtectROM(); return; } if (BSX.MMC[0x01]) { MapROM = PSRAM; FlashSize = PSRAM_SIZE; } else { MapROM = FlashROM; FlashSize = FLASH_SIZE; } BSX_Map_SNES(); if (BSX.MMC[0x02]) BSX_Map_HiROM(); else BSX_Map_LoROM(); BSX_Map_PSRAM(); BSX_Map_SRAM(); BSX_Map_RAM(); BSX_Map_BIOS(); BSX_Map_FlashIO(); BSX_Map_MMC(); // Monitor new register changes BSX.dirty = FALSE; BSX.dirty2 = FALSE; Memory.map_WriteProtectROM(); } static uint8 BSX_Get_Bypass_FlashIO(uint16 offset) { if (BSX.MMC[0x02]) return MapROM[offset]; else { if (offset < 0x8000) return MapROM[offset]; else return MapROM[offset - 0x8000]; } } static void BSX_Set_Bypass_FlashIO(uint16 offset, uint8 byte) { if (BSX.MMC[0x02]) MapROM[offset] = byte; else { if (offset < 0x8000) MapROM[offset] = byte; else MapROM[offset - 0x8000] = byte; } } uint8 S9xGetBSX(uint32 address) { uint8 bank = (address >> 16) & 0xFF; uint16 offset = address & 0xFFFF; uint8 t = 0; // MMC if ((bank >= 0x01 && bank <= 0x0E) && (offset == 0x5000)) return BSX.MMC[bank]; // Flash IO if (bank == 0xC0) { // default: read-through mode t = BSX_Get_Bypass_FlashIO(offset); // note: may be more registers, purposes unknown switch (offset) { case 0x0002: if (BSX.flash_enable) t = 0x80; // status register? break; case 0x5555: if (BSX.flash_enable) t = 0x80; // ??? break; case 0xFF00: case 0xFF02: case 0xFF04: case 0xFF06: case 0xFF08: case 0xFF0A: case 0xFF0C: case 0xFF0E: case 0xFF10: case 0xFF12: // return flash vendor information if (BSX.read_enable) t = flashcard[offset - 0xFF00]; break; } } return t; } void S9xSetBSX(uint8 byte, uint32 address) { uint8 bank = (address >> 16) & 0xFF; uint16 offset = address & 0xFFFF; // MMC if ((bank >= 0x01 && bank <= 0x0E) && (offset == 0x5000)) { switch (bank) { case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x09: case 0x0A: case 0x0B: case 0x0C: case 0x0D: if (BSX.MMC[bank] != byte) { BSX.MMC[bank] = byte; BSX.dirty = TRUE; } break; case 0x07: case 0x08: if (BSX.MMC[bank] != byte) { BSX.MMC[bank] = byte; BSX.dirty2 = TRUE; } break; case 0x0E: BSX.MMC[bank] = byte; if (byte && (BSX.dirty || BSX.dirty2)) BSX_Map(); break; } } // Flash IO if (bank == 0xC0) { BSX.old_write = BSX.new_write; BSX.new_write = address; // ???: double writes to the desired address will bypass // flash registers if (BSX.old_write == BSX.new_write && BSX.write_enable) { BSX_Set_Bypass_FlashIO(offset, byte); return; } // flash command handling // note: incomplete switch (offset) { case 0x0000: BSX.flash_command <<= 8; BSX.flash_command |= byte; if ((BSX.flash_command & 0xFFFF) == 0x38D0) { // retrieve information about the flash card BSX.flash_enable = TRUE; BSX.read_enable = TRUE; } break; case 0x2AAA: BSX.flash_command <<= 8; BSX.flash_command |= byte; break; case 0x5555: BSX.flash_command <<= 8; BSX.flash_command |= byte; switch (BSX.flash_command & 0xFFFFFF) { case 0xAA55F0: // turn off flash i/o BSX.flash_enable = FALSE; BSX.write_enable = FALSE; BSX.read_enable = FALSE; break; case 0xAA55A0: // enable writing to flash BSX.old_write = 0; BSX.new_write = 0; BSX.flash_enable = TRUE; BSX.write_enable = TRUE; BSX_Map(); break; case 0xAA5570: // turn on write-protection BSX.write_enable = FALSE; BSX_Map(); break; case 0xAA5580: case 0xAA5510: // ??? break; } break; } } } uint8 S9xGetBSXPPU(uint16 address) { uint8 t = 0; if (address >= 0x2188 && address <= 0x219F) { // known read registers switch(address) { // Test register low? (r/w) case 0x2188: t = BSX.PPU[0x2188]; break; // Test register high? (r/w) case 0x2189: t = BSX.PPU[0x2189]; break; case 0x218A: t = BSX.PPU[0x218A]; break; case 0x218C: t = BSX.PPU[0x218C]; break; // Transmission number low? (r/w) case 0x218E: t = BSX.PPU[0x218E]; break; // Transmission number high? (r/w) case 0x218F: t = BSX.PPU[0x218F]; break; // Status register? (r) case 0x2190: t = BSX.PPU[0x2190]; break; // Data register? (r/w) case 0x2192: t = BSX.PPU[0x2192]; // test t = BSX.test2192[BSX.out_index++]; if (BSX.out_index == 32) BSX.out_index = 0; BSX_RTC.ticks++; if (BSX_RTC.ticks >= 1000) { BSX_RTC.ticks = 0; BSX_RTC.seconds++; } if (BSX_RTC.seconds >= 60) { BSX_RTC.seconds = 0; BSX_RTC.minutes++; } if (BSX_RTC.minutes >= 60) { BSX_RTC.minutes = 0; BSX_RTC.hours++; } if (BSX_RTC.hours >= 24) BSX_RTC.hours = 0; BSX.test2192[10] = BSX_RTC.seconds; BSX.test2192[11] = BSX_RTC.minutes; BSX.test2192[12] = BSX_RTC.hours; break; // Transmission status? (r/w) case 0x2193: // Data ready when bits 2/3 clear? t = BSX.PPU[0x2193] & ~0x0C; break; // Reset? (r/w) case 0x2194: t = BSX.PPU[0x2194]; break; // Unknown (r) case 0x2196: t = BSX.PPU[0x2196]; break; // Unknown (r/w) case 0x2197: t = BSX.PPU[0x2197]; break; // Modem protocol? (r/w) case 0x2199: t = BSX.PPU[0x2199]; break; default: t = OpenBus; break; } } return t; } void S9xSetBSXPPU(uint8 byte, uint16 address) { if (address >= 0x2188 && address <= 0x219F) { // known write registers switch(address) { // Test register low? (r/w) case 0x2188: BSX.PPU[0x2188] = byte; break; // Test register high? (r/w) case 0x2189: BSX.PPU[0x2189] = byte; break; case 0x218A: BSX.PPU[0x218A] = byte; break; case 0x218B: BSX.PPU[0x218B] = byte; break; case 0x218C: BSX.PPU[0x218C] = byte; break; // Transmission number low? (r/w) case 0x218E: BSX.PPU[0x218E] = byte; break; // Transmission number high? (r/w) case 0x218F: BSX.PPU[0x218F] = byte; // ? BSX.PPU[0x218E] >>= 1; BSX.PPU[0x218E] = BSX.PPU[0x218F] - BSX.PPU[0x218E]; BSX.PPU[0x218F] >>= 1; BSX.PPU[0x2190] = 0x80; // ? break; // Strobe assert? (w) case 0x2191: BSX.PPU[0x2191] = byte; BSX.out_index = 0; break; // Data register? (r/w) case 0x2192: BSX.PPU[0x2192] = 0x01; // ? BSX.PPU[0x2190] = 0x80; // ? break; // Transmission status? (r/w) case 0x2193: BSX.PPU[0x2193] = byte; break; // Reset? (r/w) case 0x2194: BSX.PPU[0x2194] = byte; break; // Unknown (r/w) case 0x2197: BSX.PPU[0x2197] = byte; break; // Modem protocol? (r/w) case 0x2199: // Lots of modem strings written here when // connection is lost or no uplink established BSX.PPU[0x2199] = byte; break; } } } uint8 * S9xGetBasePointerBSX(uint32 address) { return MapROM; } static bool8 BSX_LoadBIOS(void) { return FALSE; // We're not loading the BIOS! FILE *fp; char path[_MAX_PATH + 1], name[_MAX_PATH + 1]; bool8 r = FALSE; strcpy(path, S9xGetDirectory(BIOS_DIR)); strcat(path, SLASH_STR); strcpy(name, path); strcat(name, "BS-X.bin"); fp = fopen(name, "rb"); if (!fp) { strcpy(name, path); strcat(name, "BS-X.bios"); fp = fopen(name, "rb"); } if (fp) { size_t size; size = fread((void *) BIOSROM, 1, BIOS_SIZE, fp); fclose(fp); if (size == BIOS_SIZE) r = TRUE; } #ifdef BSX_DEBUG if (r) printf("BS: BIOS found.\n"); else printf("BS: BIOS not found!\n"); #endif return r; } void S9xInitBSX(void) { Settings.BS = FALSE; if (!memcmp(&Memory.ROM[0x7FC0], "Satellaview BS-X ", 21)) { // BS-X itself Settings.BS = TRUE; Settings.BSXItself = TRUE; Memory.LoROM = TRUE; Memory.HiROM = FALSE; memmove(BIOSROM, Memory.ROM, BIOS_SIZE); FlashMode = FALSE; FlashSize = FLASH_SIZE; BSX.bootup = TRUE; } else { Settings.BSXItself = FALSE; int r1, r2; r1 = (is_bsx(Memory.ROM + 0x7FC0) == 1); r2 = (is_bsx(Memory.ROM + 0xFFC0) == 1); Settings.BS = (r1 | r2) ? TRUE : FALSE; if (Settings.BS) { // BS games Memory.LoROM = r1 ? TRUE : FALSE; Memory.HiROM = r2 ? TRUE : FALSE; uint8 *header = r1 ? Memory.ROM + 0x7FC0 : Memory.ROM + 0xFFC0; FlashMode = (header[0x18] & 0xEF) == 0x20 ? FALSE : TRUE; FlashSize = (header[0x19] & 0x20) ? PSRAM_SIZE : FLASH_SIZE; #ifdef BSX_DEBUG for (int i = 0; i <= 0x1F; i++) printf("BS: ROM Header %02X: %02X\n", i, header[i]); printf("BS: FlashMode: %d, FlashSize: %x\n", FlashMode, FlashSize); #endif BSX.bootup = Settings.BSXBootup; if (!BSX_LoadBIOS()) { BSX.bootup = FALSE; memset(BIOSROM, 0, BIOS_SIZE); } } } if (Settings.BS) { MapROM = NULL; FlashROM = Memory.ROM; time_t t; struct tm *tmr; time(&t); tmr = localtime(&t); BSX_RTC.ticks = 0; memcpy(BSX.test2192, init2192, sizeof(init2192)); BSX.test2192[10] = BSX_RTC.seconds = tmr->tm_sec; BSX.test2192[11] = BSX_RTC.minutes = tmr->tm_min; BSX.test2192[12] = BSX_RTC.hours = tmr->tm_hour; #ifdef BSX_DEBUG printf("BS: Current Time: %02d:%02d:%02d\n", BSX_RTC.hours, BSX_RTC.minutes, BSX_RTC.seconds); #endif SNESGameFixes.SRAMInitialValue = 0x00; } } void S9xResetBSX(void) { if (Settings.BSXItself) memset(Memory.ROM, 0, FLASH_SIZE); memset(BSX.PPU, 0, sizeof(BSX.PPU)); memset(BSX.MMC, 0, sizeof(BSX.MMC)); memset(BSX.prevMMC, 0, sizeof(BSX.prevMMC)); BSX.dirty = FALSE; BSX.dirty2 = FALSE; BSX.flash_enable = FALSE; BSX.write_enable = FALSE; BSX.read_enable = FALSE; BSX.flash_command = 0; BSX.old_write = 0; BSX.new_write = 0; BSX.out_index = 0; memset(BSX.output, 0, sizeof(BSX.output)); // starting from the bios if (BSX.bootup) BSX.MMC[0x07] = BSX.MMC[0x08] = 0x80; else { BSX.MMC[0x02] = FlashMode ? 0x80: 0; // per bios: run from psram or flash card if (FlashSize == PSRAM_SIZE) { memcpy(PSRAM, FlashROM, PSRAM_SIZE); BSX.MMC[0x01] = 0x80; BSX.MMC[0x03] = 0x80; BSX.MMC[0x04] = 0x80; BSX.MMC[0x0C] = 0x80; BSX.MMC[0x0D] = 0x80; } else { BSX.MMC[0x03] = 0x80; BSX.MMC[0x05] = 0x80; BSX.MMC[0x06] = 0x80; } BSX.MMC[0x0E] = 0x80; } BSX_Map(); } void S9xFixBSXAfterSnapshotLoad(void) { uint8 temp[16]; bool8 pd1, pd2; pd1 = BSX.dirty; pd2 = BSX.dirty2; memcpy(temp, BSX.MMC, sizeof(BSX.MMC)); memcpy(BSX.MMC, BSX.prevMMC, sizeof(BSX.MMC)); BSX_Map(); memcpy(BSX.MMC, temp, sizeof(BSX.MMC)); BSX.dirty = pd1; BSX.dirty2 = pd2; } static bool valid_normal_bank(unsigned char bankbyte) { switch (bankbyte) { case 32: case 33: case 48: case 49: return(true); break; } return(false); } static int is_bsx(unsigned char *p) { if ((p[26] == 0x33 || p[26] == 0xFF) && (!p[21] || (p[21] & 131) == 128) && valid_normal_bank(p[24])) { unsigned char m = p[22]; if (!m && !p[23]) { return(2); } if ((m == 0xFF && p[23] == 0xFF) || (!(m & 0xF) && ((m >> 4) - 1 < 12))) { return(1); } } return(0); }