/********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com), Nach (n-a-c-h@users.sourceforge.net), and zones (kasumitokoduck@yahoo.com) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com) Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley, Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001-2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight, Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound DSP emulator code is derived from SNEeSe and OpenSPC: (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x filter (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. **********************************************************************************/ #ifndef _PPU_H_ #define _PPU_H_ #define FIRST_VISIBLE_LINE 1 extern uint8 GetBank; extern uint16 SignExtend [2]; #define TILE_2BIT 0 #define TILE_4BIT 1 #define TILE_8BIT 2 #define TILE_2BIT_EVEN 3 #define TILE_2BIT_ODD 4 #define TILE_4BIT_EVEN 5 #define TILE_4BIT_ODD 6 #define MAX_2BIT_TILES 4096 #define MAX_4BIT_TILES 2048 #define MAX_8BIT_TILES 1024 #define PPU_H_BEAM_IRQ_SOURCE (1 << 0) #define PPU_V_BEAM_IRQ_SOURCE (1 << 1) #define GSU_IRQ_SOURCE (1 << 2) #define SA1_IRQ_SOURCE (1 << 7) #define SA1_DMA_IRQ_SOURCE (1 << 5) struct ClipData { uint8 Count; uint8 DrawMode[6]; uint16 Left[6]; uint16 Right[6]; }; struct InternalPPU { bool8 ColorsChanged; uint8 HDMA; uint8 HDMAEnded; uint8 MaxBrightness; bool8 LatchedBlanking; bool8 OBJChanged; bool8 RenderThisFrame; bool8 DirectColourMapsNeedRebuild; uint32 FrameCount; uint32 RenderedFramesCount; uint32 DisplayedRenderedFrameCount; uint32 SkippedFrames; uint32 FrameSkip; uint8 *TileCache [7]; uint8 *TileCached [7]; #ifdef CORRECT_VRAM_READS uint16 VRAMReadBuffer; #else bool8 FirstVRAMRead; #endif bool8 Interlace; bool8 InterlaceOBJ; bool8 PseudoHires; bool8 DoubleWidthPixels; bool8 DoubleHeightPixels; int RenderedScreenHeight; int RenderedScreenWidth; uint32 Red [256]; uint32 Green [256]; uint32 Blue [256]; uint8 *XB; uint16 ScreenColors [256]; int PreviousLine; int CurrentLine; struct ClipData Clip[2][6]; }; struct SOBJ { short HPos; uint16 VPos; uint16 Name; uint8 VFlip; uint8 HFlip; uint8 Priority; uint8 Palette; uint8 Size; }; struct SPPU { uint8 BGMode; uint8 BG3Priority; uint8 Brightness; struct { bool8 High; uint8 Increment; uint16 Address; uint16 Mask1; uint16 FullGraphicCount; uint16 Shift; } VMA; struct { uint16 SCBase; uint16 VOffset; uint16 HOffset; uint8 BGSize; uint16 NameBase; uint16 SCSize; } BG [4]; bool8 CGFLIP; uint16 CGDATA [256]; uint8 FirstSprite; uint8 LastSprite; struct SOBJ OBJ [128]; uint8 OAMPriorityRotation; uint16 OAMAddr; uint8 RangeTimeOver; uint8 OAMFlip; uint16 OAMTileAddress; uint16 IRQVBeamPos; uint16 IRQHBeamPos; uint16 VBeamPosLatched; uint16 HBeamPosLatched; uint8 HBeamFlip; uint8 VBeamFlip; uint8 HVBeamCounterLatched; short MatrixA; short MatrixB; short MatrixC; short MatrixD; short CentreX; short CentreY; short M7HOFS; short M7VOFS; uint8 CGADD; uint8 FixedColourRed; uint8 FixedColourGreen; uint8 FixedColourBlue; uint16 SavedOAMAddr; uint16 ScreenHeight; uint32 WRAM; uint8 BG_Forced; bool8 ForcedBlanking; bool8 OBJThroughMain; bool8 OBJThroughSub; uint8 OBJSizeSelect; uint16 OBJNameBase; bool8 OBJAddition; uint8 OAMReadFlip; uint8 OAMData [512 + 32]; bool8 VTimerEnabled; bool8 HTimerEnabled; short HTimerPosition; uint8 Mosaic; uint8 MosaicStart; bool8 BGMosaic [4]; bool8 Mode7HFlip; bool8 Mode7VFlip; uint8 Mode7Repeat; uint8 Window1Left; uint8 Window1Right; uint8 Window2Left; uint8 Window2Right; uint8 ClipCounts [6]; uint8 ClipWindowOverlapLogic [6]; uint8 ClipWindow1Enable [6]; uint8 ClipWindow2Enable [6]; bool8 ClipWindow1Inside [6]; bool8 ClipWindow2Inside [6]; bool8 RecomputeClipWindows; uint8 CGFLIPRead; uint16 OBJNameSelect; bool8 Need16x8Mulitply; uint16 OAMWriteRegister; uint8 BGnxOFSbyte; uint8 M7byte; uint8 OpenBus1; uint8 OpenBus2; uint16 GunVLatch; uint16 GunHLatch; short VTimerPosition; }; #define CLIP_OR 0 #define CLIP_AND 1 #define CLIP_XOR 2 #define CLIP_XNOR 3 struct SDMA { /* $43x0 */ bool8 TransferDirection; bool8 HDMAIndirectAddressing; bool8 UnusedBit43x0; bool8 AAddressFixed; bool8 AAddressDecrement; uint8 TransferMode; /* $43x1 */ uint8 BAddress; /* $43x2-4 */ uint16 AAddress; uint8 ABank; /* $43x5-6 */ uint16 DMACount_Or_HDMAIndirectAddress; /* $43x7 */ uint8 IndirectBank; /* $43x8-9 */ uint16 Address; /* $43xA */ uint8 Repeat; uint8 LineCount; /* $43xB/F */ uint8 UnknownByte; /* internal */ uint8 DoTransfer; }; #define TransferBytes DMACount_Or_HDMAIndirectAddress #define IndirectAddress DMACount_Or_HDMAIndirectAddress START_EXTERN_C void S9xUpdateScreen (); void S9xResetPPU (); void S9xSoftResetPPU (); void S9xFixColourBrightness (); void S9xDoAutoJoypad (); void S9xSuperFXExec (); void S9xSetPPU (uint8 Byte, uint16 Address); uint8 S9xGetPPU (uint16 Address); void S9xSetCPU (uint8 Byte, uint16 Address); uint8 S9xGetCPU (uint16 Address); void S9xInitC4 (); void S9xSetC4 (uint8 Byte, uint16 Address); uint8 S9xGetC4 (uint16 Address); void S9xSetC4RAM (uint8 Byte, uint16 Address); uint8 S9xGetC4RAM (uint16 Address); uint8 *S9xGetBasePointerC4 (uint16 Address); void S9xUpdateHVTimerPosition (void); void S9xCheckMissingHTimerPosition (int32); void S9xCheckMissingHTimerPositionRange (int32, int32); void S9xCheckMissingVTimerPosition (void); extern struct SPPU PPU; extern struct SDMA DMA [8]; extern struct InternalPPU IPPU; END_EXTERN_C #include "gfx.h" #include "memmap.h" typedef struct{ uint8 _5C77; uint8 _5C78; uint8 _5A22; } SnesModel; extern SnesModel* Model; extern SnesModel M1SNES; extern SnesModel M2SNES; #define MAX_5C77_VERSION 0x01 #define MAX_5C78_VERSION 0x03 #define MAX_5A22_VERSION 0x02 STATIC inline uint8 REGISTER_4212() { GetBank = 0; if (CPU.V_Counter >= PPU.ScreenHeight + FIRST_VISIBLE_LINE && CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE + 3) GetBank = 1; GetBank |= CPU.Cycles >= Timings.HBlankStart ? 0x40 : 0; if (CPU.V_Counter >= PPU.ScreenHeight + FIRST_VISIBLE_LINE) GetBank |= 0x80; /* XXX: 0x80 or 0xc0 ? */ return (GetBank); } STATIC inline void FLUSH_REDRAW () { if (IPPU.PreviousLine != IPPU.CurrentLine) S9xUpdateScreen (); } STATIC inline void REGISTER_2104 (uint8 byte) { if (PPU.OAMAddr & 0x100) { int addr = ((PPU.OAMAddr & 0x10f) << 1) + (PPU.OAMFlip & 1); if (byte != PPU.OAMData [addr]){ FLUSH_REDRAW (); PPU.OAMData [addr] = byte; IPPU.OBJChanged = TRUE; // X position high bit, and sprite size (x4) struct SOBJ *pObj = &PPU.OBJ [(addr & 0x1f) * 4]; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(byte >> 0) & 1]; pObj++->Size = byte & 2; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(byte >> 2) & 1]; pObj++->Size = byte & 8; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(byte >> 4) & 1]; pObj++->Size = byte & 32; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(byte >> 6) & 1]; pObj->Size = byte & 128; } PPU.OAMFlip ^= 1; if(!(PPU.OAMFlip & 1)){ ++PPU.OAMAddr; PPU.OAMAddr &= 0x1ff; if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1)) { PPU.FirstSprite = (PPU.OAMAddr&0xFE) >> 1; IPPU.OBJChanged = TRUE; } } else { if (PPU.OAMPriorityRotation && (PPU.OAMAddr&1)) IPPU.OBJChanged = TRUE; } } else if(!(PPU.OAMFlip & 1)){ PPU.OAMWriteRegister &= 0xff00; PPU.OAMWriteRegister |= byte; PPU.OAMFlip |= 1; if (PPU.OAMPriorityRotation && (PPU.OAMAddr&1)) IPPU.OBJChanged = TRUE; } else { PPU.OAMWriteRegister &= 0x00ff; uint8 lowbyte = (uint8)(PPU.OAMWriteRegister); uint8 highbyte = byte; PPU.OAMWriteRegister |= byte << 8; int addr = (PPU.OAMAddr << 1); if (lowbyte != PPU.OAMData [addr] || highbyte != PPU.OAMData [addr+1]) { FLUSH_REDRAW (); PPU.OAMData [addr] = lowbyte; PPU.OAMData [addr+1] = highbyte; IPPU.OBJChanged = TRUE; if (addr & 2) { // Tile PPU.OBJ[addr = PPU.OAMAddr >> 1].Name = PPU.OAMWriteRegister & 0x1ff; // priority, h and v flip. PPU.OBJ[addr].Palette = (highbyte >> 1) & 7; PPU.OBJ[addr].Priority = (highbyte >> 4) & 3; PPU.OBJ[addr].HFlip = (highbyte >> 6) & 1; PPU.OBJ[addr].VFlip = (highbyte >> 7) & 1; } else { // X position (low) PPU.OBJ[addr = PPU.OAMAddr >> 1].HPos &= 0xFF00; PPU.OBJ[addr].HPos |= lowbyte; // Sprite Y position PPU.OBJ[addr].VPos = highbyte; } } PPU.OAMFlip &= ~1; ++PPU.OAMAddr; if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1)) { PPU.FirstSprite = (PPU.OAMAddr&0xFE) >> 1; IPPU.OBJChanged = TRUE; } } Memory.FillRAM [0x2104] = byte; } STATIC inline void REGISTER_2118 (uint8 Byte) { uint32 address; if (PPU.VMA.FullGraphicCount) { uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; address = (((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) & 0xffff; Memory.VRAM [address] = Byte; } else { Memory.VRAM[address = (PPU.VMA.Address << 1) & 0xFFFF] = Byte; } IPPU.TileCached [TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached [TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached [TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; if (!PPU.VMA.High) { #ifdef DEBUGGER if (Settings.TraceVRAM && !CPU.InDMA) { printf ("VRAM write byte: $%04X (%d,%d)\n", PPU.VMA.Address, Memory.FillRAM[0x2115] & 3, (Memory.FillRAM [0x2115] & 0x0c) >> 2); } #endif PPU.VMA.Address += PPU.VMA.Increment; } // Memory.FillRAM [0x2118] = Byte; } STATIC inline void REGISTER_2118_tile (uint8 Byte) { uint32 address; uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; address = (((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) & 0xffff; Memory.VRAM [address] = Byte; IPPU.TileCached [TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached [TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached [TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; if (!PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; // Memory.FillRAM [0x2118] = Byte; } STATIC inline void REGISTER_2118_linear (uint8 Byte) { uint32 address; Memory.VRAM[address = (PPU.VMA.Address << 1) & 0xFFFF] = Byte; IPPU.TileCached [TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached [TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached [TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; if (!PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; // Memory.FillRAM [0x2118] = Byte; } STATIC inline void REGISTER_2119 (uint8 Byte) { uint32 address; if (PPU.VMA.FullGraphicCount) { uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; address = ((((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) + 1) & 0xFFFF; Memory.VRAM [address] = Byte; } else { Memory.VRAM[address = ((PPU.VMA.Address << 1) + 1) & 0xFFFF] = Byte; } IPPU.TileCached [TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached [TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached [TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; if (PPU.VMA.High) { #ifdef DEBUGGER if (Settings.TraceVRAM && !CPU.InDMA) { printf ("VRAM write word: $%04X (%d,%d)\n", PPU.VMA.Address, Memory.FillRAM[0x2115] & 3, (Memory.FillRAM [0x2115] & 0x0c) >> 2); } #endif PPU.VMA.Address += PPU.VMA.Increment; } // Memory.FillRAM [0x2119] = Byte; } STATIC inline void REGISTER_2119_tile (uint8 Byte) { uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; uint32 address = ((((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) + 1) & 0xFFFF; Memory.VRAM [address] = Byte; IPPU.TileCached [TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached [TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached [TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; if (PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; // Memory.FillRAM [0x2119] = Byte; } STATIC inline void REGISTER_2119_linear (uint8 Byte) { uint32 address; Memory.VRAM[address = ((PPU.VMA.Address << 1) + 1) & 0xFFFF] = Byte; IPPU.TileCached [TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached [TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached [TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_EVEN][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][address >> 4] = FALSE; IPPU.TileCached [TILE_2BIT_ODD][((address >> 4)-1)&(MAX_2BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_EVEN][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][address >> 5] = FALSE; IPPU.TileCached [TILE_4BIT_ODD][((address >> 5)-1)&(MAX_4BIT_TILES-1)] = FALSE; if (PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; // Memory.FillRAM [0x2119] = Byte; } STATIC inline void REGISTER_2122(uint8 Byte) { // CG-RAM (palette) write if (PPU.CGFLIP) { if ((Byte & 0x7f) != (PPU.CGDATA[PPU.CGADD] >> 8)) { FLUSH_REDRAW (); PPU.CGDATA[PPU.CGADD] &= 0x00FF; PPU.CGDATA[PPU.CGADD] |= (Byte & 0x7f) << 8; IPPU.ColorsChanged = TRUE; IPPU.Blue [PPU.CGADD] = IPPU.XB [(Byte >> 2) & 0x1f]; IPPU.Green [PPU.CGADD] = IPPU.XB [(PPU.CGDATA[PPU.CGADD] >> 5) & 0x1f]; IPPU.ScreenColors [PPU.CGADD] = (uint16) BUILD_PIXEL (IPPU.Red [PPU.CGADD], IPPU.Green [PPU.CGADD], IPPU.Blue [PPU.CGADD]); } PPU.CGADD++; } else { if (Byte != (uint8) (PPU.CGDATA[PPU.CGADD] & 0xff)) { FLUSH_REDRAW (); PPU.CGDATA[PPU.CGADD] &= 0x7F00; PPU.CGDATA[PPU.CGADD] |= Byte; IPPU.ColorsChanged = TRUE; IPPU.Red [PPU.CGADD] = IPPU.XB [Byte & 0x1f]; IPPU.Green [PPU.CGADD] = IPPU.XB [(PPU.CGDATA[PPU.CGADD] >> 5) & 0x1f]; IPPU.ScreenColors [PPU.CGADD] = (uint16) BUILD_PIXEL (IPPU.Red [PPU.CGADD], IPPU.Green [PPU.CGADD], IPPU.Blue [PPU.CGADD]); } } PPU.CGFLIP ^= 1; // Memory.FillRAM [0x2122] = Byte; } STATIC inline void REGISTER_2180(uint8 Byte) { Memory.RAM[PPU.WRAM++] = Byte; PPU.WRAM &= 0x1FFFF; Memory.FillRAM [0x2180] = Byte; } #endif