/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2018 BearOso, OV2 (c) Copyright 2017 qwertymodo (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) S-SMP emulator code used in 1.54+ (c) Copyright 2016 byuu SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2018 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2018 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Libretro port (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include "snes9x.h" #include "ppu.h" #include "tile.h" #include "controls.h" #include "crosshairs.h" #include "cheats.h" #include "movie.h" #include "screenshot.h" #include "font.h" #include "display.h" extern struct SCheatData Cheat; extern struct SLineData LineData[240]; extern struct SLineMatrixData LineMatrixData[240]; void S9xComputeClipWindows (void); static int font_width = 8, font_height = 9; static void SetupOBJ (void); static void DrawOBJS (int); static void DisplayFrameRate (void); static void DisplayPressedKeys (void); static void DisplayWatchedAddresses (void); static void DisplayStringFromBottom (const char *, int, int, bool); static void DrawBackground (int, uint8, uint8); static void DrawBackgroundMosaic (int, uint8, uint8); static void DrawBackgroundOffset (int, uint8, uint8, int); static void DrawBackgroundOffsetMosaic (int, uint8, uint8, int); static inline void DrawBackgroundMode7 (int, void (*DrawMath) (uint32, uint32, int), void (*DrawNomath) (uint32, uint32, int), int); static inline void DrawBackdrop (void); static inline void RenderScreen (bool8); static uint16 get_crosshair_color (uint8); #define TILE_PLUS(t, x) (((t) & 0xfc00) | ((t + x) & 0x3ff)) bool8 S9xGraphicsInit (void) { S9xInitTileRenderer(); memset(BlackColourMap, 0, 256 * sizeof(uint16)); #ifdef GFX_MULTI_FORMAT if (GFX.BuildPixel == NULL) S9xSetRenderPixelFormat(RGB565); #endif GFX.DoInterlace = 0; GFX.InterlaceFrame = 0; GFX.RealPPL = GFX.Pitch >> 1; IPPU.OBJChanged = TRUE; Settings.BG_Forced = 0; S9xFixColourBrightness(); S9xBuildDirectColourMaps(); GFX.X2 = (uint16 *) malloc(sizeof(uint16) * 0x10000); GFX.ZERO = (uint16 *) malloc(sizeof(uint16) * 0x10000); GFX.ScreenSize = GFX.Pitch / 2 * SNES_HEIGHT_EXTENDED * (Settings.SupportHiRes ? 2 : 1); GFX.SubScreen = (uint16 *) malloc(GFX.ScreenSize * sizeof(uint16)); GFX.ZBuffer = (uint8 *) malloc(GFX.ScreenSize); GFX.SubZBuffer = (uint8 *) malloc(GFX.ScreenSize); if (!GFX.X2 || !GFX.ZERO || !GFX.SubScreen || !GFX.ZBuffer || !GFX.SubZBuffer) { S9xGraphicsDeinit(); return (FALSE); } // Lookup table for color addition memset(GFX.X2, 0, 0x10000 * sizeof(uint16)); for (uint32 r = 0; r <= MAX_RED; r++) { uint32 r2 = r << 1; if (r2 > MAX_RED) r2 = MAX_RED; for (uint32 g = 0; g <= MAX_GREEN; g++) { uint32 g2 = g << 1; if (g2 > MAX_GREEN) g2 = MAX_GREEN; for (uint32 b = 0; b <= MAX_BLUE; b++) { uint32 b2 = b << 1; if (b2 > MAX_BLUE) b2 = MAX_BLUE; GFX.X2[BUILD_PIXEL2(r, g, b)] = BUILD_PIXEL2(r2, g2, b2); GFX.X2[BUILD_PIXEL2(r, g, b) & ~ALPHA_BITS_MASK] = BUILD_PIXEL2(r2, g2, b2); } } } // Lookup table for 1/2 color subtraction memset(GFX.ZERO, 0, 0x10000 * sizeof(uint16)); for (uint32 r = 0; r <= MAX_RED; r++) { uint32 r2 = r; if (r2 & 0x10) r2 &= ~0x10; else r2 = 0; for (uint32 g = 0; g <= MAX_GREEN; g++) { uint32 g2 = g; if (g2 & GREEN_HI_BIT) g2 &= ~GREEN_HI_BIT; else g2 = 0; for (uint32 b = 0; b <= MAX_BLUE; b++) { uint32 b2 = b; if (b2 & 0x10) b2 &= ~0x10; else b2 = 0; GFX.ZERO[BUILD_PIXEL2(r, g, b)] = BUILD_PIXEL2(r2, g2, b2); GFX.ZERO[BUILD_PIXEL2(r, g, b) & ~ALPHA_BITS_MASK] = BUILD_PIXEL2(r2, g2, b2); } } } return (TRUE); } void S9xGraphicsDeinit (void) { if (GFX.X2) { free(GFX.X2); GFX.X2 = NULL; } if (GFX.ZERO) { free(GFX.ZERO); GFX.ZERO = NULL; } if (GFX.SubScreen) { free(GFX.SubScreen); GFX.SubScreen = NULL; } if (GFX.ZBuffer) { free(GFX.ZBuffer); GFX.ZBuffer = NULL; } if (GFX.SubZBuffer) { free(GFX.SubZBuffer); GFX.SubZBuffer = NULL; } } void S9xBuildDirectColourMaps (void) { IPPU.XB = mul_brightness[PPU.Brightness]; for (uint32 p = 0; p < 8; p++) for (uint32 c = 0; c < 256; c++) DirectColourMaps[p][c] = BUILD_PIXEL(IPPU.XB[((c & 7) << 2) | ((p & 1) << 1)], IPPU.XB[((c & 0x38) >> 1) | (p & 2)], IPPU.XB[((c & 0xc0) >> 3) | (p & 4)]); } void S9xStartScreenRefresh (void) { GFX.InterlaceFrame = !GFX.InterlaceFrame; if (IPPU.RenderThisFrame) { if (!GFX.DoInterlace || !GFX.InterlaceFrame) { if (!S9xInitUpdate()) { IPPU.RenderThisFrame = FALSE; return; } if (GFX.DoInterlace) GFX.DoInterlace--; IPPU.MaxBrightness = PPU.Brightness; IPPU.Interlace = Memory.FillRAM[0x2133] & 1; IPPU.InterlaceOBJ = Memory.FillRAM[0x2133] & 2; IPPU.PseudoHires = Memory.FillRAM[0x2133] & 8; if (Settings.SupportHiRes && (PPU.BGMode == 5 || PPU.BGMode == 6 || IPPU.PseudoHires)) { GFX.RealPPL = GFX.Pitch >> 1; IPPU.DoubleWidthPixels = TRUE; IPPU.RenderedScreenWidth = SNES_WIDTH << 1; } else { #ifdef USE_OPENGL if (Settings.OpenGLEnable) GFX.RealPPL = SNES_WIDTH; else #endif GFX.RealPPL = GFX.Pitch >> 1; IPPU.DoubleWidthPixels = FALSE; IPPU.RenderedScreenWidth = SNES_WIDTH; } if (Settings.SupportHiRes && IPPU.Interlace) { GFX.PPL = GFX.RealPPL << 1; IPPU.DoubleHeightPixels = TRUE; IPPU.RenderedScreenHeight = PPU.ScreenHeight << 1; GFX.DoInterlace++; } else { GFX.PPL = GFX.RealPPL; IPPU.DoubleHeightPixels = FALSE; IPPU.RenderedScreenHeight = PPU.ScreenHeight; } IPPU.RenderedFramesCount++; } PPU.MosaicStart = 0; PPU.RecomputeClipWindows = TRUE; IPPU.PreviousLine = IPPU.CurrentLine = 0; memset(GFX.ZBuffer, 0, GFX.ScreenSize); memset(GFX.SubZBuffer, 0, GFX.ScreenSize); } if (++IPPU.FrameCount % Memory.ROMFramesPerSecond == 0) { IPPU.DisplayedRenderedFrameCount = IPPU.RenderedFramesCount; IPPU.RenderedFramesCount = 0; IPPU.FrameCount = 0; } if (GFX.InfoStringTimeout > 0 && --GFX.InfoStringTimeout == 0) GFX.InfoString = NULL; IPPU.TotalEmulatedFrames++; } void S9xEndScreenRefresh (void) { if (IPPU.RenderThisFrame) { FLUSH_REDRAW(); if (GFX.DoInterlace && GFX.InterlaceFrame == 0) { S9xControlEOF(); S9xContinueUpdate(IPPU.RenderedScreenWidth, IPPU.RenderedScreenHeight); } else { if (IPPU.ColorsChanged) { uint32 saved = PPU.CGDATA[0]; IPPU.ColorsChanged = FALSE; S9xSetPalette(); PPU.CGDATA[0] = saved; } S9xControlEOF(); if (Settings.TakeScreenshot) S9xDoScreenshot(IPPU.RenderedScreenWidth, IPPU.RenderedScreenHeight); if (Settings.AutoDisplayMessages) S9xDisplayMessages(GFX.Screen, GFX.RealPPL, IPPU.RenderedScreenWidth, IPPU.RenderedScreenHeight, 1); S9xDeinitUpdate(IPPU.RenderedScreenWidth, IPPU.RenderedScreenHeight); } } else S9xControlEOF(); S9xApplyCheats(); #ifdef DEBUGGER if (CPU.Flags & FRAME_ADVANCE_FLAG) { if (ICPU.FrameAdvanceCount) { ICPU.FrameAdvanceCount--; IPPU.RenderThisFrame = TRUE; IPPU.FrameSkip = 0; } else { CPU.Flags &= ~FRAME_ADVANCE_FLAG; CPU.Flags |= DEBUG_MODE_FLAG; } } #endif if (CPU.SRAMModified) { if (!CPU.AutoSaveTimer) { if (!(CPU.AutoSaveTimer = Settings.AutoSaveDelay * Memory.ROMFramesPerSecond)) CPU.SRAMModified = FALSE; } else { if (!--CPU.AutoSaveTimer) { S9xAutoSaveSRAM(); CPU.SRAMModified = FALSE; } } } } void RenderLine (uint8 C) { if (IPPU.RenderThisFrame) { LineData[C].BG[0].VOffset = PPU.BG[0].VOffset + 1; LineData[C].BG[0].HOffset = PPU.BG[0].HOffset; LineData[C].BG[1].VOffset = PPU.BG[1].VOffset + 1; LineData[C].BG[1].HOffset = PPU.BG[1].HOffset; if (PPU.BGMode == 7) { struct SLineMatrixData *p = &LineMatrixData[C]; p->MatrixA = PPU.MatrixA; p->MatrixB = PPU.MatrixB; p->MatrixC = PPU.MatrixC; p->MatrixD = PPU.MatrixD; p->CentreX = PPU.CentreX; p->CentreY = PPU.CentreY; p->M7HOFS = PPU.M7HOFS; p->M7VOFS = PPU.M7VOFS; } else { LineData[C].BG[2].VOffset = PPU.BG[2].VOffset + 1; LineData[C].BG[2].HOffset = PPU.BG[2].HOffset; LineData[C].BG[3].VOffset = PPU.BG[3].VOffset + 1; LineData[C].BG[3].HOffset = PPU.BG[3].HOffset; } IPPU.CurrentLine = C + 1; } else { // if we're not rendering this frame, we still need to update this // XXX: Check ForceBlank? Or anything else? if (IPPU.OBJChanged) SetupOBJ(); PPU.RangeTimeOver |= GFX.OBJLines[C].RTOFlags; } } static inline void RenderScreen (bool8 sub) { uint8 BGActive; int D; if (!sub) { GFX.S = GFX.Screen; if (GFX.DoInterlace && GFX.InterlaceFrame) GFX.S += GFX.RealPPL; GFX.DB = GFX.ZBuffer; GFX.Clip = IPPU.Clip[0]; BGActive = Memory.FillRAM[0x212c] & ~Settings.BG_Forced; D = 32; } else { GFX.S = GFX.SubScreen; GFX.DB = GFX.SubZBuffer; GFX.Clip = IPPU.Clip[1]; BGActive = Memory.FillRAM[0x212d] & ~Settings.BG_Forced; D = (Memory.FillRAM[0x2130] & 2) << 4; // 'do math' depth flag } if (BGActive & 0x10) { BG.TileAddress = PPU.OBJNameBase; BG.NameSelect = PPU.OBJNameSelect; BG.EnableMath = !sub && (Memory.FillRAM[0x2131] & 0x10); BG.StartPalette = 128; S9xSelectTileConverter(4, FALSE, sub, FALSE); S9xSelectTileRenderers(PPU.BGMode, sub, TRUE); DrawOBJS(D + 4); } BG.NameSelect = 0; S9xSelectTileRenderers(PPU.BGMode, sub, FALSE); #define DO_BG(n, pal, depth, hires, offset, Zh, Zl, voffoff) \ if (BGActive & (1 << n)) \ { \ BG.StartPalette = pal; \ BG.EnableMath = !sub && (Memory.FillRAM[0x2131] & (1 << n)); \ BG.TileSizeH = (!hires && PPU.BG[n].BGSize) ? 16 : 8; \ BG.TileSizeV = (PPU.BG[n].BGSize) ? 16 : 8; \ S9xSelectTileConverter(depth, hires, sub, PPU.BGMosaic[n]); \ \ if (offset) \ { \ BG.OffsetSizeH = (!hires && PPU.BG[2].BGSize) ? 16 : 8; \ BG.OffsetSizeV = (PPU.BG[2].BGSize) ? 16 : 8; \ \ if (PPU.BGMosaic[n] && (hires || PPU.Mosaic > 1)) \ DrawBackgroundOffsetMosaic(n, D + Zh, D + Zl, voffoff); \ else \ DrawBackgroundOffset(n, D + Zh, D + Zl, voffoff); \ } \ else \ { \ if (PPU.BGMosaic[n] && (hires || PPU.Mosaic > 1)) \ DrawBackgroundMosaic(n, D + Zh, D + Zl); \ else \ DrawBackground(n, D + Zh, D + Zl); \ } \ } switch (PPU.BGMode) { case 0: DO_BG(0, 0, 2, FALSE, FALSE, 15, 11, 0); DO_BG(1, 32, 2, FALSE, FALSE, 14, 10, 0); DO_BG(2, 64, 2, FALSE, FALSE, 7, 3, 0); DO_BG(3, 96, 2, FALSE, FALSE, 6, 2, 0); break; case 1: DO_BG(0, 0, 4, FALSE, FALSE, 15, 11, 0); DO_BG(1, 0, 4, FALSE, FALSE, 14, 10, 0); DO_BG(2, 0, 2, FALSE, FALSE, (PPU.BG3Priority ? 17 : 7), 3, 0); break; case 2: DO_BG(0, 0, 4, FALSE, TRUE, 15, 7, 8); DO_BG(1, 0, 4, FALSE, TRUE, 11, 3, 8); break; case 3: DO_BG(0, 0, 8, FALSE, FALSE, 15, 7, 0); DO_BG(1, 0, 4, FALSE, FALSE, 11, 3, 0); break; case 4: DO_BG(0, 0, 8, FALSE, TRUE, 15, 7, 0); DO_BG(1, 0, 2, FALSE, TRUE, 11, 3, 0); break; case 5: DO_BG(0, 0, 4, TRUE, FALSE, 15, 7, 0); DO_BG(1, 0, 2, TRUE, FALSE, 11, 3, 0); break; case 6: DO_BG(0, 0, 4, TRUE, TRUE, 15, 7, 8); break; case 7: if (BGActive & 0x01) { BG.EnableMath = !sub && (Memory.FillRAM[0x2131] & 1); DrawBackgroundMode7(0, GFX.DrawMode7BG1Math, GFX.DrawMode7BG1Nomath, D); } if ((Memory.FillRAM[0x2133] & 0x40) && (BGActive & 0x02)) { BG.EnableMath = !sub && (Memory.FillRAM[0x2131] & 2); DrawBackgroundMode7(1, GFX.DrawMode7BG2Math, GFX.DrawMode7BG2Nomath, D); } break; } #undef DO_BG BG.EnableMath = !sub && (Memory.FillRAM[0x2131] & 0x20); DrawBackdrop(); } void S9xUpdateScreen (void) { if (IPPU.OBJChanged || IPPU.InterlaceOBJ) SetupOBJ(); // XXX: Check ForceBlank? Or anything else? PPU.RangeTimeOver |= GFX.OBJLines[GFX.EndY].RTOFlags; GFX.StartY = IPPU.PreviousLine; if ((GFX.EndY = IPPU.CurrentLine - 1) >= PPU.ScreenHeight) GFX.EndY = PPU.ScreenHeight - 1; if (!PPU.ForcedBlanking) { // If force blank, may as well completely skip all this. We only did // the OBJ because (AFAWK) the RTO flags are updated even during force-blank. if (PPU.RecomputeClipWindows) { S9xComputeClipWindows(); PPU.RecomputeClipWindows = FALSE; } if (Settings.SupportHiRes) { if (!IPPU.DoubleWidthPixels && (PPU.BGMode == 5 || PPU.BGMode == 6 || IPPU.PseudoHires)) { #ifdef USE_OPENGL if (Settings.OpenGLEnable && GFX.RealPPL == 256) { // Have to back out of the speed up hack where the low res. // SNES image was rendered into a 256x239 sized buffer, // ignoring the true, larger size of the buffer. GFX.RealPPL = GFX.Pitch >> 1; for (register int32 y = (int32) GFX.StartY - 1; y >= 0; y--) { register uint16 *p = GFX.Screen + y * GFX.PPL + 255; register uint16 *q = GFX.Screen + y * GFX.RealPPL + 510; for (register int x = 255; x >= 0; x--, p--, q -= 2) *q = *(q + 1) = *p; } GFX.PPL = GFX.RealPPL; // = GFX.Pitch >> 1 above } else #endif // Have to back out of the regular speed hack for (register uint32 y = 0; y < GFX.StartY; y++) { register uint16 *p = GFX.Screen + y * GFX.PPL + 255; register uint16 *q = GFX.Screen + y * GFX.PPL + 510; for (register int x = 255; x >= 0; x--, p--, q -= 2) *q = *(q + 1) = *p; } IPPU.DoubleWidthPixels = TRUE; IPPU.RenderedScreenWidth = 512; } if (!IPPU.DoubleHeightPixels && IPPU.Interlace && (PPU.BGMode == 5 || PPU.BGMode == 6)) { IPPU.DoubleHeightPixels = TRUE; IPPU.RenderedScreenHeight = PPU.ScreenHeight << 1; GFX.PPL = GFX.RealPPL << 1; GFX.DoInterlace = 2; for (register int32 y = (int32) GFX.StartY - 2; y >= 0; y--) memmove(GFX.Screen + (y + 1) * GFX.PPL, GFX.Screen + y * GFX.RealPPL, GFX.PPL * sizeof(uint16)); } } if ((Memory.FillRAM[0x2130] & 0x30) != 0x30 && (Memory.FillRAM[0x2131] & 0x3f)) GFX.FixedColour = BUILD_PIXEL(IPPU.XB[PPU.FixedColourRed], IPPU.XB[PPU.FixedColourGreen], IPPU.XB[PPU.FixedColourBlue]); if (PPU.BGMode == 5 || PPU.BGMode == 6 || IPPU.PseudoHires || ((Memory.FillRAM[0x2130] & 0x30) != 0x30 && (Memory.FillRAM[0x2130] & 2) && (Memory.FillRAM[0x2131] & 0x3f) && (Memory.FillRAM[0x212d] & 0x1f))) // If hires (Mode 5/6 or pseudo-hires) or math is to be done // involving the subscreen, then we need to render the subscreen... RenderScreen(TRUE); RenderScreen(FALSE); } else { const uint16 black = BUILD_PIXEL(0, 0, 0); GFX.S = GFX.Screen + GFX.StartY * GFX.PPL; if (GFX.DoInterlace && GFX.InterlaceFrame) GFX.S += GFX.RealPPL; for (uint32 l = GFX.StartY; l <= GFX.EndY; l++, GFX.S += GFX.PPL) for (int x = 0; x < IPPU.RenderedScreenWidth; x++) GFX.S[x] = black; } IPPU.PreviousLine = IPPU.CurrentLine; } static void SetupOBJ (void) { int SmallWidth, SmallHeight, LargeWidth, LargeHeight; switch (PPU.OBJSizeSelect) { case 0: SmallWidth = SmallHeight = 8; LargeWidth = LargeHeight = 16; break; case 1: SmallWidth = SmallHeight = 8; LargeWidth = LargeHeight = 32; break; case 2: SmallWidth = SmallHeight = 8; LargeWidth = LargeHeight = 64; break; case 3: SmallWidth = SmallHeight = 16; LargeWidth = LargeHeight = 32; break; case 4: SmallWidth = SmallHeight = 16; LargeWidth = LargeHeight = 64; break; case 5: default: SmallWidth = SmallHeight = 32; LargeWidth = LargeHeight = 64; break; case 6: SmallWidth = 16; SmallHeight = 32; LargeWidth = 32; LargeHeight = 64; break; case 7: SmallWidth = 16; SmallHeight = 32; LargeWidth = LargeHeight = 32; break; } int inc = IPPU.InterlaceOBJ ? 2 : 1; int startline = (IPPU.InterlaceOBJ && GFX.InterlaceFrame) ? 1 : 0; // OK, we have three cases here. Either there's no priority, priority is // normal FirstSprite, or priority is FirstSprite+Y. The first two are // easy, the last is somewhat more ... interesting. So we split them up. int Height; uint8 S; if (!PPU.OAMPriorityRotation || !(PPU.OAMFlip & PPU.OAMAddr & 1)) // normal case { uint8 LineOBJ[SNES_HEIGHT_EXTENDED]; memset(LineOBJ, 0, sizeof(LineOBJ)); for (int i = 0; i < SNES_HEIGHT_EXTENDED; i++) { GFX.OBJLines[i].RTOFlags = 0; GFX.OBJLines[i].Tiles = Settings.MaxSpriteTilesPerLine; for (int j = 0; j < 32; j++) GFX.OBJLines[i].OBJ[j].Sprite = -1; } uint8 FirstSprite = PPU.FirstSprite; S = FirstSprite; do { if (PPU.OBJ[S].Size) { GFX.OBJWidths[S] = LargeWidth; Height = LargeHeight; } else { GFX.OBJWidths[S] = SmallWidth; Height = SmallHeight; } int HPos = PPU.OBJ[S].HPos; if (HPos == -256) HPos = 0; if (HPos > -GFX.OBJWidths[S] && HPos <= 256) { if (HPos < 0) GFX.OBJVisibleTiles[S] = (GFX.OBJWidths[S] + HPos + 7) >> 3; else if (HPos + GFX.OBJWidths[S] > 255) GFX.OBJVisibleTiles[S] = (256 - HPos + 7) >> 3; else GFX.OBJVisibleTiles[S] = GFX.OBJWidths[S] >> 3; for (uint8 line = startline, Y = (uint8) (PPU.OBJ[S].VPos & 0xff); line < Height; Y++, line += inc) { if (Y >= SNES_HEIGHT_EXTENDED) continue; if (LineOBJ[Y] >= 32) { GFX.OBJLines[Y].RTOFlags |= 0x40; continue; } GFX.OBJLines[Y].Tiles -= GFX.OBJVisibleTiles[S]; if (GFX.OBJLines[Y].Tiles < 0) GFX.OBJLines[Y].RTOFlags |= 0x80; GFX.OBJLines[Y].OBJ[LineOBJ[Y]].Sprite = S; if (PPU.OBJ[S].VFlip) // Yes, Width not Height. It so happens that the // sprites with H=2*W flip as two WxW sprites. GFX.OBJLines[Y].OBJ[LineOBJ[Y]].Line = line ^ (GFX.OBJWidths[S] - 1); else GFX.OBJLines[Y].OBJ[LineOBJ[Y]].Line = line; LineOBJ[Y]++; } } S = (S + 1) & 0x7f; } while (S != FirstSprite); for (int Y = 1; Y < SNES_HEIGHT_EXTENDED; Y++) GFX.OBJLines[Y].RTOFlags |= GFX.OBJLines[Y - 1].RTOFlags; } else // evil FirstSprite+Y case { // First, find out which sprites are on which lines uint8 OBJOnLine[SNES_HEIGHT_EXTENDED][128]; // memset(OBJOnLine, 0, sizeof(OBJOnLine)); /* Hold on here, that's a lot of bytes to initialise at once! * So we only initialise them per line, as needed. [Neb] * Bonus: We can quickly avoid looping if a line has no OBJs. */ bool8 AnyOBJOnLine[SNES_HEIGHT_EXTENDED]; memset(AnyOBJOnLine, FALSE, sizeof(AnyOBJOnLine)); // better for (S = 0; S < 128; S++) { if (PPU.OBJ[S].Size) { GFX.OBJWidths[S] = LargeWidth; Height = LargeHeight; } else { GFX.OBJWidths[S] = SmallWidth; Height = SmallHeight; } int HPos = PPU.OBJ[S].HPos; if (HPos == -256) HPos = 256; if (HPos > -GFX.OBJWidths[S] && HPos <= 256) { if (HPos < 0) GFX.OBJVisibleTiles[S] = (GFX.OBJWidths[S] + HPos + 7) >> 3; else if (HPos + GFX.OBJWidths[S] >= 257) GFX.OBJVisibleTiles[S] = (257 - HPos + 7) >> 3; else GFX.OBJVisibleTiles[S] = GFX.OBJWidths[S] >> 3; for (uint8 line = startline, Y = (uint8) (PPU.OBJ[S].VPos & 0xff); line < Height; Y++, line += inc) { if (Y >= SNES_HEIGHT_EXTENDED) continue; if (!AnyOBJOnLine[Y]) { memset(OBJOnLine[Y], 0, sizeof(OBJOnLine[Y])); AnyOBJOnLine[Y] = TRUE; } if (PPU.OBJ[S].VFlip) // Yes, Width not Height. It so happens that the // sprites with H=2*W flip as two WxW sprites. OBJOnLine[Y][S] = (line ^ (GFX.OBJWidths[S] - 1)) | 0x80; else OBJOnLine[Y][S] = line | 0x80; } } } // Now go through and pull out those OBJ that are actually visible. int j; for (int Y = 0; Y < SNES_HEIGHT_EXTENDED; Y++) { GFX.OBJLines[Y].RTOFlags = Y ? GFX.OBJLines[Y - 1].RTOFlags : 0; GFX.OBJLines[Y].Tiles = Settings.MaxSpriteTilesPerLine; uint8 FirstSprite = (PPU.FirstSprite + Y) & 0x7f; S = FirstSprite; j = 0; if (AnyOBJOnLine[Y]) { do { if (OBJOnLine[Y][S]) { if (j >= 32) { GFX.OBJLines[Y].RTOFlags |= 0x40; break; } GFX.OBJLines[Y].Tiles -= GFX.OBJVisibleTiles[S]; if (GFX.OBJLines[Y].Tiles < 0) GFX.OBJLines[Y].RTOFlags |= 0x80; GFX.OBJLines[Y].OBJ[j].Sprite = S; GFX.OBJLines[Y].OBJ[j++].Line = OBJOnLine[Y][S] & ~0x80; } S = (S + 1) & 0x7f; } while (S != FirstSprite); } if (j < 32) GFX.OBJLines[Y].OBJ[j].Sprite = -1; } } IPPU.OBJChanged = FALSE; } #pragma GCC push_options #pragma GCC optimize ("no-tree-vrp") static void DrawOBJS (int D) { void (*DrawTile) (uint32, uint32, uint32, uint32) = NULL; void (*DrawClippedTile) (uint32, uint32, uint32, uint32, uint32, uint32) = NULL; int PixWidth = IPPU.DoubleWidthPixels ? 2 : 1; BG.InterlaceLine = GFX.InterlaceFrame ? 8 : 0; GFX.Z1 = 2; for (uint32 Y = GFX.StartY, Offset = Y * GFX.PPL; Y <= GFX.EndY; Y++, Offset += GFX.PPL) { int I = 0; int tiles = GFX.OBJLines[Y].Tiles; for (int S = GFX.OBJLines[Y].OBJ[I].Sprite; S >= 0 && I < 32; S = GFX.OBJLines[Y].OBJ[++I].Sprite) { tiles += GFX.OBJVisibleTiles[S]; if (tiles <= 0) continue; int BaseTile = (((GFX.OBJLines[Y].OBJ[I].Line << 1) + (PPU.OBJ[S].Name & 0xf0)) & 0xf0) | (PPU.OBJ[S].Name & 0x100) | (PPU.OBJ[S].Palette << 10); int TileX = PPU.OBJ[S].Name & 0x0f; int TileLine = (GFX.OBJLines[Y].OBJ[I].Line & 7) * 8; int TileInc = 1; if (PPU.OBJ[S].HFlip) { TileX = (TileX + (GFX.OBJWidths[S] >> 3) - 1) & 0x0f; BaseTile |= H_FLIP; TileInc = -1; } GFX.Z2 = D + PPU.OBJ[S].Priority * 4; int DrawMode = 3; int clip = 0, next_clip = -1000; int X = PPU.OBJ[S].HPos; if (X == -256) X = 256; for (int t = tiles, O = Offset + X * PixWidth; X <= 256 && X < PPU.OBJ[S].HPos + GFX.OBJWidths[S]; TileX = (TileX + TileInc) & 0x0f, X += 8, O += 8 * PixWidth) { if (X < -7 || --t < 0 || X == 256) continue; for (int x = X; x < X + 8;) { if (x >= next_clip) { for (; clip < GFX.Clip[4].Count && GFX.Clip[4].Left[clip] <= x; clip++) ; if (clip == 0 || x >= GFX.Clip[4].Right[clip - 1]) { DrawMode = 0; next_clip = ((clip < GFX.Clip[4].Count) ? GFX.Clip[4].Left[clip] : 1000); } else { DrawMode = GFX.Clip[4].DrawMode[clip - 1]; next_clip = GFX.Clip[4].Right[clip - 1]; GFX.ClipColors = !(DrawMode & 1); if (BG.EnableMath && (PPU.OBJ[S].Palette & 4) && (DrawMode & 2)) { DrawTile = GFX.DrawTileMath; DrawClippedTile = GFX.DrawClippedTileMath; } else { DrawTile = GFX.DrawTileNomath; DrawClippedTile = GFX.DrawClippedTileNomath; } } } if (x == X && x + 8 < next_clip) { if (DrawMode) DrawTile(BaseTile | TileX, O, TileLine, 1); x += 8; } else { int w = (next_clip <= X + 8) ? next_clip - x : X + 8 - x; if (DrawMode) DrawClippedTile(BaseTile | TileX, O, x - X, w, TileLine, 1); x += w; } } } } } } #pragma GCC pop_options static void DrawBackground (int bg, uint8 Zh, uint8 Zl) { BG.TileAddress = PPU.BG[bg].NameBase << 1; uint32 Tile; uint16 *SC0, *SC1, *SC2, *SC3; SC0 = (uint16 *) &Memory.VRAM[PPU.BG[bg].SCBase << 1]; SC1 = (PPU.BG[bg].SCSize & 1) ? SC0 + 1024 : SC0; if (SC1 >= (uint16 *) (Memory.VRAM + 0x10000)) SC1 -= 0x8000; SC2 = (PPU.BG[bg].SCSize & 2) ? SC1 + 1024 : SC0; if (SC2 >= (uint16 *) (Memory.VRAM + 0x10000)) SC2 -= 0x8000; SC3 = (PPU.BG[bg].SCSize & 1) ? SC2 + 1024 : SC2; if (SC3 >= (uint16 *) (Memory.VRAM + 0x10000)) SC3 -= 0x8000; uint32 Lines; int OffsetMask = (BG.TileSizeH == 16) ? 0x3ff : 0x1ff; int OffsetShift = (BG.TileSizeV == 16) ? 4 : 3; int PixWidth = IPPU.DoubleWidthPixels ? 2 : 1; bool8 HiresInterlace = IPPU.Interlace && IPPU.DoubleWidthPixels; void (*DrawTile) (uint32, uint32, uint32, uint32); void (*DrawClippedTile) (uint32, uint32, uint32, uint32, uint32, uint32); for (int clip = 0; clip < GFX.Clip[bg].Count; clip++) { GFX.ClipColors = !(GFX.Clip[bg].DrawMode[clip] & 1); if (BG.EnableMath && (GFX.Clip[bg].DrawMode[clip] & 2)) { DrawTile = GFX.DrawTileMath; DrawClippedTile = GFX.DrawClippedTileMath; } else { DrawTile = GFX.DrawTileNomath; DrawClippedTile = GFX.DrawClippedTileNomath; } for (uint32 Y = GFX.StartY; Y <= GFX.EndY; Y += Lines) { uint32 Y2 = HiresInterlace ? Y * 2 + GFX.InterlaceFrame : Y; uint32 VOffset = LineData[Y].BG[bg].VOffset + (HiresInterlace ? 1 : 0); uint32 HOffset = LineData[Y].BG[bg].HOffset; int VirtAlign = ((Y2 + VOffset) & 7) >> (HiresInterlace ? 1 : 0); for (Lines = 1; Lines < GFX.LinesPerTile - VirtAlign; Lines++) { if ((VOffset != LineData[Y + Lines].BG[bg].VOffset) || (HOffset != LineData[Y + Lines].BG[bg].HOffset)) break; } if (Y + Lines > GFX.EndY) Lines = GFX.EndY - Y + 1; VirtAlign <<= 3; uint32 t1, t2; uint32 TilemapRow = (VOffset + Y2) >> OffsetShift; BG.InterlaceLine = ((VOffset + Y2) & 1) << 3; if ((VOffset + Y2) & 8) { t1 = 16; t2 = 0; } else { t1 = 0; t2 = 16; } uint16 *b1, *b2; if (TilemapRow & 0x20) { b1 = SC2; b2 = SC3; } else { b1 = SC0; b2 = SC1; } b1 += (TilemapRow & 0x1f) << 5; b2 += (TilemapRow & 0x1f) << 5; uint32 Left = GFX.Clip[bg].Left[clip]; uint32 Right = GFX.Clip[bg].Right[clip]; uint32 Offset = Left * PixWidth + Y * GFX.PPL; uint32 HPos = (HOffset + Left) & OffsetMask; uint32 HTile = HPos >> 3; uint16 *t; if (BG.TileSizeH == 8) { if (HTile > 31) t = b2 + (HTile & 0x1f); else t = b1 + HTile; } else { if (HTile > 63) t = b2 + ((HTile >> 1) & 0x1f); else t = b1 + (HTile >> 1); } uint32 Width = Right - Left; if (HPos & 7) { uint32 l = HPos & 7; uint32 w = 8 - l; if (w > Width) w = Width; Offset -= l * PixWidth; Tile = READ_WORD(t); GFX.Z1 = GFX.Z2 = (Tile & 0x2000) ? Zh : Zl; if (BG.TileSizeV == 16) Tile = TILE_PLUS(Tile, ((Tile & V_FLIP) ? t2 : t1)); if (BG.TileSizeH == 8) { DrawClippedTile(Tile, Offset, l, w, VirtAlign, Lines); t++; if (HTile == 31) t = b2; else if (HTile == 63) t = b1; } else { if (!(Tile & H_FLIP)) DrawClippedTile(TILE_PLUS(Tile, (HTile & 1)), Offset, l, w, VirtAlign, Lines); else DrawClippedTile(TILE_PLUS(Tile, 1 - (HTile & 1)), Offset, l, w, VirtAlign, Lines); t += HTile & 1; if (HTile == 63) t = b2; else if (HTile == 127) t = b1; } HTile++; Offset += 8 * PixWidth; Width -= w; } while (Width >= 8) { Tile = READ_WORD(t); GFX.Z1 = GFX.Z2 = (Tile & 0x2000) ? Zh : Zl; if (BG.TileSizeV == 16) Tile = TILE_PLUS(Tile, ((Tile & V_FLIP) ? t2 : t1)); if (BG.TileSizeH == 8) { DrawTile(Tile, Offset, VirtAlign, Lines); t++; if (HTile == 31) t = b2; else if (HTile == 63) t = b1; } else { if (!(Tile & H_FLIP)) DrawTile(TILE_PLUS(Tile, (HTile & 1)), Offset, VirtAlign, Lines); else DrawTile(TILE_PLUS(Tile, 1 - (HTile & 1)), Offset, VirtAlign, Lines); t += HTile & 1; if (HTile == 63) t = b2; else if (HTile == 127) t = b1; } HTile++; Offset += 8 * PixWidth; Width -= 8; } if (Width) { Tile = READ_WORD(t); GFX.Z1 = GFX.Z2 = (Tile & 0x2000) ? Zh : Zl; if (BG.TileSizeV == 16) Tile = TILE_PLUS(Tile, ((Tile & V_FLIP) ? t2 : t1)); if (BG.TileSizeH == 8) DrawClippedTile(Tile, Offset, 0, Width, VirtAlign, Lines); else { if (!(Tile & H_FLIP)) DrawClippedTile(TILE_PLUS(Tile, (HTile & 1)), Offset, 0, Width, VirtAlign, Lines); else DrawClippedTile(TILE_PLUS(Tile, 1 - (HTile & 1)), Offset, 0, Width, VirtAlign, Lines); } } } } } static void DrawBackgroundMosaic (int bg, uint8 Zh, uint8 Zl) { BG.TileAddress = PPU.BG[bg].NameBase << 1; uint32 Tile; uint16 *SC0, *SC1, *SC2, *SC3; SC0 = (uint16 *) &Memory.VRAM[PPU.BG[bg].SCBase << 1]; SC1 = (PPU.BG[bg].SCSize & 1) ? SC0 + 1024 : SC0; if (SC1 >= (uint16 *) (Memory.VRAM + 0x10000)) SC1 -= 0x8000; SC2 = (PPU.BG[bg].SCSize & 2) ? SC1 + 1024 : SC0; if (SC2 >= (uint16 *) (Memory.VRAM + 0x10000)) SC2 -= 0x8000; SC3 = (PPU.BG[bg].SCSize & 1) ? SC2 + 1024 : SC2; if (SC3 >= (uint16 *) (Memory.VRAM + 0x10000)) SC3 -= 0x8000; int Lines; int OffsetMask = (BG.TileSizeH == 16) ? 0x3ff : 0x1ff; int OffsetShift = (BG.TileSizeV == 16) ? 4 : 3; int PixWidth = IPPU.DoubleWidthPixels ? 2 : 1; bool8 HiresInterlace = IPPU.Interlace && IPPU.DoubleWidthPixels; void (*DrawPix) (uint32, uint32, uint32, uint32, uint32, uint32); int MosaicStart = ((uint32) GFX.StartY - PPU.MosaicStart) % PPU.Mosaic; for (int clip = 0; clip < GFX.Clip[bg].Count; clip++) { GFX.ClipColors = !(GFX.Clip[bg].DrawMode[clip] & 1); if (BG.EnableMath && (GFX.Clip[bg].DrawMode[clip] & 2)) DrawPix = GFX.DrawMosaicPixelMath; else DrawPix = GFX.DrawMosaicPixelNomath; for (uint32 Y = GFX.StartY - MosaicStart; Y <= GFX.EndY; Y += PPU.Mosaic) { uint32 Y2 = HiresInterlace ? Y * 2 : Y; uint32 VOffset = LineData[Y + MosaicStart].BG[bg].VOffset + (HiresInterlace ? 1 : 0); uint32 HOffset = LineData[Y + MosaicStart].BG[bg].HOffset; Lines = PPU.Mosaic - MosaicStart; if (Y + MosaicStart + Lines > GFX.EndY) Lines = GFX.EndY - Y - MosaicStart + 1; int VirtAlign = (((Y2 + VOffset) & 7) >> (HiresInterlace ? 1 : 0)) << 3; uint32 t1, t2; uint32 TilemapRow = (VOffset + Y2) >> OffsetShift; BG.InterlaceLine = ((VOffset + Y2) & 1) << 3; if ((VOffset + Y2) & 8) { t1 = 16; t2 = 0; } else { t1 = 0; t2 = 16; } uint16 *b1, *b2; if (TilemapRow & 0x20) { b1 = SC2; b2 = SC3; } else { b1 = SC0; b2 = SC1; } b1 += (TilemapRow & 0x1f) << 5; b2 += (TilemapRow & 0x1f) << 5; uint32 Left = GFX.Clip[bg].Left[clip]; uint32 Right = GFX.Clip[bg].Right[clip]; uint32 Offset = Left * PixWidth + (Y + MosaicStart) * GFX.PPL; uint32 HPos = (HOffset + Left - (Left % PPU.Mosaic)) & OffsetMask; uint32 HTile = HPos >> 3; uint16 *t; if (BG.TileSizeH == 8) { if (HTile > 31) t = b2 + (HTile & 0x1f); else t = b1 + HTile; } else { if (HTile > 63) t = b2 + ((HTile >> 1) & 0x1f); else t = b1 + (HTile >> 1); } uint32 Width = Right - Left; HPos &= 7; while (Left < Right) { uint32 w = PPU.Mosaic - (Left % PPU.Mosaic); if (w > Width) w = Width; Tile = READ_WORD(t); GFX.Z1 = GFX.Z2 = (Tile & 0x2000) ? Zh : Zl; if (BG.TileSizeV == 16) Tile = TILE_PLUS(Tile, ((Tile & V_FLIP) ? t2 : t1)); if (BG.TileSizeH == 8) DrawPix(Tile, Offset, VirtAlign, HPos & 7, w, Lines); else { if (!(Tile & H_FLIP)) DrawPix(TILE_PLUS(Tile, (HTile & 1)), Offset, VirtAlign, HPos & 7, w, Lines); else DrawPix(TILE_PLUS(Tile, 1 - (HTile & 1)), Offset, VirtAlign, HPos & 7, w, Lines); } HPos += PPU.Mosaic; while (HPos >= 8) { HPos -= 8; if (BG.TileSizeH == 8) { t++; if (HTile == 31) t = b2; else if (HTile == 63) t = b1; } else { t += HTile & 1; if (HTile == 63) t = b2; else if (HTile == 127) t = b1; } HTile++; } Offset += w * PixWidth; Width -= w; Left += w; } MosaicStart = 0; } } } static void DrawBackgroundOffset (int bg, uint8 Zh, uint8 Zl, int VOffOff) { BG.TileAddress = PPU.BG[bg].NameBase << 1; uint32 Tile; uint16 *SC0, *SC1, *SC2, *SC3; uint16 *BPS0, *BPS1, *BPS2, *BPS3; BPS0 = (uint16 *) &Memory.VRAM[PPU.BG[2].SCBase << 1]; BPS1 = (PPU.BG[2].SCSize & 1) ? BPS0 + 1024 : BPS0; if (BPS1 >= (uint16 *) (Memory.VRAM + 0x10000)) BPS1 -= 0x8000; BPS2 = (PPU.BG[2].SCSize & 2) ? BPS1 + 1024 : BPS0; if (BPS2 >= (uint16 *) (Memory.VRAM + 0x10000)) BPS2 -= 0x8000; BPS3 = (PPU.BG[2].SCSize & 1) ? BPS2 + 1024 : BPS2; if (BPS3 >= (uint16 *) (Memory.VRAM + 0x10000)) BPS3 -= 0x8000; SC0 = (uint16 *) &Memory.VRAM[PPU.BG[bg].SCBase << 1]; SC1 = (PPU.BG[bg].SCSize & 1) ? SC0 + 1024 : SC0; if (SC1 >= (uint16 *) (Memory.VRAM + 0x10000)) SC1 -= 0x8000; SC2 = (PPU.BG[bg].SCSize & 2) ? SC1 + 1024 : SC0; if (SC2 >= (uint16 *) (Memory.VRAM + 0x10000)) SC2 -= 0x8000; SC3 = (PPU.BG[bg].SCSize & 1) ? SC2 + 1024 : SC2; if (SC3 >= (uint16 *) (Memory.VRAM + 0x10000)) SC3 -= 0x8000; int OffsetMask = (BG.TileSizeH == 16) ? 0x3ff : 0x1ff; int OffsetShift = (BG.TileSizeV == 16) ? 4 : 3; int Offset2Mask = (BG.OffsetSizeH == 16) ? 0x3ff : 0x1ff; int Offset2Shift = (BG.OffsetSizeV == 16) ? 4 : 3; int OffsetEnableMask = 0x2000 << bg; int PixWidth = IPPU.DoubleWidthPixels ? 2 : 1; bool8 HiresInterlace = IPPU.Interlace && IPPU.DoubleWidthPixels; void (*DrawClippedTile) (uint32, uint32, uint32, uint32, uint32, uint32); for (int clip = 0; clip < GFX.Clip[bg].Count; clip++) { GFX.ClipColors = !(GFX.Clip[bg].DrawMode[clip] & 1); if (BG.EnableMath && (GFX.Clip[bg].DrawMode[clip] & 2)) { DrawClippedTile = GFX.DrawClippedTileMath; } else { DrawClippedTile = GFX.DrawClippedTileNomath; } for (uint32 Y = GFX.StartY; Y <= GFX.EndY; Y++) { uint32 Y2 = HiresInterlace ? Y * 2 + GFX.InterlaceFrame : Y; uint32 VOff = LineData[Y].BG[2].VOffset - 1; uint32 HOff = LineData[Y].BG[2].HOffset; uint32 HOffsetRow = VOff >> Offset2Shift; uint32 VOffsetRow = (VOff + VOffOff) >> Offset2Shift; uint16 *s, *s1, *s2; if (HOffsetRow & 0x20) { s1 = BPS2; s2 = BPS3; } else { s1 = BPS0; s2 = BPS1; } s1 += (HOffsetRow & 0x1f) << 5; s2 += (HOffsetRow & 0x1f) << 5; s = ((VOffsetRow & 0x20) ? BPS2 : BPS0) + ((VOffsetRow & 0x1f) << 5); int32 VOffsetOffset = s - s1; uint32 Left = GFX.Clip[bg].Left[clip]; uint32 Right = GFX.Clip[bg].Right[clip]; uint32 Offset = Left * PixWidth + Y * GFX.PPL; uint32 HScroll = LineData[Y].BG[bg].HOffset; bool8 left_edge = (Left < (8 - (HScroll & 7))); uint32 Width = Right - Left; while (Left < Right) { uint32 VOffset, HOffset; if (left_edge) { // SNES cannot do OPT for leftmost tile column VOffset = LineData[Y].BG[bg].VOffset; HOffset = HScroll; left_edge = FALSE; } else { int HOffTile = ((HOff + Left - 1) & Offset2Mask) >> 3; if (BG.OffsetSizeH == 8) { if (HOffTile > 31) s = s2 + (HOffTile & 0x1f); else s = s1 + HOffTile; } else { if (HOffTile > 63) s = s2 + ((HOffTile >> 1) & 0x1f); else s = s1 + (HOffTile >> 1); } uint16 HCellOffset = READ_WORD(s); uint16 VCellOffset; if (VOffOff) VCellOffset = READ_WORD(s + VOffsetOffset); else { if (HCellOffset & 0x8000) { VCellOffset = HCellOffset; HCellOffset = 0; } else VCellOffset = 0; } if (VCellOffset & OffsetEnableMask) VOffset = VCellOffset + 1; else VOffset = LineData[Y].BG[bg].VOffset; if (HCellOffset & OffsetEnableMask) HOffset = (HCellOffset & ~7) | (HScroll & 7); else HOffset = HScroll; } if (HiresInterlace) VOffset++; uint32 t1, t2; int VirtAlign = (((Y2 + VOffset) & 7) >> (HiresInterlace ? 1 : 0)) << 3; int TilemapRow = (VOffset + Y2) >> OffsetShift; BG.InterlaceLine = ((VOffset + Y2) & 1) << 3; if ((VOffset + Y2) & 8) { t1 = 16; t2 = 0; } else { t1 = 0; t2 = 16; } uint16 *b1, *b2; if (TilemapRow & 0x20) { b1 = SC2; b2 = SC3; } else { b1 = SC0; b2 = SC1; } b1 += (TilemapRow & 0x1f) << 5; b2 += (TilemapRow & 0x1f) << 5; uint32 HPos = (HOffset + Left) & OffsetMask; uint32 HTile = HPos >> 3; uint16 *t; if (BG.TileSizeH == 8) { if (HTile > 31) t = b2 + (HTile & 0x1f); else t = b1 + HTile; } else { if (HTile > 63) t = b2 + ((HTile >> 1) & 0x1f); else t = b1 + (HTile >> 1); } uint32 l = HPos & 7; uint32 w = 8 - l; if (w > Width) w = Width; Offset -= l * PixWidth; Tile = READ_WORD(t); GFX.Z1 = GFX.Z2 = (Tile & 0x2000) ? Zh : Zl; if (BG.TileSizeV == 16) Tile = TILE_PLUS(Tile, ((Tile & V_FLIP) ? t2 : t1)); if (BG.TileSizeH == 8) { DrawClippedTile(Tile, Offset, l, w, VirtAlign, 1); } else { if (!(Tile & H_FLIP)) DrawClippedTile(TILE_PLUS(Tile, (HTile & 1)), Offset, l, w, VirtAlign, 1); else DrawClippedTile(TILE_PLUS(Tile, 1 - (HTile & 1)), Offset, l, w, VirtAlign, 1); } Left += w; Offset += 8 * PixWidth; Width -= w; } } } } static void DrawBackgroundOffsetMosaic (int bg, uint8 Zh, uint8 Zl, int VOffOff) { BG.TileAddress = PPU.BG[bg].NameBase << 1; uint32 Tile; uint16 *SC0, *SC1, *SC2, *SC3; uint16 *BPS0, *BPS1, *BPS2, *BPS3; BPS0 = (uint16 *) &Memory.VRAM[PPU.BG[2].SCBase << 1]; BPS1 = (PPU.BG[2].SCSize & 1) ? BPS0 + 1024 : BPS0; if (BPS1 >= (uint16 *) (Memory.VRAM + 0x10000)) BPS1 -= 0x8000; BPS2 = (PPU.BG[2].SCSize & 2) ? BPS1 + 1024 : BPS0; if (BPS2 >= (uint16 *) (Memory.VRAM + 0x10000)) BPS2 -= 0x8000; BPS3 = (PPU.BG[2].SCSize & 1) ? BPS2 + 1024 : BPS2; if (BPS3 >= (uint16 *) (Memory.VRAM + 0x10000)) BPS3 -= 0x8000; SC0 = (uint16 *) &Memory.VRAM[PPU.BG[bg].SCBase << 1]; SC1 = (PPU.BG[bg].SCSize & 1) ? SC0 + 1024 : SC0; if (SC1 >= (uint16 *) (Memory.VRAM + 0x10000)) SC1 -= 0x8000; SC2 = (PPU.BG[bg].SCSize & 2) ? SC1 + 1024 : SC0; if (SC2 >= (uint16 *) (Memory.VRAM + 0x10000)) SC2 -= 0x8000; SC3 = (PPU.BG[bg].SCSize & 1) ? SC2 + 1024 : SC2; if (SC3 >= (uint16 *) (Memory.VRAM + 0x10000)) SC3 -= 0x8000; int Lines; int OffsetMask = (BG.TileSizeH == 16) ? 0x3ff : 0x1ff; int OffsetShift = (BG.TileSizeV == 16) ? 4 : 3; int Offset2Shift = (BG.OffsetSizeV == 16) ? 4 : 3; int OffsetEnableMask = 0x2000 << bg; int PixWidth = IPPU.DoubleWidthPixels ? 2 : 1; bool8 HiresInterlace = IPPU.Interlace && IPPU.DoubleWidthPixels; void (*DrawPix) (uint32, uint32, uint32, uint32, uint32, uint32); int MosaicStart = ((uint32) GFX.StartY - PPU.MosaicStart) % PPU.Mosaic; for (int clip = 0; clip < GFX.Clip[bg].Count; clip++) { GFX.ClipColors = !(GFX.Clip[bg].DrawMode[clip] & 1); if (BG.EnableMath && (GFX.Clip[bg].DrawMode[clip] & 2)) DrawPix = GFX.DrawMosaicPixelMath; else DrawPix = GFX.DrawMosaicPixelNomath; for (uint32 Y = GFX.StartY - MosaicStart; Y <= GFX.EndY; Y += PPU.Mosaic) { uint32 Y2 = HiresInterlace ? Y * 2 : Y; uint32 VOff = LineData[Y + MosaicStart].BG[2].VOffset - 1; uint32 HOff = LineData[Y + MosaicStart].BG[2].HOffset; Lines = PPU.Mosaic - MosaicStart; if (Y + MosaicStart + Lines > GFX.EndY) Lines = GFX.EndY - Y - MosaicStart + 1; uint32 HOffsetRow = VOff >> Offset2Shift; uint32 VOffsetRow = (VOff + VOffOff) >> Offset2Shift; uint16 *s, *s1, *s2; if (HOffsetRow & 0x20) { s1 = BPS2; s2 = BPS3; } else { s1 = BPS0; s2 = BPS1; } s1 += (HOffsetRow & 0x1f) << 5; s2 += (HOffsetRow & 0x1f) << 5; s = ((VOffsetRow & 0x20) ? BPS2 : BPS0) + ((VOffsetRow & 0x1f) << 5); int32 VOffsetOffset = s - s1; uint32 Left = GFX.Clip[bg].Left[clip]; uint32 Right = GFX.Clip[bg].Right[clip]; uint32 Offset = Left * PixWidth + (Y + MosaicStart) * GFX.PPL; uint32 HScroll = LineData[Y + MosaicStart].BG[bg].HOffset; uint32 Width = Right - Left; while (Left < Right) { uint32 VOffset, HOffset; if (Left < (8 - (HScroll & 7))) { // SNES cannot do OPT for leftmost tile column VOffset = LineData[Y + MosaicStart].BG[bg].VOffset; HOffset = HScroll; } else { int HOffTile = (((Left + (HScroll & 7)) - 8) + (HOff & ~7)) >> 3; if (BG.OffsetSizeH == 8) { if (HOffTile > 31) s = s2 + (HOffTile & 0x1f); else s = s1 + HOffTile; } else { if (HOffTile > 63) s = s2 + ((HOffTile >> 1) & 0x1f); else s = s1 + (HOffTile >> 1); } uint16 HCellOffset = READ_WORD(s); uint16 VCellOffset; if (VOffOff) VCellOffset = READ_WORD(s + VOffsetOffset); else { if (HCellOffset & 0x8000) { VCellOffset = HCellOffset; HCellOffset = 0; } else VCellOffset = 0; } if (VCellOffset & OffsetEnableMask) VOffset = VCellOffset + 1; else VOffset = LineData[Y + MosaicStart].BG[bg].VOffset; if (HCellOffset & OffsetEnableMask) HOffset = (HCellOffset & ~7) | (HScroll & 7); else HOffset = HScroll; } if (HiresInterlace) VOffset++; uint32 t1, t2; int VirtAlign = (((Y2 + VOffset) & 7) >> (HiresInterlace ? 1 : 0)) << 3; int TilemapRow = (VOffset + Y2) >> OffsetShift; BG.InterlaceLine = ((VOffset + Y2) & 1) << 3; if ((VOffset + Y2) & 8) { t1 = 16; t2 = 0; } else { t1 = 0; t2 = 16; } uint16 *b1, *b2; if (TilemapRow & 0x20) { b1 = SC2; b2 = SC3; } else { b1 = SC0; b2 = SC1; } b1 += (TilemapRow & 0x1f) << 5; b2 += (TilemapRow & 0x1f) << 5; uint32 HPos = (HOffset + Left - (Left % PPU.Mosaic)) & OffsetMask; uint32 HTile = HPos >> 3; uint16 *t; if (BG.TileSizeH == 8) { if (HTile > 31) t = b2 + (HTile & 0x1f); else t = b1 + HTile; } else { if (HTile > 63) t = b2 + ((HTile >> 1) & 0x1f); else t = b1 + (HTile >> 1); } uint32 w = PPU.Mosaic - (Left % PPU.Mosaic); if (w > Width) w = Width; Tile = READ_WORD(t); GFX.Z1 = GFX.Z2 = (Tile & 0x2000) ? Zh : Zl; if (BG.TileSizeV == 16) Tile = TILE_PLUS(Tile, ((Tile & V_FLIP) ? t2 : t1)); if (BG.TileSizeH == 8) DrawPix(Tile, Offset, VirtAlign, HPos & 7, w, Lines); else { if (!(Tile & H_FLIP)) DrawPix(TILE_PLUS(Tile, (HTile & 1)), Offset, VirtAlign, HPos & 7, w, Lines); else if (!(Tile & V_FLIP)) DrawPix(TILE_PLUS(Tile, 1 - (HTile & 1)), Offset, VirtAlign, HPos & 7, w, Lines); } Left += w; Offset += w * PixWidth; Width -= w; } MosaicStart = 0; } } } static inline void DrawBackgroundMode7 (int bg, void (*DrawMath) (uint32, uint32, int), void (*DrawNomath) (uint32, uint32, int), int D) { for (int clip = 0; clip < GFX.Clip[bg].Count; clip++) { GFX.ClipColors = !(GFX.Clip[bg].DrawMode[clip] & 1); if (BG.EnableMath && (GFX.Clip[bg].DrawMode[clip] & 2)) DrawMath(GFX.Clip[bg].Left[clip], GFX.Clip[bg].Right[clip], D); else DrawNomath(GFX.Clip[bg].Left[clip], GFX.Clip[bg].Right[clip], D); } } static inline void DrawBackdrop (void) { uint32 Offset = GFX.StartY * GFX.PPL; for (int clip = 0; clip < GFX.Clip[5].Count; clip++) { GFX.ClipColors = !(GFX.Clip[5].DrawMode[clip] & 1); if (BG.EnableMath && (GFX.Clip[5].DrawMode[clip] & 2)) GFX.DrawBackdropMath(Offset, GFX.Clip[5].Left[clip], GFX.Clip[5].Right[clip]); else GFX.DrawBackdropNomath(Offset, GFX.Clip[5].Left[clip], GFX.Clip[5].Right[clip]); } } void S9xReRefresh (void) { // Be careful when calling this function from the thread other than the emulation one... // Here it's assumed no drawing occurs from the emulation thread when Settings.Paused is TRUE. if (Settings.Paused) S9xDeinitUpdate(IPPU.RenderedScreenWidth, IPPU.RenderedScreenHeight); } void S9xSetInfoString (const char *string) { if (Settings.InitialInfoStringTimeout > 0) { GFX.InfoString = string; GFX.InfoStringTimeout = Settings.InitialInfoStringTimeout; S9xReRefresh(); } } void S9xDisplayChar (uint16 *s, uint8 c) { const uint16 black = BUILD_PIXEL(0, 0, 0); int line = ((c - 32) >> 4) * font_height; int offset = ((c - 32) & 15) * font_width; for (int h = 0; h < font_height; h++, line++, s += GFX.RealPPL - font_width) { for (int w = 0; w < font_width; w++, s++) { char p = font[line][offset + w]; if (p == '#') *s = Settings.DisplayColor; else if (p == '.') *s = black; } } } static void DisplayStringFromBottom (const char *string, int linesFromBottom, int pixelsFromLeft, bool allowWrap) { if (linesFromBottom <= 0) linesFromBottom = 1; uint16 *dst = GFX.Screen + (IPPU.RenderedScreenHeight - font_height * linesFromBottom) * GFX.RealPPL + pixelsFromLeft; int len = strlen(string); int max_chars = IPPU.RenderedScreenWidth / (font_width - 1); int char_count = 0; for (int i = 0 ; i < len ; i++, char_count++) { if (char_count >= max_chars || (uint8) string[i] < 32) { if (!allowWrap) break; dst += font_height * GFX.RealPPL - (font_width - 1) * max_chars; if (dst >= GFX.Screen + IPPU.RenderedScreenHeight * GFX.RealPPL) break; char_count -= max_chars; } if ((uint8) string[i] < 32) continue; S9xDisplayChar(dst, string[i]); dst += font_width - 1; } } static void DisplayFrameRate (void) { char string[10]; static uint32 lastFrameCount = 0, calcFps = 0; static time_t lastTime = time(NULL); time_t currTime = time(NULL); if (lastTime != currTime) { if (lastFrameCount < IPPU.TotalEmulatedFrames) { calcFps = (IPPU.TotalEmulatedFrames - lastFrameCount) / (uint32)(currTime - lastTime); } lastTime = currTime; lastFrameCount = IPPU.TotalEmulatedFrames; } sprintf(string, "%u fps", calcFps); S9xDisplayString(string, 2, IPPU.RenderedScreenWidth - (font_width - 1) * strlen(string) - 1, false); #ifdef DEBUGGER const int len = 8; sprintf(string, "%02d/%02d %02d", (int) IPPU.DisplayedRenderedFrameCount, (int) Memory.ROMFramesPerSecond, (int) IPPU.FrameCount); #else const int len = 5; sprintf(string, "%02d/%02d", (int) IPPU.DisplayedRenderedFrameCount, (int) Memory.ROMFramesPerSecond); #endif S9xDisplayString(string, 1, IPPU.RenderedScreenWidth - (font_width - 1) * len - 1, false); } static void DisplayPressedKeys (void) { static char KeyMap[] = { '0', '1', '2', 'R', 'L', 'X', 'A', '>', '<', 'v', '^', 'S', 's', 'Y', 'B' }; static int KeyOrder[] = { 8, 10, 7, 9, 0, 6, 14, 13, 5, 1, 4, 3, 2, 11, 12 }; // < ^ > v A B Y X L R S s enum controllers controller; int line = Settings.DisplayMovieFrame && S9xMovieActive() ? 2 : 1; int8 ids[4]; char string[255]; for (int port = 0; port < 2; port++) { S9xGetController(port, &controller, &ids[0], &ids[1], &ids[2], &ids[3]); switch (controller) { case CTL_MOUSE: { uint8 buf[5], *p = buf; MovieGetMouse(port, buf); int16 x = READ_WORD(p); int16 y = READ_WORD(p + 2); uint8 buttons = buf[4]; sprintf(string, "#%d %d: (%03d,%03d) %c%c", port, ids[0], x, y, (buttons & 0x40) ? 'L' : ' ', (buttons & 0x80) ? 'R' : ' '); S9xDisplayString(string, line++, 1, false); break; } case CTL_SUPERSCOPE: { uint8 buf[6], *p = buf; MovieGetScope(port, buf); int16 x = READ_WORD(p); int16 y = READ_WORD(p + 2); uint8 buttons = buf[4]; sprintf(string, "#%d %d: (%03d,%03d) %c%c%c%c", port, ids[0], x, y, (buttons & 0x80) ? 'F' : ' ', (buttons & 0x40) ? 'C' : ' ', (buttons & 0x20) ? 'T' : ' ', (buttons & 0x10) ? 'P' : ' '); S9xDisplayString(string, line++, 1, false); break; } case CTL_JUSTIFIER: { uint8 buf[11], *p = buf; MovieGetJustifier(port, buf); int16 x1 = READ_WORD(p); int16 x2 = READ_WORD(p + 2); int16 y1 = READ_WORD(p + 4); int16 y2 = READ_WORD(p + 6); uint8 buttons = buf[8]; bool8 offscreen1 = buf[9]; bool8 offscreen2 = buf[10]; sprintf(string, "#%d %d: (%03d,%03d) %c%c%c / (%03d,%03d) %c%c%c", port, ids[0], x1, y1, (buttons & 0x80) ? 'T' : ' ', (buttons & 0x20) ? 'S' : ' ', offscreen1 ? 'O' : ' ', x2, y2, (buttons & 0x40) ? 'T' : ' ', (buttons & 0x10) ? 'S' : ' ', offscreen2 ? 'O' : ' '); S9xDisplayString(string, line++, 1, false); break; } case CTL_JOYPAD: { sprintf(string, "#%d %d: ", port, ids[0]); uint16 pad = MovieGetJoypad(ids[0]); for (int i = 0; i < 15; i++) { int j = KeyOrder[i]; int mask = (1 << (j + 1)); string[6 + i]= (pad & mask) ? KeyMap[j] : ' '; } S9xDisplayString(string, line++, 1, false); break; } case CTL_MP5: { for (int n = 0; n < 4; n++) { if (ids[n] != -1) { sprintf(string, "#%d %d: ", port, ids[n]); uint16 pad = MovieGetJoypad(ids[n]); for (int i = 0; i < 15; i++) { int j = KeyOrder[i]; int mask = (1 << (j + 1)); string[6 + i]= (pad & mask) ? KeyMap[j] : ' '; } S9xDisplayString(string, line++, 1, false); } } break; } case CTL_NONE: { sprintf(string, "#%d -", port); S9xDisplayString(string, line++, 1, false); break; } } } } static void DisplayWatchedAddresses (void) { for (unsigned int i = 0; i < sizeof(watches) / sizeof(watches[0]); i++) { if (!watches[i].on) break; int32 displayNumber = 0; char buf[32]; for (int r = 0; r < watches[i].size; r++) displayNumber += (Cheat.CWatchRAM[(watches[i].address - 0x7E0000) + r]) << (8 * r); if (watches[i].format == 1) sprintf(buf, "%s,%du = %u", watches[i].desc, watches[i].size, (unsigned int) displayNumber); else if (watches[i].format == 3) sprintf(buf, "%s,%dx = %X", watches[i].desc, watches[i].size, (unsigned int) displayNumber); else // signed { if (watches[i].size == 1) displayNumber = (int32) ((int8) displayNumber); else if (watches[i].size == 2) displayNumber = (int32) ((int16) displayNumber); else if (watches[i].size == 3) if (displayNumber >= 8388608) displayNumber -= 16777216; sprintf(buf, "%s,%ds = %d", watches[i].desc, watches[i].size, (int) displayNumber); } S9xDisplayString(buf, 6 + i, 1, false); } } void S9xDisplayMessages (uint16 *screen, int ppl, int width, int height, int scale) { if (Settings.DisplayFrameRate) DisplayFrameRate(); if (Settings.DisplayWatchedAddresses) DisplayWatchedAddresses(); if (Settings.DisplayPressedKeys) DisplayPressedKeys(); if (Settings.DisplayMovieFrame && S9xMovieActive()) S9xDisplayString(GFX.FrameDisplayString, 1, 1, false); if (GFX.InfoString && *GFX.InfoString) S9xDisplayString(GFX.InfoString, 5, 1, true); } static uint16 get_crosshair_color (uint8 color) { switch (color & 15) { case 0: return (BUILD_PIXEL( 0, 0, 0)); // transparent, shouldn't be used case 1: return (BUILD_PIXEL( 0, 0, 0)); // Black case 2: return (BUILD_PIXEL( 8, 8, 8)); // 25Grey case 3: return (BUILD_PIXEL(16, 16, 16)); // 50Grey case 4: return (BUILD_PIXEL(23, 23, 23)); // 75Grey case 5: return (BUILD_PIXEL(31, 31, 31)); // White case 6: return (BUILD_PIXEL(31, 0, 0)); // Red case 7: return (BUILD_PIXEL(31, 16, 0)); // Orange case 8: return (BUILD_PIXEL(31, 31, 0)); // Yellow case 9: return (BUILD_PIXEL( 0, 31, 0)); // Green case 10: return (BUILD_PIXEL( 0, 31, 31)); // Cyan case 11: return (BUILD_PIXEL( 0, 23, 31)); // Sky case 12: return (BUILD_PIXEL( 0, 0, 31)); // Blue case 13: return (BUILD_PIXEL(23, 0, 31)); // Violet case 14: return (BUILD_PIXEL(31, 0, 31)); // Magenta case 15: return (BUILD_PIXEL(31, 0, 16)); // Purple } return (0); } void S9xDrawCrosshair (const char *crosshair, uint8 fgcolor, uint8 bgcolor, int16 x, int16 y) { if (!crosshair) return; int16 r, rx = 1, c, cx = 1, W = SNES_WIDTH, H = PPU.ScreenHeight; uint16 fg, bg; x -= 7; y -= 7; if (IPPU.DoubleWidthPixels) { cx = 2; x *= 2; W *= 2; } if (IPPU.DoubleHeightPixels) { rx = 2; y *= 2; H *= 2; } fg = get_crosshair_color(fgcolor); bg = get_crosshair_color(bgcolor); uint16 *s = GFX.Screen + y * (int32)GFX.RealPPL + x; for (r = 0; r < 15 * rx; r++, s += GFX.RealPPL - 15 * cx) { if (y + r < 0) { s += 15 * cx; continue; } if (y + r >= H) break; for (c = 0; c < 15 * cx; c++, s++) { if (x + c < 0 || s < GFX.Screen) continue; if (x + c >= W) { s += 15 * cx - c; break; } uint8 p = crosshair[(r / rx) * 15 + (c / cx)]; if (p == '#' && fgcolor) *s = (fgcolor & 0x10) ? COLOR_ADD1_2(fg, *s) : fg; else if (p == '.' && bgcolor) *s = (bgcolor & 0x10) ? COLOR_ADD1_2(*s, bg) : bg; } } } #ifdef GFX_MULTI_FORMAT static uint32 BuildPixelRGB565 (uint32, uint32, uint32); static uint32 BuildPixelRGB555 (uint32, uint32, uint32); static uint32 BuildPixelBGR565 (uint32, uint32, uint32); static uint32 BuildPixelBGR555 (uint32, uint32, uint32); static uint32 BuildPixelGBR565 (uint32, uint32, uint32); static uint32 BuildPixelGBR555 (uint32, uint32, uint32); static uint32 BuildPixelRGB5551 (uint32, uint32, uint32); static uint32 BuildPixel2RGB565 (uint32, uint32, uint32); static uint32 BuildPixel2RGB555 (uint32, uint32, uint32); static uint32 BuildPixel2BGR565 (uint32, uint32, uint32); static uint32 BuildPixel2BGR555 (uint32, uint32, uint32); static uint32 BuildPixel2GBR565 (uint32, uint32, uint32); static uint32 BuildPixel2GBR555 (uint32, uint32, uint32); static uint32 BuildPixel2RGB5551 (uint32, uint32, uint32); static void DecomposePixelRGB565 (uint32, uint32 &, uint32 &, uint32 &); static void DecomposePixelRGB555 (uint32, uint32 &, uint32 &, uint32 &); static void DecomposePixelBGR565 (uint32, uint32 &, uint32 &, uint32 &); static void DecomposePixelBGR555 (uint32, uint32 &, uint32 &, uint32 &); static void DecomposePixelGBR565 (uint32, uint32 &, uint32 &, uint32 &); static void DecomposePixelGBR555 (uint32, uint32 &, uint32 &, uint32 &); static void DecomposePixelRGB5551 (uint32, uint32 &, uint32 &, uint32 &); #define _BUILD_PIXEL(F) \ static uint32 BuildPixel##F (uint32 R, uint32 G, uint32 B) \ { \ return (BUILD_PIXEL_##F(R, G, B)); \ } \ \ static uint32 BuildPixel2##F (uint32 R, uint32 G, uint32 B) \ { \ return (BUILD_PIXEL2_##F(R, G, B)); \ } \ \ static void DecomposePixel##F (uint32 pixel, uint32 &R, uint32 &G, uint32 &B) \ { \ DECOMPOSE_PIXEL_##F(pixel, R, G, B); \ } _BUILD_PIXEL(RGB565) _BUILD_PIXEL(RGB555) _BUILD_PIXEL(BGR565) _BUILD_PIXEL(BGR555) _BUILD_PIXEL(GBR565) _BUILD_PIXEL(GBR555) _BUILD_PIXEL(RGB5551) #define _BUILD_SETUP(F) \ GFX.BuildPixel = BuildPixel##F; \ GFX.BuildPixel2 = BuildPixel2##F; \ GFX.DecomposePixel = DecomposePixel##F; \ RED_LOW_BIT_MASK = RED_LOW_BIT_MASK_##F; \ GREEN_LOW_BIT_MASK = GREEN_LOW_BIT_MASK_##F; \ BLUE_LOW_BIT_MASK = BLUE_LOW_BIT_MASK_##F; \ RED_HI_BIT_MASK = RED_HI_BIT_MASK_##F; \ GREEN_HI_BIT_MASK = GREEN_HI_BIT_MASK_##F; \ BLUE_HI_BIT_MASK = BLUE_HI_BIT_MASK_##F; \ MAX_RED = MAX_RED_##F; \ MAX_GREEN = MAX_GREEN_##F; \ MAX_BLUE = MAX_BLUE_##F; \ SPARE_RGB_BIT_MASK = SPARE_RGB_BIT_MASK_##F; \ GREEN_HI_BIT = ((MAX_GREEN_##F + 1) >> 1); \ RGB_LOW_BITS_MASK = (RED_LOW_BIT_MASK_##F | GREEN_LOW_BIT_MASK_##F | BLUE_LOW_BIT_MASK_##F); \ RGB_HI_BITS_MASK = (RED_HI_BIT_MASK_##F | GREEN_HI_BIT_MASK_##F | BLUE_HI_BIT_MASK_##F); \ RGB_HI_BITS_MASKx2 = (RED_HI_BIT_MASK_##F | GREEN_HI_BIT_MASK_##F | BLUE_HI_BIT_MASK_##F) << 1; \ RGB_REMOVE_LOW_BITS_MASK = ~RGB_LOW_BITS_MASK; \ FIRST_COLOR_MASK = FIRST_COLOR_MASK_##F; \ SECOND_COLOR_MASK = SECOND_COLOR_MASK_##F; \ THIRD_COLOR_MASK = THIRD_COLOR_MASK_##F; \ ALPHA_BITS_MASK = ALPHA_BITS_MASK_##F; \ FIRST_THIRD_COLOR_MASK = FIRST_COLOR_MASK | THIRD_COLOR_MASK; \ TWO_LOW_BITS_MASK = RGB_LOW_BITS_MASK | (RGB_LOW_BITS_MASK << 1); \ HIGH_BITS_SHIFTED_TWO_MASK = ((FIRST_COLOR_MASK | SECOND_COLOR_MASK | THIRD_COLOR_MASK) & ~TWO_LOW_BITS_MASK) >> 2; bool8 S9xSetRenderPixelFormat (int format) { GFX.PixelFormat = format; switch (format) { case RGB565: _BUILD_SETUP(RGB565) return (TRUE); case RGB555: _BUILD_SETUP(RGB555) return (TRUE); case BGR565: _BUILD_SETUP(BGR565) return (TRUE); case BGR555: _BUILD_SETUP(BGR555) return (TRUE); case GBR565: _BUILD_SETUP(GBR565) return (TRUE); case GBR555: _BUILD_SETUP(GBR555) return (TRUE); case RGB5551: _BUILD_SETUP(RGB5551) return (TRUE); default: break; } return (FALSE); } #endif