snes9xgx/source/snes9x/tileimpl.h

802 lines
22 KiB
C++

/*****************************************************************************\
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
This file is licensed under the Snes9x License.
For further information, consult the LICENSE file in the root directory.
\*****************************************************************************/
#ifndef _TILEIMPL_H_
#define _TILEIMPL_H_
#include "snes9x.h"
#include "ppu.h"
#include "tile.h"
extern struct SLineMatrixData LineMatrixData[240];
namespace TileImpl {
struct BPProgressive
{
enum { Pitch = 1 };
static alwaysinline uint32 Get(uint32 StartLine) { return StartLine; }
};
// Interlace: Only draw every other line, so we'll redefine bpstart_t and Pitch to do so.
// Otherwise, it's the same as Normal2x1/Hires2x1.
struct BPInterlace
{
enum { Pitch = 2 };
static alwaysinline uint32 Get(uint32 StartLine) { return StartLine * 2 + BG.InterlaceLine; }
};
// The 1x1 pixel plotter, for speedhacking modes.
template<class MATH, class BPSTART>
struct Normal1x1Base
{
enum { Pitch = BPSTART::Pitch };
typedef BPSTART bpstart_t;
static void Draw(int N, int M, uint32 Offset, uint32 OffsetInLine, uint8 Pix, uint8 Z1, uint8 Z2);
};
template<class MATH>
struct Normal1x1 : public Normal1x1Base<MATH, BPProgressive> {};
// The 2x1 pixel plotter, for normal rendering when we've used hires/interlace already this frame.
template<class MATH, class BPSTART>
struct Normal2x1Base
{
enum { Pitch = BPSTART::Pitch };
typedef BPSTART bpstart_t;
static void Draw(int N, int M, uint32 Offset, uint32 OffsetInLine, uint8 Pix, uint8 Z1, uint8 Z2);
};
template<class MATH>
struct Normal2x1 : public Normal2x1Base<MATH, BPProgressive> {};
template<class MATH>
struct Interlace : public Normal2x1Base<MATH, BPInterlace> {};
// Hires pixel plotter, this combines the main and subscreen pixels as appropriate to render hires or pseudo-hires images.
// Use it only on the main screen, subscreen should use Normal2x1 instead.
// Hires math:
// Main pixel is mathed as normal: Main(x, y) * Sub(x, y).
// Sub pixel is mathed somewhat weird: Basically, for Sub(x + 1, y) we apply the same operation we applied to Main(x, y)
// (e.g. no math, add fixed, add1/2 subscreen) using Main(x, y) as the "corresponding subscreen pixel".
// Also, color window clipping clips Sub(x + 1, y) if Main(x, y) is clipped, not Main(x + 1, y).
// We don't know how Sub(0, y) is handled.
template<class MATH, class BPSTART>
struct HiresBase
{
enum { Pitch = BPSTART::Pitch };
typedef BPSTART bpstart_t;
static void Draw(int N, int M, uint32 Offset, uint32 OffsetInLine, uint8 Pix, uint8 Z1, uint8 Z2);
};
template<class MATH>
struct Hires : public HiresBase<MATH, BPProgressive> {};
template<class MATH>
struct HiresInterlace : public HiresBase<MATH, BPInterlace> {};
class CachedTile
{
public:
CachedTile(uint32 tile) : Tile(tile) {}
alwaysinline void GetCachedTile()
{
TileAddr = BG.TileAddress + ((Tile & 0x3ff) << BG.TileShift);
if (Tile & 0x100)
TileAddr += BG.NameSelect;
TileAddr &= 0xffff;
TileNumber = TileAddr >> BG.TileShift;
if (Tile & H_FLIP)
{
pCache = &BG.BufferFlip[TileNumber << 6];
if (!BG.BufferedFlip[TileNumber])
BG.BufferedFlip[TileNumber] = BG.ConvertTileFlip(pCache, TileAddr, Tile & 0x3ff);
}
else
{
pCache = &BG.Buffer[TileNumber << 6];
if (!BG.Buffered[TileNumber])
BG.Buffered[TileNumber] = BG.ConvertTile(pCache, TileAddr, Tile & 0x3ff);
}
}
alwaysinline bool IsBlankTile() const
{
return ((Tile & H_FLIP) ? BG.BufferedFlip[TileNumber] : BG.Buffered[TileNumber]) == BLANK_TILE;
}
alwaysinline void SelectPalette() const
{
if (BG.DirectColourMode)
{
GFX.RealScreenColors = DirectColourMaps[(Tile >> 10) & 7];
}
else
GFX.RealScreenColors = &IPPU.ScreenColors[((Tile >> BG.PaletteShift) & BG.PaletteMask) + BG.StartPalette];
GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors;
}
alwaysinline uint8* Ptr() const
{
return pCache;
}
private:
uint8 *pCache;
uint32 Tile;
uint32 TileNumber;
uint32 TileAddr;
};
struct NOMATH
{
static alwaysinline uint16 Calc(uint16 Main, uint16 Sub, uint8 SD)
{
return Main;
}
};
typedef NOMATH Blend_None;
template<class Op>
struct REGMATH
{
static alwaysinline uint16 Calc(uint16 Main, uint16 Sub, uint8 SD)
{
return Op::fn(Main, (SD & 0x20) ? Sub : GFX.FixedColour);
}
};
typedef REGMATH<COLOR_ADD> Blend_Add;
typedef REGMATH<COLOR_SUB> Blend_Sub;
typedef REGMATH<COLOR_ADD_BRIGHTNESS> Blend_AddBrightness;
template<class Op>
struct MATHF1_2
{
static alwaysinline uint16 Calc(uint16 Main, uint16 Sub, uint8 SD)
{
return GFX.ClipColors ? Op::fn(Main, GFX.FixedColour) : Op::fn1_2(Main, GFX.FixedColour);
}
};
typedef MATHF1_2<COLOR_ADD> Blend_AddF1_2;
typedef MATHF1_2<COLOR_SUB> Blend_SubF1_2;
template<class Op>
struct MATHS1_2
{
static alwaysinline uint16 Calc(uint16 Main, uint16 Sub, uint8 SD)
{
return GFX.ClipColors ? REGMATH<Op>::Calc(Main, Sub, SD) : (SD & 0x20) ? Op::fn1_2(Main, Sub) : Op::fn(Main, GFX.FixedColour);
}
};
typedef MATHS1_2<COLOR_ADD> Blend_AddS1_2;
typedef MATHS1_2<COLOR_SUB> Blend_SubS1_2;
typedef MATHS1_2<COLOR_ADD_BRIGHTNESS> Blend_AddS1_2Brightness;
template<
template<class PIXEL_> class TILE,
template<class MATH> class PIXEL
>
struct Renderers
{
enum { Pitch = PIXEL<Blend_None>::Pitch };
typedef typename TILE< PIXEL<Blend_None> >::call_t call_t;
static call_t Functions[9];
};
#ifdef _TILEIMPL_CPP_
template<
template<class PIXEL_> class TILE,
template<class MATH> class PIXEL
>
typename Renderers<TILE, PIXEL>::call_t Renderers<TILE, PIXEL>::Functions[9] =
{
TILE< PIXEL<Blend_None> >::Draw,
TILE< PIXEL<Blend_Add> >::Draw,
TILE< PIXEL<Blend_AddF1_2> >::Draw,
TILE< PIXEL<Blend_AddS1_2> >::Draw,
TILE< PIXEL<Blend_Sub> >::Draw,
TILE< PIXEL<Blend_SubF1_2> >::Draw,
TILE< PIXEL<Blend_SubS1_2> >::Draw,
TILE< PIXEL<Blend_AddBrightness> >::Draw,
TILE< PIXEL<Blend_AddS1_2Brightness> >::Draw,
};
#endif
// Basic routine to render an unclipped tile.
// Input parameters:
// bpstart_t = either StartLine or (StartLine * 2 + BG.InterlaceLine),
// so interlace modes can render every other line from the tile.
// Pitch = 1 or 2, again so interlace can count lines properly.
// DRAW_PIXEL(N, M) is a routine to actually draw the pixel. N is the pixel in the row to draw,
// and M is a test which if false means the pixel should be skipped.
// Z1 is the "draw if Z1 > cur_depth".
// Z2 is the "cur_depth = new_depth". OBJ need the two separate.
// Pix is the pixel to draw.
#define OFFSET_IN_LINE \
uint32 OffsetInLine = Offset % GFX.RealPPL;
#define DRAW_PIXEL(N, M) PIXEL::Draw(N, M, Offset, OffsetInLine, Pix, Z1, Z2)
#define Z1 GFX.Z1
#define Z2 GFX.Z2
template<class PIXEL>
struct DrawTile16
{
typedef void (*call_t)(uint32, uint32, uint32, uint32);
enum { Pitch = PIXEL::Pitch };
typedef typename PIXEL::bpstart_t bpstart_t;
static void Draw(uint32 Tile, uint32 Offset, uint32 StartLine, uint32 LineCount)
{
CachedTile cache(Tile);
int32 l;
uint8 *bp, Pix;
cache.GetCachedTile();
if (cache.IsBlankTile())
return;
cache.SelectPalette();
if (!(Tile & (V_FLIP | H_FLIP)))
{
bp = cache.Ptr() + bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL)
{
for (int x = 0; x < 8; x++) {
Pix = bp[x]; DRAW_PIXEL(x, Pix);
}
}
}
else
if (!(Tile & V_FLIP))
{
bp = cache.Ptr() + bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL)
{
for (int x = 0; x < 8; x++) {
Pix = bp[7 - x]; DRAW_PIXEL(x, Pix);
}
}
}
else
if (!(Tile & H_FLIP))
{
bp = cache.Ptr() + 56 - bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL)
{
for (int x = 0; x < 8; x++) {
Pix = bp[x]; DRAW_PIXEL(x, Pix);
}
}
}
else
{
bp = cache.Ptr() + 56 - bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL)
{
for (int x = 0; x < 8; x++) {
Pix = bp[7 - x]; DRAW_PIXEL(x, Pix);
}
}
}
}
};
#undef Z1
#undef Z2
// Basic routine to render a clipped tile. Inputs same as above.
#define Z1 GFX.Z1
#define Z2 GFX.Z2
template<class PIXEL>
struct DrawClippedTile16
{
typedef void (*call_t)(uint32, uint32, uint32, uint32, uint32, uint32);
enum { Pitch = PIXEL::Pitch };
typedef typename PIXEL::bpstart_t bpstart_t;
static void Draw(uint32 Tile, uint32 Offset, uint32 StartPixel, uint32 Width, uint32 StartLine, uint32 LineCount)
{
CachedTile cache(Tile);
int32 l;
uint8 *bp, Pix, w;
cache.GetCachedTile();
if (cache.IsBlankTile())
return;
cache.SelectPalette();
if (!(Tile & (V_FLIP | H_FLIP)))
{
bp = cache.Ptr() + bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL)
{
w = Width;
switch (StartPixel)
{
case 0: Pix = bp[0]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */
case 1: Pix = bp[1]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */
case 2: Pix = bp[2]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */
case 3: Pix = bp[3]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */
case 4: Pix = bp[4]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */
case 5: Pix = bp[5]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */
case 6: Pix = bp[6]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */
case 7: Pix = bp[7]; DRAW_PIXEL(7, Pix); break;
}
}
}
else
if (!(Tile & V_FLIP))
{
bp = cache.Ptr() + bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL)
{
w = Width;
switch (StartPixel)
{
case 0: Pix = bp[7]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */
case 1: Pix = bp[6]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */
case 2: Pix = bp[5]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */
case 3: Pix = bp[4]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */
case 4: Pix = bp[3]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */
case 5: Pix = bp[2]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */
case 6: Pix = bp[1]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */
case 7: Pix = bp[0]; DRAW_PIXEL(7, Pix); break;
}
}
}
else
if (!(Tile & H_FLIP))
{
bp = cache.Ptr() + 56 - bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL)
{
w = Width;
switch (StartPixel)
{
case 0: Pix = bp[0]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */
case 1: Pix = bp[1]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */
case 2: Pix = bp[2]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */
case 3: Pix = bp[3]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */
case 4: Pix = bp[4]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */
case 5: Pix = bp[5]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */
case 6: Pix = bp[6]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */
case 7: Pix = bp[7]; DRAW_PIXEL(7, Pix); break;
}
}
}
else
{
bp = cache.Ptr() + 56 - bpstart_t::Get(StartLine);
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL)
{
w = Width;
switch (StartPixel)
{
case 0: Pix = bp[7]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */
case 1: Pix = bp[6]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */
case 2: Pix = bp[5]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */
case 3: Pix = bp[4]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */
case 4: Pix = bp[3]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */
case 5: Pix = bp[2]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */
case 6: Pix = bp[1]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */
case 7: Pix = bp[0]; DRAW_PIXEL(7, Pix); break;
}
}
}
}
};
#undef Z1
#undef Z2
// Basic routine to render a single mosaic pixel.
// DRAW_PIXEL, bpstart_t, Z1, Z2 and Pix are the same as above, but Pitch is not used.
#define Z1 GFX.Z1
#define Z2 GFX.Z2
template<class PIXEL>
struct DrawMosaicPixel16
{
typedef void (*call_t)(uint32, uint32, uint32, uint32, uint32, uint32);
typedef typename PIXEL::bpstart_t bpstart_t;
static void Draw(uint32 Tile, uint32 Offset, uint32 StartLine, uint32 StartPixel, uint32 Width, uint32 LineCount)
{
CachedTile cache(Tile);
int32 l, w;
uint8 Pix;
cache.GetCachedTile();
if (cache.IsBlankTile())
return;
cache.SelectPalette();
if (Tile & H_FLIP)
StartPixel = 7 - StartPixel;
if (Tile & V_FLIP)
Pix = cache.Ptr()[56 - bpstart_t::Get(StartLine) + StartPixel];
else
Pix = cache.Ptr()[bpstart_t::Get(StartLine) + StartPixel];
if (Pix)
{
OFFSET_IN_LINE;
for (l = LineCount; l > 0; l--, Offset += GFX.PPL)
{
for (w = Width - 1; w >= 0; w--)
DRAW_PIXEL(w, 1);
}
}
}
};
#undef Z1
#undef Z2
// Basic routine to render the backdrop.
// DRAW_PIXEL is the same as above, but since we're just replicating a single pixel there's no need for Pitch or bpstart_t
// (or interlace at all, really).
// The backdrop is always depth = 1, so Z1 = Z2 = 1. And backdrop is always color 0.
#define Z1 1
#define Z2 1
#define Pix 0
template<class PIXEL>
struct DrawBackdrop16
{
typedef void (*call_t)(uint32 Offset, uint32 Left, uint32 Right);
static void Draw(uint32 Offset, uint32 Left, uint32 Right)
{
uint32 l, x;
GFX.RealScreenColors = IPPU.ScreenColors;
GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors;
OFFSET_IN_LINE;
for (l = GFX.StartY; l <= GFX.EndY; l++, Offset += GFX.PPL)
{
for (x = Left; x < Right; x++)
DRAW_PIXEL(x, 1);
}
}
};
#undef Pix
#undef Z1
#undef Z2
#undef DRAW_PIXEL
// Basic routine to render a chunk of a Mode 7 BG.
// Mode 7 has no interlace, so bpstart_t and Pitch are unused.
// We get some new parameters, so we can use the same DRAW_TILE to do BG1 or BG2:
// DCMODE tests if Direct Color should apply.
// BG is the BG, so we use the right clip window.
// MASK is 0xff or 0x7f, the 'color' portion of the pixel.
// We define Z1/Z2 to either be constant 5 or to vary depending on the 'priority' portion of the pixel.
#define CLIP_10_BIT_SIGNED(a) (((a) & 0x2000) ? ((a) | ~0x3ff) : ((a) & 0x3ff))
#define DRAW_PIXEL(N, M) PIXEL::Draw(N, M, Offset, OffsetInLine, Pix, OP::Z1(D, b), OP::Z2(D, b))
struct DrawMode7BG1_OP
{
enum {
MASK = 0xff,
BG = 0
};
static uint8 Z1(int D, uint8 b) { return D + 7; }
static uint8 Z2(int D, uint8 b) { return D + 7; }
static uint8 DCMODE() { return Memory.FillRAM[0x2130] & 1; }
};
struct DrawMode7BG2_OP
{
enum {
MASK = 0x7f,
BG = 1
};
static uint8 Z1(int D, uint8 b) { return D + ((b & 0x80) ? 11 : 3); }
static uint8 Z2(int D, uint8 b) { return D + ((b & 0x80) ? 11 : 3); }
static uint8 DCMODE() { return 0; }
};
template<class PIXEL, class OP>
struct DrawTileNormal
{
typedef void (*call_t)(uint32 Left, uint32 Right, int D);
static void Draw(uint32 Left, uint32 Right, int D)
{
uint8 *VRAM1 = Memory.VRAM + 1;
if (OP::DCMODE())
{
GFX.RealScreenColors = DirectColourMaps[0];
}
else
GFX.RealScreenColors = IPPU.ScreenColors;
GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors;
int aa, cc;
int startx;
uint32 Offset = GFX.StartY * GFX.PPL;
struct SLineMatrixData *l = &LineMatrixData[GFX.StartY];
OFFSET_IN_LINE;
for (uint32 Line = GFX.StartY; Line <= GFX.EndY; Line++, Offset += GFX.PPL, l++)
{
int yy, starty;
int32 HOffset = ((int32) l->M7HOFS << 19) >> 19;
int32 VOffset = ((int32) l->M7VOFS << 19) >> 19;
int32 CentreX = ((int32) l->CentreX << 19) >> 19;
int32 CentreY = ((int32) l->CentreY << 19) >> 19;
if (PPU.Mode7VFlip)
starty = 255 - (int) (Line + 1);
else
starty = Line + 1;
yy = CLIP_10_BIT_SIGNED(VOffset - CentreY);
int BB = ((l->MatrixB * starty) & ~63) + ((l->MatrixB * yy) & ~63) + (CentreX << 8);
int DD = ((l->MatrixD * starty) & ~63) + ((l->MatrixD * yy) & ~63) + (CentreY << 8);
if (PPU.Mode7HFlip)
{
startx = Right - 1;
aa = -l->MatrixA;
cc = -l->MatrixC;
}
else
{
startx = Left;
aa = l->MatrixA;
cc = l->MatrixC;
}
int xx = CLIP_10_BIT_SIGNED(HOffset - CentreX);
int AA = l->MatrixA * startx + ((l->MatrixA * xx) & ~63);
int CC = l->MatrixC * startx + ((l->MatrixC * xx) & ~63);
uint8 Pix;
if (!PPU.Mode7Repeat)
{
for (uint32 x = Left; x < Right; x++, AA += aa, CC += cc)
{
int X = ((AA + BB) >> 8) & 0x3ff;
int Y = ((CC + DD) >> 8) & 0x3ff;
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7);
uint8 b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1));
Pix = b & OP::MASK; DRAW_PIXEL(x, Pix);
}
}
else
{
for (uint32 x = Left; x < Right; x++, AA += aa, CC += cc)
{
int X = ((AA + BB) >> 8);
int Y = ((CC + DD) >> 8);
uint8 b;
if (((X | Y) & ~0x3ff) == 0)
{
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7);
b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1));
}
else
if (PPU.Mode7Repeat == 3)
b = *(VRAM1 + ((Y & 7) << 4) + ((X & 7) << 1));
else
continue;
Pix = b & OP::MASK; DRAW_PIXEL(x, Pix);
}
}
}
}
};
template<class PIXEL>
struct DrawMode7BG1 : public DrawTileNormal<PIXEL, DrawMode7BG1_OP> {};
template<class PIXEL>
struct DrawMode7BG2 : public DrawTileNormal<PIXEL, DrawMode7BG2_OP> {};
template<class PIXEL, class OP>
struct DrawTileMosaic
{
typedef void (*call_t)(uint32 Left, uint32 Right, int D);
static void Draw(uint32 Left, uint32 Right, int D)
{
uint8 *VRAM1 = Memory.VRAM + 1;
if (OP::DCMODE())
{
GFX.RealScreenColors = DirectColourMaps[0];
}
else
GFX.RealScreenColors = IPPU.ScreenColors;
GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors;
int aa, cc;
int startx, StartY = GFX.StartY;
int HMosaic = 1, VMosaic = 1, MosaicStart = 0;
int32 MLeft = Left, MRight = Right;
if (PPU.BGMosaic[0])
{
VMosaic = PPU.Mosaic;
MosaicStart = ((uint32) GFX.StartY - PPU.MosaicStart) % VMosaic;
StartY -= MosaicStart;
}
if (PPU.BGMosaic[OP::BG])
{
HMosaic = PPU.Mosaic;
MLeft -= MLeft % HMosaic;
MRight += HMosaic - 1;
MRight -= MRight % HMosaic;
}
uint32 Offset = StartY * GFX.PPL;
struct SLineMatrixData *l = &LineMatrixData[StartY];
OFFSET_IN_LINE;
for (uint32 Line = StartY; Line <= GFX.EndY; Line += VMosaic, Offset += VMosaic * GFX.PPL, l += VMosaic)
{
if (Line + VMosaic > GFX.EndY)
VMosaic = GFX.EndY - Line + 1;
int yy, starty;
int32 HOffset = ((int32) l->M7HOFS << 19) >> 19;
int32 VOffset = ((int32) l->M7VOFS << 19) >> 19;
int32 CentreX = ((int32) l->CentreX << 19) >> 19;
int32 CentreY = ((int32) l->CentreY << 19) >> 19;
if (PPU.Mode7VFlip)
starty = 255 - (int) (Line + 1);
else
starty = Line + 1;
yy = CLIP_10_BIT_SIGNED(VOffset - CentreY);
int BB = ((l->MatrixB * starty) & ~63) + ((l->MatrixB * yy) & ~63) + (CentreX << 8);
int DD = ((l->MatrixD * starty) & ~63) + ((l->MatrixD * yy) & ~63) + (CentreY << 8);
if (PPU.Mode7HFlip)
{
startx = MRight - 1;
aa = -l->MatrixA;
cc = -l->MatrixC;
}
else
{
startx = MLeft;
aa = l->MatrixA;
cc = l->MatrixC;
}
int xx = CLIP_10_BIT_SIGNED(HOffset - CentreX);
int AA = l->MatrixA * startx + ((l->MatrixA * xx) & ~63);
int CC = l->MatrixC * startx + ((l->MatrixC * xx) & ~63);
uint8 Pix;
uint8 ctr = 1;
if (!PPU.Mode7Repeat)
{
for (int32 x = MLeft; x < MRight; x++, AA += aa, CC += cc)
{
if (--ctr)
continue;
ctr = HMosaic;
int X = ((AA + BB) >> 8) & 0x3ff;
int Y = ((CC + DD) >> 8) & 0x3ff;
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7);
uint8 b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1));
if ((Pix = (b & OP::MASK)))
{
for (int32 h = MosaicStart; h < VMosaic; h++)
{
for (int32 w = x + HMosaic - 1; w >= x; w--)
DRAW_PIXEL(w + h * GFX.PPL, (w >= (int32) Left && w < (int32) Right));
}
}
}
}
else
{
for (int32 x = MLeft; x < MRight; x++, AA += aa, CC += cc)
{
if (--ctr)
continue;
ctr = HMosaic;
int X = ((AA + BB) >> 8);
int Y = ((CC + DD) >> 8);
uint8 b;
if (((X | Y) & ~0x3ff) == 0)
{
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7);
b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1));
}
else
if (PPU.Mode7Repeat == 3)
b = *(VRAM1 + ((Y & 7) << 4) + ((X & 7) << 1));
else
continue;
if ((Pix = (b & OP::MASK)))
{
for (int32 h = MosaicStart; h < VMosaic; h++)
{
for (int32 w = x + HMosaic - 1; w >= x; w--)
DRAW_PIXEL(w + h * GFX.PPL, (w >= (int32) Left && w < (int32) Right));
}
}
}
}
MosaicStart = 0;
}
}
};
template<class PIXEL>
struct DrawMode7MosaicBG1 : public DrawTileMosaic<PIXEL, DrawMode7BG1_OP> {};
template<class PIXEL>
struct DrawMode7MosaicBG2 : public DrawTileMosaic<PIXEL, DrawMode7BG2_OP> {};
#undef DRAW_PIXEL
} // namespace TileImpl
#endif