snes9xgx/source/snes9x/soundux.cpp
2008-09-10 05:57:37 +00:00

2443 lines
60 KiB
C++

/**********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2007 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
zones (kasumitokoduck@yahoo.com)
(c) Copyright 2006 - 2007 nitsuja
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com)
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley,
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001-2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight,
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound DSP emulator code is derived from SNEeSe and OpenSPC:
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
(c) Copyright 2001 - 2007 zones
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
**********************************************************************************/
#ifdef __DJGPP__
#include <allegro.h>
#undef TRUE
#endif
#include <stdio.h>
#include "snes9x.h"
#include "apu.h"
#include "memmap.h"
#include "soundux.h"
// gaussian table by libopenspc and SNEeSe
static const int32 gauss[512] =
{
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x001, 0x001, 0x001, 0x002, 0x002, 0x002, 0x002, 0x002,
0x002, 0x002, 0x003, 0x003, 0x003, 0x003, 0x003, 0x004,
0x004, 0x004, 0x004, 0x004, 0x005, 0x005, 0x005, 0x005,
0x006, 0x006, 0x006, 0x006, 0x007, 0x007, 0x007, 0x008,
0x008, 0x008, 0x009, 0x009, 0x009, 0x00A, 0x00A, 0x00A,
0x00B, 0x00B, 0x00B, 0x00C, 0x00C, 0x00D, 0x00D, 0x00E,
0x00E, 0x00F, 0x00F, 0x00F, 0x010, 0x010, 0x011, 0x011,
0x012, 0x013, 0x013, 0x014, 0x014, 0x015, 0x015, 0x016,
0x017, 0x017, 0x018, 0x018, 0x019, 0x01A, 0x01B, 0x01B,
0x01C, 0x01D, 0x01D, 0x01E, 0x01F, 0x020, 0x020, 0x021,
0x022, 0x023, 0x024, 0x024, 0x025, 0x026, 0x027, 0x028,
0x029, 0x02A, 0x02B, 0x02C, 0x02D, 0x02E, 0x02F, 0x030,
0x031, 0x032, 0x033, 0x034, 0x035, 0x036, 0x037, 0x038,
0x03A, 0x03B, 0x03C, 0x03D, 0x03E, 0x040, 0x041, 0x042,
0x043, 0x045, 0x046, 0x047, 0x049, 0x04A, 0x04C, 0x04D,
0x04E, 0x050, 0x051, 0x053, 0x054, 0x056, 0x057, 0x059,
0x05A, 0x05C, 0x05E, 0x05F, 0x061, 0x063, 0x064, 0x066,
0x068, 0x06A, 0x06B, 0x06D, 0x06F, 0x071, 0x073, 0x075,
0x076, 0x078, 0x07A, 0x07C, 0x07E, 0x080, 0x082, 0x084,
0x086, 0x089, 0x08B, 0x08D, 0x08F, 0x091, 0x093, 0x096,
0x098, 0x09A, 0x09C, 0x09F, 0x0A1, 0x0A3, 0x0A6, 0x0A8,
0x0AB, 0x0AD, 0x0AF, 0x0B2, 0x0B4, 0x0B7, 0x0BA, 0x0BC,
0x0BF, 0x0C1, 0x0C4, 0x0C7, 0x0C9, 0x0CC, 0x0CF, 0x0D2,
0x0D4, 0x0D7, 0x0DA, 0x0DD, 0x0E0, 0x0E3, 0x0E6, 0x0E9,
0x0EC, 0x0EF, 0x0F2, 0x0F5, 0x0F8, 0x0FB, 0x0FE, 0x101,
0x104, 0x107, 0x10B, 0x10E, 0x111, 0x114, 0x118, 0x11B,
0x11E, 0x122, 0x125, 0x129, 0x12C, 0x130, 0x133, 0x137,
0x13A, 0x13E, 0x141, 0x145, 0x148, 0x14C, 0x150, 0x153,
0x157, 0x15B, 0x15F, 0x162, 0x166, 0x16A, 0x16E, 0x172,
0x176, 0x17A, 0x17D, 0x181, 0x185, 0x189, 0x18D, 0x191,
0x195, 0x19A, 0x19E, 0x1A2, 0x1A6, 0x1AA, 0x1AE, 0x1B2,
0x1B7, 0x1BB, 0x1BF, 0x1C3, 0x1C8, 0x1CC, 0x1D0, 0x1D5,
0x1D9, 0x1DD, 0x1E2, 0x1E6, 0x1EB, 0x1EF, 0x1F3, 0x1F8,
0x1FC, 0x201, 0x205, 0x20A, 0x20F, 0x213, 0x218, 0x21C,
0x221, 0x226, 0x22A, 0x22F, 0x233, 0x238, 0x23D, 0x241,
0x246, 0x24B, 0x250, 0x254, 0x259, 0x25E, 0x263, 0x267,
0x26C, 0x271, 0x276, 0x27B, 0x280, 0x284, 0x289, 0x28E,
0x293, 0x298, 0x29D, 0x2A2, 0x2A6, 0x2AB, 0x2B0, 0x2B5,
0x2BA, 0x2BF, 0x2C4, 0x2C9, 0x2CE, 0x2D3, 0x2D8, 0x2DC,
0x2E1, 0x2E6, 0x2EB, 0x2F0, 0x2F5, 0x2FA, 0x2FF, 0x304,
0x309, 0x30E, 0x313, 0x318, 0x31D, 0x322, 0x326, 0x32B,
0x330, 0x335, 0x33A, 0x33F, 0x344, 0x349, 0x34E, 0x353,
0x357, 0x35C, 0x361, 0x366, 0x36B, 0x370, 0x374, 0x379,
0x37E, 0x383, 0x388, 0x38C, 0x391, 0x396, 0x39B, 0x39F,
0x3A4, 0x3A9, 0x3AD, 0x3B2, 0x3B7, 0x3BB, 0x3C0, 0x3C5,
0x3C9, 0x3CE, 0x3D2, 0x3D7, 0x3DC, 0x3E0, 0x3E5, 0x3E9,
0x3ED, 0x3F2, 0x3F6, 0x3FB, 0x3FF, 0x403, 0x408, 0x40C,
0x410, 0x415, 0x419, 0x41D, 0x421, 0x425, 0x42A, 0x42E,
0x432, 0x436, 0x43A, 0x43E, 0x442, 0x446, 0x44A, 0x44E,
0x452, 0x455, 0x459, 0x45D, 0x461, 0x465, 0x468, 0x46C,
0x470, 0x473, 0x477, 0x47A, 0x47E, 0x481, 0x485, 0x488,
0x48C, 0x48F, 0x492, 0x496, 0x499, 0x49C, 0x49F, 0x4A2,
0x4A6, 0x4A9, 0x4AC, 0x4AF, 0x4B2, 0x4B5, 0x4B7, 0x4BA,
0x4BD, 0x4C0, 0x4C3, 0x4C5, 0x4C8, 0x4CB, 0x4CD, 0x4D0,
0x4D2, 0x4D5, 0x4D7, 0x4D9, 0x4DC, 0x4DE, 0x4E0, 0x4E3,
0x4E5, 0x4E7, 0x4E9, 0x4EB, 0x4ED, 0x4EF, 0x4F1, 0x4F3,
0x4F5, 0x4F6, 0x4F8, 0x4FA, 0x4FB, 0x4FD, 0x4FF, 0x500,
0x502, 0x503, 0x504, 0x506, 0x507, 0x508, 0x50A, 0x50B,
0x50C, 0x50D, 0x50E, 0x50F, 0x510, 0x511, 0x511, 0x512,
0x513, 0x514, 0x514, 0x515, 0x516, 0x516, 0x517, 0x517,
0x517, 0x518, 0x518, 0x518, 0x518, 0x518, 0x519, 0x519
};
//static const int32 *G1 = &gauss[256], *G2 = &gauss[512],
// *G3 = &gauss[255], *G4 = &gauss[-1];
#define G1(n) gauss[256 + (n)]
#define G2(n) gauss[512 + (n)]
#define G3(n) gauss[255 + (n)]
#define G4(n) gauss[ -1 + (n)]
// envelope/noise table by libopenspc and SNEeSe
int32 env_counter_table[32] =
{
0x0000, 0x000F, 0x0014, 0x0018, 0x001E, 0x0028, 0x0030, 0x003C,
0x0050, 0x0060, 0x0078, 0x00A0, 0x00C0, 0x00F0, 0x0140, 0x0180,
0x01E0, 0x0280, 0x0300, 0x03C0, 0x0500, 0x0600, 0x0780, 0x0A00,
0x0C00, 0x0F00, 0x1400, 0x1800, 0x1E00, 0x2800, 0x3C00, 0x7800
};
static int32 env_counter_max;
static const int32 env_counter_max_master = 0x7800;
static int rand_seed = 1;
extern int32 Loop[16];
extern int32 Echo[24000];
extern int32 FilterTaps[8];
extern int32 MixBuffer[SOUND_BUFFER_SIZE];
extern int32 EchoBuffer[SOUND_BUFFER_SIZE];
extern int32 DummyEchoBuffer[SOUND_BUFFER_SIZE];
extern uint32 FIRIndex;
// For backward compatibility ------------------------------
static uint32 OldAttackRate[16] =
{
4100, 2600, 1500, 1000, 640, 380, 260, 160,
96, 64, 40, 24, 16, 10, 6, 1
};
static uint32 OldDecayRate[8] =
{
1200, 740, 440, 290, 180, 110, 74, 37
};
static uint32 OldSustainRate[32] =
{
~0, 38000, 28000, 24000, 19000, 14000, 12000, 9400,
7100, 5900, 4700, 3500, 2900, 2400, 1800, 1500,
1200, 880, 740, 590, 440, 370, 290, 220,
180, 150, 110, 92, 74, 55, 37, 18
};
static int OldNoiseFreq[32] =
{
0, 16, 21, 25, 31, 42, 50, 63,
84, 100, 125, 167, 200, 250, 333, 400,
500, 667, 800, 1000, 1300, 1600, 2000, 2700,
3200, 4000, 5300, 6400, 8000, 10700, 16000, 32000
};
// ---------------------------------------------------------
#define FIXED_POINT 0x10000UL
#define FIXED_POINT_SHIFT 16
#undef ABS
#define ABS(a) ((a) < 0 ? -(a) : (a))
#define CLIP16(v) \
if ((v) < -32768) \
(v) = -32768; \
else \
if ((v) > 32767) \
(v) = 32767
#define CLIP8(v) \
if ((v) < -128) \
(v) = -128; \
else \
if ((v) > 127) \
(v) = 127
void S9xAPUSetEndOfSample (int i, Channel *);
void S9xAPUSetEndX (int);
void S9xSetEnvRate (Channel *, int32, int32);
void MixStereo (int);
void MixMono (int);
static void S9xSetSoundFrequency (int, int);
static void S9xConvertSoundOldValues ();
static void DecodeBlock (Channel *);
static void AltDecodeBlock (Channel *);
static void AltDecodeBlock2 (Channel *);
STATIC inline uint8 *S9xGetSampleAddress (int);
EXTERN_C void DecodeBlockAsm (int8 *, int16 *, int32 *, int32 *);
EXTERN_C void DecodeBlockAsm2 (int8 *, int16 *, int32 *, int32 *);
static bool8 DoFakeMute = FALSE;
STATIC inline uint8 *S9xGetSampleAddress (int sample_number)
{
uint32 addr = (((APU.DSP[APU_DIR] << 8) + (sample_number << 2)) & 0xFFFF);
return (IAPU.RAM + addr);
}
void S9xAPUSetEndOfSample (int i, Channel *ch)
{
ch->state = SOUND_SILENT;
ch->mode = MODE_NONE;
ch->out_sample = 0;
ch->xenvx = 0;
if(!DoFakeMute) {
APU.DSP[APU_ENDX] |= 1 << i;
APU.DSP[APU_KON] &= ~(1 << i);
APU.DSP[APU_KOFF] &= ~(1 << i);
APU.KeyedChannels &= ~(1 << i);
}
}
#ifdef __DJGPP
END_OF_FUNCTION (S9xAPUSetEndOfSample)
#endif
void S9xAPUSetEndX (int i)
{
if(!DoFakeMute) {
APU.DSP[APU_ENDX] |= 1 << i;
}
}
#ifdef __DJGPP
END_OF_FUNCTION (S9xAPUSetEndX)
#endif
void S9xSetEnvRate (Channel *ch, int32 rate_count, int32 xtarget)
{
ch->xenvx_target = xtarget;
ch->xenv_rate = rate_count;
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xSetEnvRate);
#endif
void S9xSetEnvelopeRate (int channel, int32 rate_count, int32 xtarget)
{
S9xSetEnvRate (&SoundData.channels[channel], rate_count, xtarget);
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xSetEnvelopeRate);
#endif
void S9xSetSoundVolume (int channel, short volume_left, short volume_right)
{
Channel *ch = &SoundData.channels[channel];
if (so.stereo_switch + 1)
{
volume_left = ((so.stereo_switch & ( 1 << channel)) ? volume_left : 0);
volume_right = ((so.stereo_switch & (256 << channel)) ? volume_right : 0);
}
if (!so.stereo)
volume_left = (ABS(volume_right) + ABS(volume_left)) >> 1;
ch->volume_left = volume_left;
ch->volume_right = volume_right;
}
void S9xSetMasterVolume (short volume_left, short volume_right)
{
if (Settings.DisableMasterVolume)
{
SoundData.master_volume_left = 127;
SoundData.master_volume_right = 127;
SoundData.master_volume[0] = SoundData.master_volume[1] = 127;
}
else
{
if (!so.stereo)
volume_left = (ABS(volume_right) + ABS(volume_left)) >> 1;
SoundData.master_volume_left = volume_left;
SoundData.master_volume_right = volume_right;
SoundData.master_volume[Settings.ReverseStereo] = volume_left;
SoundData.master_volume[1 ^ Settings.ReverseStereo] = volume_right;
}
}
void S9xSetEchoVolume (short volume_left, short volume_right)
{
if (!so.stereo)
volume_left = (ABS(volume_right) + ABS(volume_left)) >> 1;
SoundData.echo_volume_left = volume_left;
SoundData.echo_volume_right = volume_right;
SoundData.echo_volume[Settings.ReverseStereo] = volume_left;
SoundData.echo_volume[1 ^ Settings.ReverseStereo] = volume_right;
}
void S9xSetEchoEnable (uint8 byte)
{
#if 0
SoundData.echo_channel_enable = byte;
if (!SoundData.echo_write_enabled || Settings.DisableSoundEcho)
byte = 0;
if (byte && !SoundData.echo_enable)
{
memset (Loop, 0, sizeof (Loop));
memset (Echo, 0, sizeof (Echo));
}
#endif
SoundData.echo_enable = byte;
for (int i = 0; i < NUM_CHANNELS; i++)
{
if (byte & (1 << i))
SoundData.channels[i].echo_buf_ptr = EchoBuffer;
else
SoundData.channels[i].echo_buf_ptr = DummyEchoBuffer;
}
}
void S9xSetEchoFeedback (int feedback)
{
SoundData.echo_feedback = feedback;
}
void S9xSetEchoDelay (unsigned int delay)
{
SoundData.echo_buffer_size = (delay << 10) * so.playback_rate / 32000;
if (!so.stereo)
SoundData.echo_buffer_size >>= 1;
if (SoundData.echo_buffer_size)
SoundData.echo_ptr %= SoundData.echo_buffer_size;
else
SoundData.echo_ptr = 0;
}
void S9xSetEchoWriteEnable (uint8 byte)
{
SoundData.echo_write_enabled = byte;
//printf("Echo write enable: %d\n", byte);
}
void S9xSetFrequencyModulationEnable (uint8 byte)
{
SoundData.pitch_mod = byte & ~1;
}
void S9xSetSoundKeyOff (int channel)
{
Channel *ch = &SoundData.channels[channel];
if (ch->state != SOUND_SILENT)
{
ch->state = SOUND_RELEASE;
ch->mode = MODE_RELEASE;
S9xSetEnvRate (ch, env_counter_max, 0);
}
}
void S9xPrepareSoundForSnapshotSave (bool8 restore)
{
static uint32 temp_hertz[NUM_CHANNELS];
int i, j;
if (!restore)
{
for (i = 0; i < NUM_CHANNELS; i++)
{
Channel *ch = &SoundData.channels[i];
ch->count = 0;
ch->envx = ch->xenvx >> 4;
ch->envx_target = ch->xenvx_target >> 4;
ch->direction = 0;
ch-> left_vol_level = (ch->xenvx * ch->volume_left ) >> 11;
ch->right_vol_level = (ch->xenvx * ch->volume_right) >> 11;
ch->release_rate = 8;
ch->sustain_level = ch->xsustain_level >> 8;
if (env_counter_max < ch->xenv_count)
ch->env_error = 0;
else
ch->env_error = (uint32)
((double) FIXED_POINT / env_counter_max * (env_counter_max - ch->xenv_count));
if (ch->xenv_rate < 0)
ch->erate = 0;
else
ch->erate = (uint32)
((double) FIXED_POINT / env_counter_max * ch->xenv_rate);
for (j = 0; j < 32; j++)
if (env_counter_table[j] == ch->xattack_rate)
break;
ch->attack_rate = OldAttackRate[(unsigned) (((j - 1) >> 1) & 0xF)];
for (j = 0; j < 32; j++)
if (env_counter_table[j] == ch->xdecay_rate)
break;
ch->decay_rate = OldDecayRate[(unsigned) (((j - 0x10) >> 1) & 0x7)];
for (j = 0; j < 32; j++)
if (env_counter_table[j] == ch->xsustain_rate)
break;
ch->sustain_rate = OldSustainRate[(unsigned) (j & 0x1F)];
}
for (j = 0; j < 32; j++)
if (env_counter_table[j] == SoundData.noise_rate)
break;
for (i = 0; i < NUM_CHANNELS; i++)
{
Channel *ch = &SoundData.channels[i];
temp_hertz[i] = ch->hertz;
if (ch->type == SOUND_NOISE)
ch->hertz = OldNoiseFreq[(unsigned) (j & 0x1F)];
}
}
else
{
for (i = 0; i < NUM_CHANNELS; i++)
{
Channel *ch = &SoundData.channels[i];
ch->hertz = temp_hertz[i];
}
}
}
static void S9xConvertSoundOldValues ()
{
int i, j;
int old_noise_freq = 0;
for (i = 0; i < NUM_CHANNELS; i++)
{
Channel *ch = &SoundData.channels[i];
ch->xenvx = ch->envx << 4;
ch->xenvx_target = ch->envx_target << 4;
ch->out_sample = ((ch->sample * ch->xenvx) >> 11) & ~1;
ch->xsustain_level = ch->sustain_level << 8;
ch->xenv_rate = (int32) ((double) ch->erate * env_counter_max / FIXED_POINT);
ch->xenv_count = env_counter_max -
(int32) ((double) ch->env_error * env_counter_max / FIXED_POINT);
for (j = 0; j < 16; j++)
if (OldAttackRate[j] == ch->attack_rate)
break;
ch->xattack_rate = env_counter_table[(unsigned) (((j << 1) + 1) & 0x1F)];
for (j = 0; j < 8; j++)
if (OldDecayRate[j] == ch->decay_rate)
break;
ch->xdecay_rate = env_counter_table[(unsigned) (((j << 1) + 0x10) & 0x1F)];
for (j = 0; j < 32; j++)
if (OldSustainRate[j] == ch->sustain_rate)
break;
ch->xsustain_rate = env_counter_table[(unsigned) (j & 0x1F)];
if (ch->type == SOUND_NOISE)
{
old_noise_freq = ch->hertz;
ch->hertz = 32000;
}
}
if (old_noise_freq)
{
for (j = 0; j < 32; j++)
if (OldNoiseFreq[j] == old_noise_freq)
break;
SoundData.noise_rate = env_counter_table[(unsigned) (j & 0x1F)];
}
else
SoundData.noise_rate = 0;
}
void S9xFixSoundAfterSnapshotLoad (int version)
{
S9xSetEchoEnable (APU.DSP[APU_EON]);
S9xSetEchoWriteEnable (!(APU.DSP[APU_FLG] & APU_ECHO_DISABLED));
S9xSetEchoDelay (APU.DSP[APU_EDL] & 0xF);
S9xSetEchoFeedback ((signed char) APU.DSP[APU_EFB]);
S9xSetFilterCoefficient (0, (signed char) APU.DSP[APU_C0]);
S9xSetFilterCoefficient (1, (signed char) APU.DSP[APU_C1]);
S9xSetFilterCoefficient (2, (signed char) APU.DSP[APU_C2]);
S9xSetFilterCoefficient (3, (signed char) APU.DSP[APU_C3]);
S9xSetFilterCoefficient (4, (signed char) APU.DSP[APU_C4]);
S9xSetFilterCoefficient (5, (signed char) APU.DSP[APU_C5]);
S9xSetFilterCoefficient (6, (signed char) APU.DSP[APU_C6]);
S9xSetFilterCoefficient (7, (signed char) APU.DSP[APU_C7]);
if (version < 2)
S9xConvertSoundOldValues ();
for (int i = 0; i < NUM_CHANNELS; i++)
{
S9xSetSoundFrequency (i, SoundData.channels[i].hertz);
SoundData.channels[i].needs_decode = TRUE;
SoundData.channels[i].nb_index = 0;
SoundData.channels[i].nb_sample[0] = 0;
SoundData.channels[i].nb_sample[1] = 0;
SoundData.channels[i].nb_sample[2] = 0;
SoundData.channels[i].nb_sample[3] = 0;
SoundData.channels[i].xsmp_count = 0;
SoundData.channels[i].previous[0] = (int32) SoundData.channels[i].previous16[0];
SoundData.channels[i].previous[1] = (int32) SoundData.channels[i].previous16[1];
}
SoundData.noise_count = 0;
SoundData.master_volume[Settings.ReverseStereo] = SoundData.master_volume_left;
SoundData.master_volume[1 ^ Settings.ReverseStereo] = SoundData.master_volume_right;
SoundData.echo_volume[Settings.ReverseStereo] = SoundData.echo_volume_left;
SoundData.echo_volume[1 ^ Settings.ReverseStereo] = SoundData.echo_volume_right;
}
void S9xSetFilterCoefficient (int tap, int value)
{
FilterTaps[tap & 7] = value;
SoundData.no_filter =
FilterTaps[0] == 127 &&
FilterTaps[1] == 0 &&
FilterTaps[2] == 0 &&
FilterTaps[3] == 0 &&
FilterTaps[4] == 0 &&
FilterTaps[5] == 0 &&
FilterTaps[6] == 0 &&
FilterTaps[7] == 0;
}
void S9xSetSoundADSR (int channel, int ar, int dr, int sr, int sl)
{
Channel *ch = &SoundData.channels[channel];
ch->xattack_rate = env_counter_table[(ar << 1) + 1];
ch->xdecay_rate = env_counter_table[(dr << 1) + 0x10];
ch->xsustain_rate = env_counter_table[sr];
ch->xsustain_level = (ENV_RANGE >> 3) * (sl + 1);
switch (ch->state)
{
case SOUND_ATTACK:
S9xSetEnvRate (ch, ch->xattack_rate, ENV_MAX);
break;
case SOUND_DECAY:
S9xSetEnvRate (ch, ch->xdecay_rate, ch->xsustain_level);
break;
case SOUND_SUSTAIN:
S9xSetEnvRate (ch, ch->xsustain_rate, 0);
break;
}
}
void S9xSetEnvelopeHeight (int channel, int32 xlevel)
{
Channel *ch = &SoundData.channels[channel];
ch->xenvx = ch->xenvx_target = xlevel;
ch->xenv_rate = 0;
if (xlevel == 0 && ch->state != SOUND_SILENT && ch->state != SOUND_GAIN)
S9xAPUSetEndOfSample (channel, ch);
}
uint8 S9xGetEnvelopeHeight (int channel)
{
if (Settings.SoundEnvelopeHeightReading)
return ((SoundData.channels[channel].xenvx >> ENV_SHIFT) & 0x7F);
else
return (0);
}
static void S9xSetSoundFrequency (int channel, int hertz)
{
if (so.playback_rate)
SoundData.channels[channel].frequency = (uint32)
((int64) (hertz << (FIXED_POINT_SHIFT - 15)) * 32000 / so.playback_rate);
if (Settings.FixFrequency)
SoundData.channels[channel].frequency = (uint32)
(SoundData.channels[channel].frequency * so.pitch_mul);
}
void S9xSetSoundHertz (int channel, int hertz)
{
SoundData.channels[channel].hertz = hertz;
S9xSetSoundFrequency (channel, hertz);
}
void S9xSetSoundType (int channel, int type_of_sound)
{
SoundData.channels[channel].type = type_of_sound;
}
bool8 S9xSetSoundMute (bool8 mute)
{
bool8 old = so.mute_sound;
so.mute_sound = mute;
return (old);
}
static void AltDecodeBlock (Channel *ch)
{
if (ch->block_pointer > 0x10000 - 9)
{
ch->last_block = TRUE;
ch->loop = FALSE;
ch->block = ch->decoded;
memset ((void *) ch->decoded, 0, sizeof (int16) * 16);
return;
}
signed char *compressed = (signed char *) &IAPU.RAM[ch->block_pointer];
unsigned char filter = *compressed;
ch->last_block = filter & 1;
ch->loop = (filter & 2) != 0;
signed short *raw = ch->block = ch->decoded;
#if (defined (USE_X86_ASM) && (defined (__i386__) || defined (__i486__) || \
defined (__i586__) || defined (__WIN32__) || defined (__DJGPP)))
if (Settings.AltSampleDecode == 1)
DecodeBlockAsm (compressed, raw, &ch->previous[0], &ch->previous[1]);
else
DecodeBlockAsm2 (compressed, raw, &ch->previous[0], &ch->previous[1]);
#else
int32 out;
unsigned char shift;
signed char sample1, sample2;
uint32 i;
compressed++;
int32 prev0 = ch->previous[0];
int32 prev1 = ch->previous[1];
shift = filter >> 4;
switch ((filter >> 2) & 3)
{
case 0:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
*raw++ = ((int32) sample1 << shift);
*raw++ = ((int32) sample2 << shift);
}
prev1 = *(raw - 2);
prev0 = *(raw - 1);
break;
case 1:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
prev0 = (int16) prev0;
*raw++ = prev1 = ((int32) sample1 << shift) + prev0 - (prev0 >> 4);
prev1 = (int16) prev1;
*raw++ = prev0 = ((int32) sample2 << shift) + prev1 - (prev1 >> 4);
}
break;
case 2:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
out = (sample1 << shift) - prev1 + (prev1 >> 4);
prev1 = (int16) prev0;
prev0 &= ~3;
*raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 5) -
(prev0 >> 4);
out = (sample2 << shift) - prev1 + (prev1 >> 4);
prev1 = (int16) prev0;
prev0 &= ~3;
*raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 5) -
(prev0 >> 4);
}
break;
case 3:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
out = (sample1 << shift);
out = out - prev1 + (prev1 >> 3) + (prev1 >> 4);
prev1 = (int16) prev0;
prev0 &= ~3;
*raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 3) -
(prev0 >> 4) - (prev1 >> 6);
out = (sample2 << shift);
out = out - prev1 + (prev1 >> 3) + (prev1 >> 4);
prev1 = (int16) prev0;
prev0 &= ~3;
*raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 3) -
(prev0 >> 4) - (prev1 >> 6);
}
break;
}
ch->previous[0] = prev0;
ch->previous[1] = prev1;
#endif
ch->block_pointer += 9;
}
static void AltDecodeBlock2 (Channel *ch)
{
int32 out;
unsigned char filter;
unsigned char shift;
signed char sample1, sample2;
uint32 i;
if (ch->block_pointer > 0x10000 - 9)
{
ch->last_block = TRUE;
ch->loop = FALSE;
ch->block = ch->decoded;
memset ((void *) ch->decoded, 0, sizeof (int16) * 16);
return;
}
signed char *compressed = (signed char *) &IAPU.RAM[ch->block_pointer];
filter = *compressed;
ch->last_block = filter & 1;
ch->loop = (filter & 2) != 0;
compressed++;
signed short *raw = ch->block = ch->decoded;
shift = filter >> 4;
int32 prev0 = ch->previous[0];
int32 prev1 = ch->previous[1];
if(shift > 12)
shift -= 4;
switch ((filter >> 2) & 3)
{
case 0:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
out = (int32) (sample1 << shift);
prev1 = prev0;
prev0 = out;
CLIP16(out);
*raw++ = (int16) out;
out = (int32) (sample2 << shift);
prev1 = prev0;
prev0 = out;
CLIP16(out);
*raw++ = (int16) out;
}
break;
case 1:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
out = (int32) (sample1 << shift);
out += (int32) ((double) prev0 * 15/16);
prev1 = prev0;
prev0 = out;
CLIP16(out);
*raw++ = (int16) out;
out = (int32) (sample2 << shift);
out += (int32) ((double) prev0 * 15/16);
prev1 = prev0;
prev0 = out;
CLIP16(out);
*raw++ = (int16) out;
}
break;
case 2:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
out = ((sample1 << shift) * 256 + (prev0 & ~0x2) * 488 - prev1 * 240) >> 8;
prev1 = prev0;
prev0 = (int16) out;
*raw++ = (int16) out;
out = ((sample2 << shift) * 256 + (prev0 & ~0x2) * 488 - prev1 * 240) >> 8;
prev1 = prev0;
prev0 = (int16) out;
*raw++ = (int16) out;
}
break;
case 3:
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
sample2 >>= 4;
sample1 >>= 4;
out = (int32) (sample1 << shift);
out += (int32) ((double) prev0 * 115/64 - (double) prev1 * 13/16);
prev1 = prev0;
prev0 = out;
CLIP16(out);
*raw++ = (int16) out;
out = (int32) (sample2 << shift);
out += (int32) ((double) prev0 * 115/64 - (double) prev1 * 13/16);
prev1 = prev0;
prev0 = out;
CLIP16(out);
*raw++ = (int16) out;
}
break;
}
ch->previous[0] = prev0;
ch->previous[1] = prev1;
ch->block_pointer += 9;
}
static void DecodeBlock (Channel *ch)
{
int32 out;
unsigned char filter;
unsigned char shift;
signed char sample1, sample2;
bool invalid_header;
if (Settings.AltSampleDecode)
{
if (Settings.AltSampleDecode < 3)
AltDecodeBlock (ch);
else
AltDecodeBlock2 (ch);
return;
}
if (ch->block_pointer > 0x10000 - 9)
{
ch->last_block = TRUE;
ch->loop = FALSE;
ch->block = ch->decoded;
return;
}
signed char *compressed = (signed char *) &IAPU.RAM[ch->block_pointer];
filter = *compressed;
ch->last_block = filter & 1;
ch->loop = (filter & 2) != 0;
compressed++;
signed short *raw = ch->block = ch->decoded;
// Seperate out the header parts used for decoding
shift = filter >> 4;
// Header validity check: if range(shift) is over 12, ignore
// all bits of the data for that block except for the sign bit of each
invalid_header = !(shift < 0xD);
filter &= 0x0C;
int32 prev0 = ch->previous[0];
int32 prev1 = ch->previous[1];
for (uint32 i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
//Sample 2 = Bottom Nibble, Sign Extended.
sample2 >>= 4;
//Sample 1 = Top Nibble, shifted down and Sign Extended.
sample1 >>= 4;
for (int nybblesmp = 0; nybblesmp < 2; nybblesmp++)
{
out = (nybblesmp ? sample2 : sample1);
if (!invalid_header)
out = (out << shift) >> 1;
else
out &= ~0x7FF;
switch (filter)
{
case 0x00:
// Method0 -[Smp]
break;
case 0x04:
// Method1 -[Delta]+[Smp-1](15/16)
out += prev0 >> 1;
out += (-prev0) >> 5;
break;
case 0x08:
// Method2 -[Delta]+[Smp-1](61/32)-[Smp-2](15/16)
out += prev0;
out += (-(prev0 + (prev0 >> 1))) >> 5;
out -= prev1 >> 1;
out += prev1 >> 5;
break;
case 0x0C:
// Method3 -[Delta]+[Smp-1](115/64)-[Smp-2](13/16)
out += prev0;
out += (-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7;
out -= prev1 >> 1;
out += (prev1 + (prev1 >> 1)) >> 4;
break;
}
CLIP16(out);
prev1 = (signed short) prev0;
prev0 = *raw++ = (signed short) (out << 1);
}
}
ch->previous[0] = prev0;
ch->previous[1] = prev1;
ch->block_pointer += 9;
}
void MixStereo (int sample_count)
{
DoFakeMute=Settings.FakeMuteFix;
static int32 noise_cache[256];
static int32 wave[SOUND_BUFFER_SIZE];
int pitch_mod = SoundData.pitch_mod & ~APU.DSP[APU_NON];
int32 noise_index = 0;
int32 noise_count = 0;
if (APU.DSP[APU_NON])
{
noise_count = SoundData.noise_count;
for (uint32 I = 0; I < (uint32) sample_count; I += 2)
{
noise_count -= SoundData.noise_rate;
while (noise_count <= 0)
{
rand_seed = rand_seed * 48828125 + 1;
noise_cache[noise_index] = rand_seed;
noise_index = (noise_index + 1) & 0xFF;
noise_count += env_counter_max;
}
}
}
for (uint32 J = 0; J < NUM_CHANNELS; J++)
{
Channel *ch = &SoundData.channels[J];
uint32 freq = ch->frequency;
bool8 last_block = FALSE;
if (ch->type == SOUND_NOISE)
{
noise_index = 0;
noise_count = SoundData.noise_count;
}
if (ch->state == SOUND_SILENT || last_block || !(so.sound_switch & (1 << J)))
continue;
bool8 mod1 = pitch_mod & (1 << J);
bool8 mod2 = pitch_mod & (1 << (J + 1));
if (ch->needs_decode)
{
DecodeBlock(ch);
ch->needs_decode = FALSE;
ch->sample = ch->block[0];
ch->sample_pointer = 0;
}
for (uint32 I = 0; I < (uint32) sample_count; I += 2)
{
switch (ch->state)
{
case SOUND_ATTACK:
if (ch->xenv_rate == env_counter_max_master)
ch->xenvx += (ENV_RANGE >> 1); // FIXME
else
{
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx += (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
}
if (ch->xenvx > ENV_MAX)
{
ch->xenvx = ENV_MAX;
if (ch->xsustain_level != ENV_RANGE)
{
ch->state = SOUND_DECAY;
S9xSetEnvRate (ch, ch->xdecay_rate, ch->xsustain_level);
}
else
{
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate (ch, ch->xsustain_rate, 0);
}
}
break;
case SOUND_DECAY:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= ((ch->xenvx - 1) >> 8) + 1; // 1 - 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= ch->xenvx_target)
{
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto stereo_exit;
}
else
{
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate (ch, ch->xsustain_rate, 0);
}
}
break;
case SOUND_SUSTAIN:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= ((ch->xenvx - 1) >> 8) + 1; // 1 - 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto stereo_exit;
}
break;
case SOUND_RELEASE:
ch->xenv_count -= env_counter_max;
while (ch->xenv_count <= 0)
{
ch->xenvx -= (ENV_RANGE >> 8); // 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto stereo_exit;
}
break;
case SOUND_INCREASE_LINEAR:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx += (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
if (ch->xenvx > ENV_MAX)
{
ch->xenvx = ENV_MAX;
ch->state = SOUND_GAIN;
ch->mode = MODE_GAIN;
S9xSetEnvRate (ch, 0, 0);
}
break;
case SOUND_INCREASE_BENT_LINE:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
if (ch->xenvx >= ((ENV_RANGE * 3) >> 2)) // 0x600
ch->xenvx += (ENV_RANGE >> 8); // 1/256
else
ch->xenvx += (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
if (ch->xenvx > ENV_MAX)
{
ch->xenvx = ENV_MAX;
ch->state = SOUND_GAIN;
ch->mode = MODE_GAIN;
S9xSetEnvRate (ch, 0, 0);
}
break;
case SOUND_DECREASE_LINEAR:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto stereo_exit;
}
break;
case SOUND_DECREASE_EXPONENTIAL:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= ((ch->xenvx - 1) >> 8) + 1; // 1 - 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto stereo_exit;
}
break;
case SOUND_GAIN:
S9xSetEnvRate (ch, 0, 0);
break;
}
ch->xsmp_count += mod1 ? (((int64) freq * (32768 + wave[I >> 1])) >> 15) : freq;
while (ch->xsmp_count >= 0)
{
ch->xsmp_count -= FIXED_POINT;
ch->nb_sample[ch->nb_index] = ch->sample;
ch->nb_index = (ch->nb_index + 1) & 3;
ch->sample_pointer++;
if (ch->sample_pointer == SOUND_DECODE_LENGTH)
{
ch->sample_pointer = 0;
if (ch->last_block)
{
S9xAPUSetEndX (J);
if (!ch->loop)
{
ch->xenvx = 0;
last_block = TRUE;
//S9xAPUSetEndOfSample (J, ch);
while (ch->xsmp_count >= 0)
{
ch->xsmp_count -= FIXED_POINT;
ch->nb_sample[ch->nb_index] = 0;
ch->nb_index = (ch->nb_index + 1) & 3;
}
break;
}
else
{
ch->last_block = FALSE;
uint8 *dir = S9xGetSampleAddress (ch->sample_number);
ch->block_pointer = READ_WORD(dir + 2); // loop pointer
}
}
DecodeBlock (ch);
}
ch->sample = ch->block[ch->sample_pointer];
}
int32 outx, d;
if (ch->type == SOUND_SAMPLE)
{
if (Settings.InterpolatedSound)
{
// 4-point gaussian interpolation
d = ch->xsmp_count >> (FIXED_POINT_SHIFT - 8);
outx = ((G4(-d) * ch->nb_sample[ ch->nb_index ]) >> 11) & ~1;
outx += ((G3(-d) * ch->nb_sample[(ch->nb_index + 1) & 3]) >> 11) & ~1;
outx += ((G2( d) * ch->nb_sample[(ch->nb_index + 2) & 3]) >> 11) & ~1;
outx = ((outx & 0xFFFF) ^ 0x8000) - 0x8000;
outx += ((G1( d) * ch->nb_sample[(ch->nb_index + 3) & 3]) >> 11) & ~1;
CLIP16(outx);
}
else
outx = ch->sample;
}
else // SAMPLE_NOISE
{
noise_count -= SoundData.noise_rate;
while (noise_count <= 0)
{
noise_count += env_counter_max;
noise_index = (noise_index + 1) & 0xFF;
}
outx = noise_cache[noise_index] >> 16;
}
outx = ((outx * ch->xenvx) >> 11) & ~1;
ch->out_sample = outx;
if (mod2)
wave[I >> 1] = outx;
int32 VL, VR;
VL = (outx * ch->volume_left ) >> 7;
VR = (outx * ch->volume_right) >> 7;
MixBuffer[I ^ Settings.ReverseStereo ] += VL;
MixBuffer[I + (1 ^ Settings.ReverseStereo)] += VR;
ch->echo_buf_ptr[I ^ Settings.ReverseStereo ] += VL;
ch->echo_buf_ptr[I + (1 ^ Settings.ReverseStereo)] += VR;
}
stereo_exit: ;
}
DoFakeMute=FALSE;
if (APU.DSP[APU_NON])
SoundData.noise_count = noise_count;
}
#ifdef __DJGPP
END_OF_FUNCTION(MixStereo);
#endif
void MixMono (int sample_count)
{
DoFakeMute=Settings.FakeMuteFix;
static int32 noise_cache[256];
static int32 wave[SOUND_BUFFER_SIZE];
int pitch_mod = SoundData.pitch_mod & ~APU.DSP[APU_NON];
int32 noise_index = 0;
int32 noise_count = 0;
if (APU.DSP[APU_NON])
{
noise_count = SoundData.noise_count;
for (uint32 I = 0; I < (uint32) sample_count; I++)
{
noise_count -= SoundData.noise_rate;
while (noise_count <= 0)
{
rand_seed = rand_seed * 48828125 + 1;
noise_cache[noise_index] = rand_seed;
noise_index = (noise_index + 1) & 0xFF;
noise_count += env_counter_max;
}
}
}
for (uint32 J = 0; J < NUM_CHANNELS; J++)
{
Channel *ch = &SoundData.channels[J];
uint32 freq = ch->frequency;
bool8 last_block = FALSE;
if (ch->type == SOUND_NOISE)
{
noise_index = 0;
noise_count = SoundData.noise_count;
}
if (ch->state == SOUND_SILENT || last_block || !(so.sound_switch & (1 << J)))
continue;
bool8 mod1 = pitch_mod & (1 << J);
bool8 mod2 = pitch_mod & (1 << (J + 1));
if (ch->needs_decode)
{
DecodeBlock(ch);
ch->needs_decode = FALSE;
ch->sample = ch->block[0];
ch->sample_pointer = 0;
}
for (uint32 I = 0; I < (uint32) sample_count; I++)
{
switch (ch->state)
{
case SOUND_ATTACK:
if (ch->xenv_rate == env_counter_max_master)
ch->xenvx += (ENV_RANGE >> 1); // FIXME
else
{
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx += (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
}
if (ch->xenvx > ENV_MAX)
{
ch->xenvx = ENV_MAX;
if (ch->xsustain_level != ENV_RANGE)
{
ch->state = SOUND_DECAY;
S9xSetEnvRate (ch, ch->xdecay_rate, ch->xsustain_level);
}
else
{
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate (ch, ch->xsustain_rate, 0);
}
}
break;
case SOUND_DECAY:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= ((ch->xenvx - 1) >> 8) + 1; // 1 - 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= ch->xenvx_target)
{
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto mono_exit;
}
else
{
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate (ch, ch->xsustain_rate, 0);
}
}
break;
case SOUND_SUSTAIN:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= ((ch->xenvx - 1) >> 8) + 1; // 1 - 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto mono_exit;
}
break;
case SOUND_RELEASE:
ch->xenv_count -= env_counter_max;
while (ch->xenv_count <= 0)
{
ch->xenvx -= (ENV_RANGE >> 8); // 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto mono_exit;
}
break;
case SOUND_INCREASE_LINEAR:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx += (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
if (ch->xenvx > ENV_MAX)
{
ch->xenvx = ENV_MAX;
ch->state = SOUND_GAIN;
ch->mode = MODE_GAIN;
S9xSetEnvRate (ch, 0, 0);
}
break;
case SOUND_INCREASE_BENT_LINE:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
if (ch->xenvx >= ((ENV_RANGE * 3) >> 2)) // 0x600
ch->xenvx += (ENV_RANGE >> 8); // 1/256
else
ch->xenvx += (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
if (ch->xenvx > ENV_MAX)
{
ch->xenvx = ENV_MAX;
ch->state = SOUND_GAIN;
ch->mode = MODE_GAIN;
S9xSetEnvRate (ch, 0, 0);
}
break;
case SOUND_DECREASE_LINEAR:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= (ENV_RANGE >> 6); // 1/64
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto mono_exit;
}
break;
case SOUND_DECREASE_EXPONENTIAL:
ch->xenv_count -= ch->xenv_rate;
while (ch->xenv_count <= 0)
{
ch->xenvx -= ((ch->xenvx - 1) >> 8) + 1; // 1 - 1/256
ch->xenv_count += env_counter_max;
}
if (ch->xenvx <= 0)
{
S9xAPUSetEndOfSample (J, ch);
goto mono_exit;
}
break;
case SOUND_GAIN:
S9xSetEnvRate (ch, 0, 0);
break;
}
ch->xsmp_count += mod1 ? (((int64) freq * (32768 + wave[I])) >> 15) : freq;
while (ch->xsmp_count >= 0)
{
ch->xsmp_count -= FIXED_POINT;
ch->nb_sample[ch->nb_index] = ch->sample;
ch->nb_index = (ch->nb_index + 1) & 3;
ch->sample_pointer++;
if (ch->sample_pointer == SOUND_DECODE_LENGTH)
{
ch->sample_pointer = 0;
if (ch->last_block)
{
S9xAPUSetEndX (J);
if (!ch->loop)
{
ch->xenvx = 0;
last_block = TRUE;
//S9xAPUSetEndOfSample (J, ch);
while (ch->xsmp_count >= 0)
{
ch->xsmp_count -= FIXED_POINT;
ch->nb_sample[ch->nb_index] = 0;
ch->nb_index = (ch->nb_index + 1) & 3;
}
break;
}
else
{
ch->last_block = FALSE;
uint8 *dir = S9xGetSampleAddress (ch->sample_number);
ch->block_pointer = READ_WORD(dir + 2); // loop pointer
}
}
DecodeBlock (ch);
}
ch->sample = ch->block[ch->sample_pointer];
}
int32 outx, d;
if (ch->type == SOUND_SAMPLE)
{
if (Settings.InterpolatedSound)
{
// 4-point gaussian interpolation
d = ch->xsmp_count >> (FIXED_POINT_SHIFT - 8);
outx = ((G4(-d) * ch->nb_sample[ ch->nb_index ]) >> 11) & ~1;
outx += ((G3(-d) * ch->nb_sample[(ch->nb_index + 1) & 3]) >> 11) & ~1;
outx += ((G2( d) * ch->nb_sample[(ch->nb_index + 2) & 3]) >> 11) & ~1;
outx = ((outx & 0xFFFF) ^ 0x8000) - 0x8000;
outx += ((G1( d) * ch->nb_sample[(ch->nb_index + 3) & 3]) >> 11) & ~1;
CLIP16(outx);
}
else
outx = ch->sample;
}
else // SAMPLE_NOISE
{
noise_count -= SoundData.noise_rate;
while (noise_count <= 0)
{
noise_count += env_counter_max;
noise_index = (noise_index + 1) & 0xFF;
}
outx = noise_cache[noise_index] >> 16;
}
outx = ((outx * ch->xenvx) >> 11) & ~1;
ch->out_sample = outx;
if (mod2)
wave[I] = outx;
int32 V;
V = (outx * ch->volume_left ) >> 7;
MixBuffer[I] += V;
ch->echo_buf_ptr[I] += V;
}
mono_exit: ;
}
DoFakeMute=FALSE;
if (APU.DSP[APU_NON])
SoundData.noise_count = noise_count;
}
#ifdef __DJGPP
END_OF_FUNCTION(MixMono);
#endif
#ifdef __sun
extern uint8 int2ulaw (int);
#endif
// For backwards compatibility with older port specific code
void S9xMixSamplesO (uint8 *buffer, int sample_count, int byte_offset)
{
S9xMixSamples (buffer+byte_offset, sample_count);
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xMixSamplesO);
#endif
void S9xMixSamples (uint8 *buffer, int sample_count)
{
int I, J;
if (!so.mute_sound)
{
memset (MixBuffer, 0, sample_count * sizeof (MixBuffer[0]));
if (!Settings.DisableSoundEcho)
memset (EchoBuffer, 0, sample_count * sizeof (EchoBuffer[0]));
if (so.stereo)
MixStereo (sample_count);
else
MixMono (sample_count);
}
/* Mix and convert waveforms */
if (so.sixteen_bit)
{
// 16-bit sound
if (so.mute_sound)
memset (buffer, 0, sample_count << 1);
else
{
if (!Settings.DisableSoundEcho)
{
if (so.stereo)
{
// 16-bit stereo sound with echo enabled ...
if (SoundData.no_filter)
{
// ... but no filter defined.
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 15] = E;
E = (E * 127) >> 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[J & 1] +
E * SoundData.echo_volume[J & 1]) >> 7;
CLIP16(I);
((int16 *) buffer) [J] = I;
}
}
else
{
// ... with filter defined.
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 15] = E;
E = E * FilterTaps[0];
E += Loop[(FIRIndex - 2) & 15] * FilterTaps[1];
E += Loop[(FIRIndex - 4) & 15] * FilterTaps[2];
E += Loop[(FIRIndex - 6) & 15] * FilterTaps[3];
E += Loop[(FIRIndex - 8) & 15] * FilterTaps[4];
E += Loop[(FIRIndex - 10) & 15] * FilterTaps[5];
E += Loop[(FIRIndex - 12) & 15] * FilterTaps[6];
E += Loop[(FIRIndex - 14) & 15] * FilterTaps[7];
E >>= 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[J & 1] +
E * SoundData.echo_volume[J & 1]) >> 7;
CLIP16(I);
((int16 *) buffer) [J] = I;
}
}
}
else
{
// 16-bit mono sound with echo enabled...
if (SoundData.no_filter)
{
// ... no filter defined
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 7] = E;
E = (E * 127) >> 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[0] +
E * SoundData.echo_volume[0]) >> 7;
CLIP16(I);
((int16 *) buffer) [J] = I;
}
}
else
{
// ... with filter defined
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 7] = E;
E = E * FilterTaps[0];
E += Loop[(FIRIndex - 1) & 7] * FilterTaps[1];
E += Loop[(FIRIndex - 2) & 7] * FilterTaps[2];
E += Loop[(FIRIndex - 3) & 7] * FilterTaps[3];
E += Loop[(FIRIndex - 4) & 7] * FilterTaps[4];
E += Loop[(FIRIndex - 5) & 7] * FilterTaps[5];
E += Loop[(FIRIndex - 6) & 7] * FilterTaps[6];
E += Loop[(FIRIndex - 7) & 7] * FilterTaps[7];
E >>= 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[0] +
E * SoundData.echo_volume[0]) >> 7;
CLIP16(I);
((int16 *) buffer) [J] = I;
}
}
}
}
else
{
// 16-bit mono or stereo sound, no echo
for (J = 0; J < sample_count; J++)
{
I = (MixBuffer[J] * SoundData.master_volume[J & 1]) >> 7;
CLIP16(I);
((int16 *) buffer) [J] = I;
}
}
}
}
else
{
// 8-bit sound
if (so.mute_sound)
memset (buffer, 128, sample_count);
else
#ifdef __sun
if (so.encoded)
{
for (J = 0; J < sample_count; J++)
{
I = (MixBuffer[J] * SoundData.master_volume[0]) >> 7;
CLIP16(I);
buffer[J] = int2ulaw (I);
}
}
else
#endif
{
if (!Settings.DisableSoundEcho)
{
if (so.stereo)
{
// 8-bit stereo sound with echo enabled...
if (SoundData.no_filter)
{
// ... but no filter
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 15] = E;
E = (E * 127) >> 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[J & 1] +
E * SoundData.echo_volume[J & 1]) >> 15;
CLIP8(I);
buffer[J] = I + 128;
}
}
else
{
// ... with filter
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 15] = E;
E = E * FilterTaps[0];
E += Loop[(FIRIndex - 2) & 15] * FilterTaps[1];
E += Loop[(FIRIndex - 4) & 15] * FilterTaps[2];
E += Loop[(FIRIndex - 6) & 15] * FilterTaps[3];
E += Loop[(FIRIndex - 8) & 15] * FilterTaps[4];
E += Loop[(FIRIndex - 10) & 15] * FilterTaps[5];
E += Loop[(FIRIndex - 12) & 15] * FilterTaps[6];
E += Loop[(FIRIndex - 14) & 15] * FilterTaps[7];
E >>= 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[J & 1] +
E * SoundData.echo_volume[J & 1]) >> 15;
CLIP8(I);
buffer[J] = I + 128;
}
}
}
else
{
// 8-bit mono sound with echo enabled...
if (SoundData.no_filter)
{
// ... but no filter.
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 7] = E;
E = (E * 127) >> 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[0] +
E * SoundData.echo_volume[0]) >> 15;
CLIP8(I);
buffer[J] = I + 128;
}
}
else
{
// ... with filter.
for (J = 0; J < sample_count; J++)
{
int E = Echo[SoundData.echo_ptr];
Loop[FIRIndex & 7] = E;
E = E * FilterTaps[0];
E += Loop[(FIRIndex - 1) & 7] * FilterTaps[1];
E += Loop[(FIRIndex - 2) & 7] * FilterTaps[2];
E += Loop[(FIRIndex - 3) & 7] * FilterTaps[3];
E += Loop[(FIRIndex - 4) & 7] * FilterTaps[4];
E += Loop[(FIRIndex - 5) & 7] * FilterTaps[5];
E += Loop[(FIRIndex - 6) & 7] * FilterTaps[6];
E += Loop[(FIRIndex - 7) & 7] * FilterTaps[7];
E >>= 7;
FIRIndex++;
if (SoundData.echo_write_enabled)
{
I = EchoBuffer[J] + ((E * SoundData.echo_feedback) >> 7);
CLIP16(I);
Echo[SoundData.echo_ptr] = I;
}
else // FIXME: Snes9x's echo buffer is not in APU_RAM
Echo[SoundData.echo_ptr] = 0;
if (++SoundData.echo_ptr >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer[J] * SoundData.master_volume[0] +
E * SoundData.echo_volume[0]) >> 15;
CLIP8(I);
buffer[J] = I + 128;
}
}
}
}
else
{
// 8-bit mono or stereo sound, no echo
for (J = 0; J < sample_count; J++)
{
I = (MixBuffer[J] * SoundData.master_volume[J & 1]) >> 15;
CLIP8(I);
buffer[J] = I + 128;
}
}
}
}
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xMixSamples);
#endif
void S9xResetSound (bool8 full)
{
for (int i = 0; i < NUM_CHANNELS; i++)
{
SoundData.channels[i].state = SOUND_SILENT;
SoundData.channels[i].mode = MODE_NONE;
SoundData.channels[i].type = SOUND_SAMPLE;
SoundData.channels[i].volume_left = 0;
SoundData.channels[i].volume_right = 0;
SoundData.channels[i].hertz = 0;
SoundData.channels[i].loop = FALSE;
SoundData.channels[i].xsmp_count = 0;
SoundData.channels[i].xenvx = 0;
SoundData.channels[i].xenvx_target = 0;
SoundData.channels[i].xenv_count = 0;
SoundData.channels[i].xenv_rate = 0;
SoundData.channels[i].xattack_rate = 0;
SoundData.channels[i].xdecay_rate = 0;
SoundData.channels[i].xsustain_rate = 0;
SoundData.channels[i].xsustain_level = 0;
if(full)
{
SoundData.channels[i].out_sample = 0;
SoundData.channels[i].block_pointer = 0;
SoundData.channels[i].sample_pointer = 0;
SoundData.channels[i].sample = 0;
SoundData.channels[i].sample_number = 0;
SoundData.channels[i].last_block = 0;
for(int j = 0 ; j < 2 ; j++) SoundData.channels[i].previous[j] = 0;
for(int j = 0 ; j < 2 ; j++) SoundData.channels[i].previous16[j] = 0;
for(int j = 0 ; j < 16 ; j++) SoundData.channels[i].decoded[j] = 0;
}
}
FilterTaps [0] = 127;
FilterTaps [1] = 0;
FilterTaps [2] = 0;
FilterTaps [3] = 0;
FilterTaps [4] = 0;
FilterTaps [5] = 0;
FilterTaps [6] = 0;
FilterTaps [7] = 0;
rand_seed = 1;
so.mute_sound = TRUE;
so.noise_gen = 1;
so.sound_switch = 255;
so.stereo_switch = ~0;
so.samples_mixed_so_far = 0;
so.play_position = 0;
so.err_counter = 0;
if (full)
{
SoundData.echo_volume_left = 0;
SoundData.echo_volume_right = 0;
SoundData.echo_enable = 0;
SoundData.echo_write_enabled = 0;
SoundData.pitch_mod = 0;
SoundData.dummy[0] = 0;
SoundData.dummy[1] = 0;
SoundData.dummy[2] = 0;
SoundData.echo_volume[0] = 0;
SoundData.echo_volume[1] = 0;
SoundData.noise_count = 0;
SoundData.noise_rate = 0;
memset (Loop, 0, sizeof (Loop));
memset (Echo, 0, sizeof (Echo));
}
// At least Super Bomberman 2 requires the defaule master volume is not zero.
#if 1
SoundData.master_volume_left = 127;
SoundData.master_volume_right = 127;
SoundData.master_volume [0] = SoundData.master_volume [1] = 127;
#else
SoundData.master_volume_left = 0;
SoundData.master_volume_right = 0;
SoundData.master_volume [0] = SoundData.master_volume [1] = 0;
#endif
SoundData.no_filter = TRUE;
SoundData.echo_ptr = 0;
SoundData.echo_feedback = 0;
SoundData.echo_buffer_size = 1;
if (so.playback_rate)
so.err_rate = (uint32) (FIXED_POINT * SNES_SCANLINE_TIME * so.playback_rate);
else
so.err_rate = 0;
}
void S9xSetPlaybackRate (uint32 playback_rate)
{
if (playback_rate > 48000)
playback_rate = 48000;
so.playback_rate = playback_rate;
so.err_rate = (uint32) (FIXED_POINT * SNES_SCANLINE_TIME * so.playback_rate);
memset (Loop, 0, sizeof (Loop));
memset (Echo, 0, sizeof (Echo));
S9xSetEchoDelay (APU.DSP[APU_EDL] & 0xF);
for (int i = 0; i < NUM_CHANNELS; i++)
S9xSetSoundFrequency (i, SoundData.channels[i].hertz);
env_counter_max = env_counter_max_master * playback_rate / 32000;
SoundData.noise_count = env_counter_max;
}
bool8 S9xInitSound (int mode, bool8 stereo, int buffer_size)
{
so.sound_fd = -1;
so.sound_switch = 255;
so.stereo_switch = ~0;
so.playback_rate = 0;
so.buffer_size = 0;
so.stereo = stereo;
so.sixteen_bit = Settings.SixteenBitSound;
so.encoded = FALSE;
so.pitch_mul = 0.985; // XXX: necessary for most cards in linux...?
S9xResetSound (TRUE);
if (!(mode & 7))
return (1);
S9xSetSoundMute (TRUE);
if (!S9xOpenSoundDevice (mode, stereo, buffer_size))
{
#ifdef NOSOUND
S9xMessage (S9X_WARNING, S9X_SOUND_NOT_BUILT,
"No sound support compiled in");
#else
S9xMessage (S9X_ERROR, S9X_SOUND_DEVICE_OPEN_FAILED,
"Sound device open failed");
#endif
return (0);
}
return (1);
}
bool8 S9xSetSoundMode (int channel, int mode)
{
Channel *ch = &SoundData.channels[channel];
switch (mode)
{
case MODE_RELEASE:
if (ch->mode != MODE_NONE)
{
ch->mode = MODE_RELEASE;
return (TRUE);
}
break;
case MODE_DECREASE_LINEAR:
case MODE_DECREASE_EXPONENTIAL:
case MODE_GAIN:
if (ch->mode != MODE_RELEASE)
{
ch->mode = mode;
if (ch->state != SOUND_SILENT)
ch->state = mode;
return (TRUE);
}
break;
case MODE_INCREASE_LINEAR:
case MODE_INCREASE_BENT_LINE:
if (ch->mode != MODE_RELEASE)
{
ch->mode = mode;
if (ch->state != SOUND_SILENT)
ch->state = mode;
return (TRUE);
}
break;
case MODE_ADSR:
if (ch->mode == MODE_NONE || ch->mode == MODE_ADSR)
{
ch->mode = mode;
return (TRUE);
}
}
return (FALSE);
}
void S9xSetSoundControl (int sound_switch)
{
so.sound_switch = sound_switch;
}
void S9xPlaySample (int channel)
{
Channel *ch = &SoundData.channels[channel];
ch->state = SOUND_SILENT;
ch->mode = MODE_NONE;
ch->xenvx = 0;
S9xFixEnvelope (channel,
APU.DSP[APU_GAIN + (channel << 4)],
APU.DSP[APU_ADSR1 + (channel << 4)],
APU.DSP[APU_ADSR2 + (channel << 4)]);
ch->sample_number = APU.DSP[APU_SRCN + channel * 0x10];
if (APU.DSP[APU_NON] & (1 << channel))
ch->type = SOUND_NOISE;
else
ch->type = SOUND_SAMPLE;
S9xSetSoundFrequency (channel, ch->hertz);
ch->loop = FALSE;
ch->needs_decode = TRUE;
ch->last_block = FALSE;
ch->previous[0] = ch->previous[1] = 0;
uint8 *dir = S9xGetSampleAddress (ch->sample_number);
ch->block_pointer = READ_WORD (dir);
ch->sample_pointer = 0;
ch->xenv_count = env_counter_max;
ch->xsmp_count = 3 * FIXED_POINT; // since gaussian interpolation uses 4 points
ch->nb_sample[0] = 0;
ch->nb_sample[1] = 0;
ch->nb_sample[2] = 0;
ch->nb_sample[3] = 0;
ch->nb_index = 0;
switch (ch->mode)
{
case MODE_ADSR: // FIXME: rapid attack
#if 0
ch->state = SOUND_ATTACK;
ch->xenvx = 0;
S9xSetEnvRate (ch, ch->xattack_rate, ENV_MAX);
break;
#else
if (ch->xattack_rate == env_counter_max_master)
{
ch->xenvx = ENV_MAX;
if (ch->xsustain_level == ENV_RANGE)
{
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate (ch, ch->xsustain_rate, 0);
}
else
{
ch->state = SOUND_DECAY;
S9xSetEnvRate (ch, ch->xdecay_rate, ch->xsustain_level);
}
}
else
{
ch->state = SOUND_ATTACK;
ch->xenvx = 0;
S9xSetEnvRate (ch, ch->xattack_rate, ENV_MAX);
}
break;
#endif
case MODE_GAIN:
ch->state = SOUND_GAIN;
break;
case MODE_INCREASE_LINEAR:
ch->state = SOUND_INCREASE_LINEAR;
break;
case MODE_INCREASE_BENT_LINE:
ch->state = SOUND_INCREASE_BENT_LINE;
break;
case MODE_DECREASE_LINEAR:
ch->state = SOUND_DECREASE_LINEAR;
break;
case MODE_DECREASE_EXPONENTIAL:
ch->state = SOUND_DECREASE_EXPONENTIAL;
break;
default:
break;
}
S9xFixEnvelope (channel,
APU.DSP[APU_GAIN + (channel << 4)],
APU.DSP[APU_ADSR1 + (channel << 4)],
APU.DSP[APU_ADSR2 + (channel << 4)]);
}