mirror of
https://github.com/dborth/snes9xgx.git
synced 2025-01-12 11:19:07 +01:00
417 lines
12 KiB
C++
417 lines
12 KiB
C++
/**********************************************************************************
|
|
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
|
|
|
|
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
|
|
Jerremy Koot (jkoot@snes9x.com)
|
|
|
|
(c) Copyright 2002 - 2004 Matthew Kendora
|
|
|
|
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
|
|
|
|
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
|
|
|
|
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
|
|
|
|
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
|
|
Kris Bleakley (codeviolation@hotmail.com)
|
|
|
|
(c) Copyright 2002 - 2007 Brad Jorsch (anomie@users.sourceforge.net),
|
|
Nach (n-a-c-h@users.sourceforge.net),
|
|
zones (kasumitokoduck@yahoo.com)
|
|
|
|
(c) Copyright 2006 - 2007 nitsuja
|
|
|
|
|
|
BS-X C emulator code
|
|
(c) Copyright 2005 - 2006 Dreamer Nom,
|
|
zones
|
|
|
|
C4 x86 assembler and some C emulation code
|
|
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
|
|
Nach,
|
|
zsKnight (zsknight@zsnes.com)
|
|
|
|
C4 C++ code
|
|
(c) Copyright 2003 - 2006 Brad Jorsch,
|
|
Nach
|
|
|
|
DSP-1 emulator code
|
|
(c) Copyright 1998 - 2006 _Demo_,
|
|
Andreas Naive (andreasnaive@gmail.com)
|
|
Gary Henderson,
|
|
Ivar (ivar@snes9x.com),
|
|
John Weidman,
|
|
Kris Bleakley,
|
|
Matthew Kendora,
|
|
Nach,
|
|
neviksti (neviksti@hotmail.com)
|
|
|
|
DSP-2 emulator code
|
|
(c) Copyright 2003 John Weidman,
|
|
Kris Bleakley,
|
|
Lord Nightmare (lord_nightmare@users.sourceforge.net),
|
|
Matthew Kendora,
|
|
neviksti
|
|
|
|
|
|
DSP-3 emulator code
|
|
(c) Copyright 2003 - 2006 John Weidman,
|
|
Kris Bleakley,
|
|
Lancer,
|
|
z80 gaiden
|
|
|
|
DSP-4 emulator code
|
|
(c) Copyright 2004 - 2006 Dreamer Nom,
|
|
John Weidman,
|
|
Kris Bleakley,
|
|
Nach,
|
|
z80 gaiden
|
|
|
|
OBC1 emulator code
|
|
(c) Copyright 2001 - 2004 zsKnight,
|
|
pagefault (pagefault@zsnes.com),
|
|
Kris Bleakley,
|
|
Ported from x86 assembler to C by sanmaiwashi
|
|
|
|
SPC7110 and RTC C++ emulator code
|
|
(c) Copyright 2002 Matthew Kendora with research by
|
|
zsKnight,
|
|
John Weidman,
|
|
Dark Force
|
|
|
|
S-DD1 C emulator code
|
|
(c) Copyright 2003 Brad Jorsch with research by
|
|
Andreas Naive,
|
|
John Weidman
|
|
|
|
S-RTC C emulator code
|
|
(c) Copyright 2001-2006 byuu,
|
|
John Weidman
|
|
|
|
ST010 C++ emulator code
|
|
(c) Copyright 2003 Feather,
|
|
John Weidman,
|
|
Kris Bleakley,
|
|
Matthew Kendora
|
|
|
|
Super FX x86 assembler emulator code
|
|
(c) Copyright 1998 - 2003 _Demo_,
|
|
pagefault,
|
|
zsKnight,
|
|
|
|
Super FX C emulator code
|
|
(c) Copyright 1997 - 1999 Ivar,
|
|
Gary Henderson,
|
|
John Weidman
|
|
|
|
Sound DSP emulator code is derived from SNEeSe and OpenSPC:
|
|
(c) Copyright 1998 - 2003 Brad Martin
|
|
(c) Copyright 1998 - 2006 Charles Bilyue'
|
|
|
|
SH assembler code partly based on x86 assembler code
|
|
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
|
|
|
|
2xSaI filter
|
|
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
|
|
|
|
HQ2x, HQ3x, HQ4x filters
|
|
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
|
|
|
|
Win32 GUI code
|
|
(c) Copyright 2003 - 2006 blip,
|
|
funkyass,
|
|
Matthew Kendora,
|
|
Nach,
|
|
nitsuja
|
|
|
|
Mac OS GUI code
|
|
(c) Copyright 1998 - 2001 John Stiles
|
|
(c) Copyright 2001 - 2007 zones
|
|
|
|
|
|
Specific ports contains the works of other authors. See headers in
|
|
individual files.
|
|
|
|
|
|
Snes9x homepage: http://www.snes9x.com
|
|
|
|
Permission to use, copy, modify and/or distribute Snes9x in both binary
|
|
and source form, for non-commercial purposes, is hereby granted without
|
|
fee, providing that this license information and copyright notice appear
|
|
with all copies and any derived work.
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event shall the authors be held liable for any damages
|
|
arising from the use of this software or it's derivatives.
|
|
|
|
Snes9x is freeware for PERSONAL USE only. Commercial users should
|
|
seek permission of the copyright holders first. Commercial use includes,
|
|
but is not limited to, charging money for Snes9x or software derived from
|
|
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
|
|
using Snes9x as a promotion for your commercial product.
|
|
|
|
The copyright holders request that bug fixes and improvements to the code
|
|
should be forwarded to them so everyone can benefit from the modifications
|
|
in future versions.
|
|
|
|
Super NES and Super Nintendo Entertainment System are trademarks of
|
|
Nintendo Co., Limited and its subsidiary companies.
|
|
**********************************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
uint16 DSP2Op09Word1=0;
|
|
uint16 DSP2Op09Word2=0;
|
|
bool DSP2Op05HasLen=false;
|
|
int DSP2Op05Len=0;
|
|
bool DSP2Op06HasLen=false;
|
|
int DSP2Op06Len=0;
|
|
uint8 DSP2Op05Transparent=0;
|
|
|
|
void DSP2_Op05 ()
|
|
{
|
|
uint8 color;
|
|
// Overlay bitmap with transparency.
|
|
// Input:
|
|
//
|
|
// Bitmap 1: i[0] <=> i[size-1]
|
|
// Bitmap 2: i[size] <=> i[2*size-1]
|
|
//
|
|
// Output:
|
|
//
|
|
// Bitmap 3: o[0] <=> o[size-1]
|
|
//
|
|
// Processing:
|
|
//
|
|
// Process all 4-bit pixels (nibbles) in the bitmap
|
|
//
|
|
// if ( BM2_pixel == transparent_color )
|
|
// pixelout = BM1_pixel
|
|
// else
|
|
// pixelout = BM2_pixel
|
|
|
|
// The max size bitmap is limited to 255 because the size parameter is a byte
|
|
// I think size=0 is an error. The behavior of the chip on size=0 is to
|
|
// return the last value written to DR if you read DR on Op05 with
|
|
// size = 0. I don't think it's worth implementing this quirk unless it's
|
|
// proven necessary.
|
|
|
|
int n;
|
|
unsigned char c1;
|
|
unsigned char c2;
|
|
unsigned char *p1 = DSP1.parameters;
|
|
unsigned char *p2 = &DSP1.parameters[DSP2Op05Len];
|
|
unsigned char *p3 = DSP1.output;
|
|
|
|
color = DSP2Op05Transparent&0x0f;
|
|
|
|
for( n = 0; n < DSP2Op05Len; n++ )
|
|
{
|
|
c1 = *p1++;
|
|
c2 = *p2++;
|
|
*p3++ = ( ((c2 >> 4) == color ) ? c1 & 0xf0: c2 & 0xf0 ) |
|
|
( ((c2 & 0x0f)==color) ? c1 & 0x0f: c2 & 0x0f );
|
|
}
|
|
}
|
|
|
|
void DSP2_Op01 ()
|
|
{
|
|
// Op01 size is always 32 bytes input and output.
|
|
// The hardware does strange things if you vary the size.
|
|
|
|
int j;
|
|
unsigned char c0, c1, c2, c3;
|
|
unsigned char *p1 = DSP1.parameters;
|
|
unsigned char *p2a = DSP1.output;
|
|
unsigned char *p2b = &DSP1.output[16]; // halfway
|
|
|
|
// Process 8 blocks of 4 bytes each
|
|
|
|
for ( j = 0; j < 8; j++ )
|
|
{
|
|
c0 = *p1++;
|
|
c1 = *p1++;
|
|
c2 = *p1++;
|
|
c3 = *p1++;
|
|
|
|
*p2a++ = (c0 & 0x10) << 3 |
|
|
(c0 & 0x01) << 6 |
|
|
(c1 & 0x10) << 1 |
|
|
(c1 & 0x01) << 4 |
|
|
(c2 & 0x10) >> 1 |
|
|
(c2 & 0x01) << 2 |
|
|
(c3 & 0x10) >> 3 |
|
|
(c3 & 0x01);
|
|
|
|
*p2a++ = (c0 & 0x20) << 2 |
|
|
(c0 & 0x02) << 5 |
|
|
(c1 & 0x20) |
|
|
(c1 & 0x02) << 3 |
|
|
(c2 & 0x20) >> 2 |
|
|
(c2 & 0x02) << 1 |
|
|
(c3 & 0x20) >> 4 |
|
|
(c3 & 0x02) >> 1;
|
|
|
|
*p2b++ = (c0 & 0x40) << 1 |
|
|
(c0 & 0x04) << 4 |
|
|
(c1 & 0x40) >> 1 |
|
|
(c1 & 0x04) << 2 |
|
|
(c2 & 0x40) >> 3 |
|
|
(c2 & 0x04) |
|
|
(c3 & 0x40) >> 5 |
|
|
(c3 & 0x04) >> 2;
|
|
|
|
|
|
*p2b++ = (c0 & 0x80) |
|
|
(c0 & 0x08) << 3 |
|
|
(c1 & 0x80) >> 2 |
|
|
(c1 & 0x08) << 1 |
|
|
(c2 & 0x80) >> 4 |
|
|
(c2 & 0x08) >> 1 |
|
|
(c3 & 0x80) >> 6 |
|
|
(c3 & 0x08) >> 3;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void DSP2_Op06 ()
|
|
{
|
|
// Input:
|
|
// size
|
|
// bitmap
|
|
|
|
int i, j;
|
|
|
|
for ( i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j-- )
|
|
{
|
|
DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4);
|
|
}
|
|
}
|
|
|
|
bool DSP2Op0DHasLen=false;
|
|
int DSP2Op0DOutLen=0;
|
|
int DSP2Op0DInLen=0;
|
|
|
|
#ifndef DSP2_BIT_ACCURRATE_CODE
|
|
|
|
// Scale bitmap based on input length out output length
|
|
|
|
void DSP2_Op0D()
|
|
{
|
|
// Overload's algorithm - use this unless doing hardware testing
|
|
|
|
// One note: the HW can do odd byte scaling but since we divide
|
|
// by two to get the count of bytes this won't work well for
|
|
// odd byte scaling (in any of the current algorithm implementations).
|
|
// So far I haven't seen Dungeon Master use it.
|
|
// If it does we can adjust the parameters and code to work with it
|
|
|
|
int i;
|
|
int pixel_offset;
|
|
uint8 pixelarray[512];
|
|
|
|
for(i=0; i<DSP2Op0DOutLen*2; i++)
|
|
{
|
|
pixel_offset = (i * DSP2Op0DInLen) / DSP2Op0DOutLen;
|
|
if ( (pixel_offset&1) == 0 )
|
|
pixelarray[i] = DSP1.parameters[pixel_offset>>1] >> 4;
|
|
else
|
|
pixelarray[i] = DSP1.parameters[pixel_offset>>1] & 0x0f;
|
|
}
|
|
|
|
for ( i=0; i < DSP2Op0DOutLen; i++ )
|
|
DSP1.output[i] = ( pixelarray[i<<1] << 4 ) | pixelarray[(i<<1)+1];
|
|
}
|
|
|
|
#else
|
|
|
|
void DSP2_Op0D()
|
|
{
|
|
// Bit accurate hardware algorithm - uses fixed point math
|
|
// This should match the DSP2 Op0D output exactly
|
|
// I wouldn't recommend using this unless you're doing hardware debug.
|
|
// In some situations it has small visual artifacts that
|
|
// are not readily apparent on a TV screen but show up clearly
|
|
// on a monitor. Use Overload's scaling instead.
|
|
// This is for hardware verification testing.
|
|
//
|
|
// One note: the HW can do odd byte scaling but since we divide
|
|
// by two to get the count of bytes this won't work well for
|
|
// odd byte scaling (in any of the current algorithm implementations).
|
|
// So far I haven't seen Dungeon Master use it.
|
|
// If it does we can adjust the parameters and code to work with it
|
|
|
|
|
|
uint32 multiplier; // Any size int >= 32-bits
|
|
uint32 pixloc; // match size of multiplier
|
|
int i, j;
|
|
uint8 pixelarray[512];
|
|
|
|
if (DSP2Op0DInLen <= DSP2Op0DOutLen)
|
|
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
|
|
else
|
|
multiplier = (DSP2Op0DInLen << 17) / ((DSP2Op0DOutLen<<1) + 1);
|
|
|
|
pixloc = 0;
|
|
for ( i=0; i < DSP2Op0DOutLen * 2; i++ )
|
|
{
|
|
j = pixloc >> 16;
|
|
|
|
if ( j & 1 )
|
|
pixelarray[i] = DSP1.parameters[j>>1] & 0x0f;
|
|
else
|
|
pixelarray[i] = (DSP1.parameters[j>>1] & 0xf0) >> 4;
|
|
|
|
pixloc += multiplier;
|
|
}
|
|
|
|
for ( i=0; i < DSP2Op0DOutLen; i++ )
|
|
DSP1.output[i] = ( pixelarray[i<<1] << 4 ) | pixelarray[(i<<1)+1];
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0 // Probably no reason to use this code - it's not quite bit accurate and it doesn't look as good as Overload's algorithm
|
|
|
|
void DSP2_Op0D()
|
|
{
|
|
// Float implementation of Neviksti's algorithm
|
|
// This is the right algorithm to match the DSP2 bits but the precision
|
|
// of the PC float does not match the precision of the fixed point math
|
|
// on the DSP2 causing occasional one off data mismatches (which should
|
|
// be no problem because its just a one pixel difference in a scaled image
|
|
// to be displayed).
|
|
|
|
float multiplier;
|
|
float pixloc;
|
|
int i, j;
|
|
uint8 pixelarray[512];
|
|
|
|
if (DSP2Op0DInLen <= DSP2Op0DOutLen)
|
|
multiplier = (float) 1.0;
|
|
else
|
|
multiplier = (float) ((DSP2Op0DInLen * 2.0) / (DSP2Op0DOutLen * 2.0 + 1.0));
|
|
|
|
pixloc = 0.0;
|
|
for ( i=0; i < DSP2Op0DOutLen * 2; i++ )
|
|
{
|
|
// j = (int)(i * multiplier);
|
|
j = (int) pixloc;
|
|
|
|
if ( j & 1 )
|
|
pixelarray[i] = DSP1.parameters[j>>1] & 0x0f;
|
|
else
|
|
pixelarray[i] = (DSP1.parameters[j>>1] & 0xf0) >> 4;
|
|
|
|
pixloc += multiplier; // use an add in the loop instead of multiply to increase loop speed
|
|
}
|
|
|
|
for ( i=0; i < DSP2Op0DOutLen; i++ )
|
|
DSP1.output[i] = ( pixelarray[i<<1] << 4 ) | pixelarray[(i<<1)+1];
|
|
}
|
|
|
|
#endif
|
|
|