2018-08-11 14:56:31 -06:00

1143 lines
29 KiB
C++

/***********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
(c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com)
(c) Copyright 2006 - 2007 nitsuja
(c) Copyright 2009 - 2018 BearOso,
OV2
(c) Copyright 2017 qwertymodo
(c) Copyright 2011 - 2017 Hans-Kristian Arntzen,
Daniel De Matteis
(Under no circumstances will commercial rights be given)
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com),
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code used in 1.39-1.51
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
SPC7110 and RTC C++ emulator code used in 1.52+
(c) Copyright 2009 byuu,
neviksti
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001 - 2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound emulator code used in 1.5-1.51
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
Sound emulator code used in 1.52+
(c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com)
S-SMP emulator code used in 1.54+
(c) Copyright 2016 byuu
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
NTSC filter
(c) Copyright 2006 - 2007 Shay Green
GTK+ GUI code
(c) Copyright 2004 - 2018 BearOso
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
(c) Copyright 2009 - 2018 OV2
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
(c) Copyright 2001 - 2011 zones
Libretro port
(c) Copyright 2011 - 2017 Hans-Kristian Arntzen,
Daniel De Matteis
(Under no circumstances will commercial rights be given)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com/
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
***********************************************************************************/
#include "snes9x.h"
#include "memmap.h"
uint8 SA1OpenBus;
static void S9xSA1SetBWRAMMemMap (uint8);
static void S9xSetSA1MemMap (uint32, uint8);
static void S9xSA1CharConv2 (void);
static void S9xSA1DMA (void);
static void S9xSA1ReadVariableLengthData (bool8, bool8);
void S9xSA1Init (void)
{
SA1.Cycles = 0;
SA1.PrevCycles = 0;
SA1.Flags = 0;
SA1.WaitingForInterrupt = FALSE;
memset(&Memory.FillRAM[0x2200], 0, 0x200);
Memory.FillRAM[0x2200] = 0x20;
Memory.FillRAM[0x2220] = 0x00;
Memory.FillRAM[0x2221] = 0x01;
Memory.FillRAM[0x2222] = 0x02;
Memory.FillRAM[0x2223] = 0x03;
Memory.FillRAM[0x2228] = 0x0f;
SA1.in_char_dma = FALSE;
SA1.TimerIRQLastState = FALSE;
SA1.HTimerIRQPos = 0;
SA1.VTimerIRQPos = 0;
SA1.HCounter = 0;
SA1.VCounter = 0;
SA1.PrevHCounter = 0;
SA1.arithmetic_op = 0;
SA1.op1 = 0;
SA1.op2 = 0;
SA1.sum = 0;
SA1.overflow = FALSE;
SA1.VirtualBitmapFormat = 0;
SA1.variable_bit_pos = 0;
SA1Registers.PBPC = 0;
SA1Registers.PB = 0;
SA1Registers.PCw = 0;
SA1Registers.D.W = 0;
SA1Registers.DB = 0;
SA1Registers.SH = 1;
SA1Registers.SL = 0xFF;
SA1Registers.XH = 0;
SA1Registers.YH = 0;
SA1Registers.P.W = 0;
SA1.ShiftedPB = 0;
SA1.ShiftedDB = 0;
SA1SetFlags(MemoryFlag | IndexFlag | IRQ | Emulation);
SA1ClearFlags(Decimal);
SA1.MemSpeed = SLOW_ONE_CYCLE;
SA1.MemSpeedx2 = SLOW_ONE_CYCLE * 2;
SA1.S9xOpcodes = S9xSA1OpcodesM1X1;
SA1.S9xOpLengths = S9xOpLengthsM1X1;
S9xSA1SetPCBase(SA1Registers.PBPC);
S9xSA1UnpackStatus();
S9xSA1FixCycles();
SA1.BWRAM = Memory.SRAM;
CPU.IRQExternal = FALSE;
}
static void S9xSA1SetBWRAMMemMap (uint8 val)
{
if (val & 0x80)
{
for (int c = 0; c < 0x400; c += 16)
{
SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
}
SA1.BWRAM = Memory.SRAM + (val & 0x7f) * 0x2000 / 4;
}
else
{
for (int c = 0; c < 0x400; c += 16)
{
SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM;
SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM;
SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM;
SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM;
}
SA1.BWRAM = Memory.SRAM + (val & 7) * 0x2000;
}
}
void S9xSA1PostLoadState (void)
{
SA1.ShiftedPB = (uint32) SA1Registers.PB << 16;
SA1.ShiftedDB = (uint32) SA1Registers.DB << 16;
S9xSA1SetPCBase(SA1Registers.PBPC);
S9xSA1UnpackStatus();
S9xSA1FixCycles();
SA1.VirtualBitmapFormat = (Memory.FillRAM[0x223f] & 0x80) ? 2 : 4;
Memory.BWRAM = Memory.SRAM + (Memory.FillRAM[0x2224] & 7) * 0x2000;
S9xSA1SetBWRAMMemMap(Memory.FillRAM[0x2225]);
}
static void S9xSetSA1MemMap (uint32 which1, uint8 map)
{
int start = which1 * 0x100 + 0xc00;
int start2 = which1 * 0x200;
if (which1 >= 2)
start2 += 0x400;
for (int c = 0; c < 0x100; c += 16)
{
uint8 *block;
if (Multi.cartType != 5)
block = &Memory.ROM[(map & 7) * 0x100000 + (c << 12)];
else
{
if ((map & 7) < 4)
block = Memory.ROM + Multi.cartOffsetA + ((map & 7) * 0x100000 + (c << 12));
else
block = Memory.ROM + Multi.cartOffsetB + (((map & 7) - 4) * 0x100000 + (c << 12));
}
for (int i = c; i < c + 16; i++)
Memory.Map[start + i] = SA1.Map[start + i] = block;
}
for (int c = 0; c < 0x200; c += 16)
{
// conversion to int is needed here - map is promoted but which1 is not
int32 offset;
uint8 *block;
if (Multi.cartType != 5)
{
offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = &Memory.ROM[offset];
}
else
{
if ((map & 7) < 4)
{
offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = Memory.ROM + Multi.cartOffsetA + offset;
}
else
{
offset = (((map & 0x80) ? (map - 4) : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = Memory.ROM + Multi.cartOffsetB + offset;
}
}
for (int i = c + 8; i < c + 16; i++)
Memory.Map[start2 + i] = SA1.Map[start2 + i] = block;
}
}
uint8 S9xGetSA1 (uint32 address)
{
switch (address)
{
case 0x2300: // S-CPU flag
return ((Memory.FillRAM[0x2209] & 0x5f) | (Memory.FillRAM[0x2300] & 0xa0));
case 0x2301: // SA-1 flag
return ((Memory.FillRAM[0x2200] & 0x0f) | (Memory.FillRAM[0x2301] & 0xf0));
case 0x2302: // H counter (L)
SA1.HTimerIRQPos = SA1.HCounter / ONE_DOT_CYCLE;
SA1.VTimerIRQPos = SA1.VCounter;
return ((uint8) SA1.HTimerIRQPos);
case 0x2303: // H counter (H)
return ((uint8) (SA1.HTimerIRQPos >> 8));
case 0x2304: // V counter (L)
return ((uint8) SA1.VTimerIRQPos);
case 0x2305: // V counter (H)
return ((uint8) (SA1.VTimerIRQPos >> 8));
case 0x2306: // arithmetic result (LLL)
return ((uint8) SA1.sum);
case 0x2307: // arithmetic result (LLH)
return ((uint8) (SA1.sum >> 8));
case 0x2308: // arithmetic result (LHL)
return ((uint8) (SA1.sum >> 16));
case 0x2309: // arithmetic result (LLH)
return ((uint8) (SA1.sum >> 24));
case 0x230a: // arithmetic result (HLL)
return ((uint8) (SA1.sum >> 32));
case 0x230b: // arithmetic overflow
return (SA1.overflow ? 0x80 : 0);
case 0x230c: // variable-length data read port (L)
return (Memory.FillRAM[0x230c]);
case 0x230d: // variable-length data read port (H)
{
uint8 byte = Memory.FillRAM[0x230d];
if (Memory.FillRAM[0x2258] & 0x80)
S9xSA1ReadVariableLengthData(TRUE, FALSE);
return (byte);
}
case 0x230e: // version code register
return (0x01);
default:
break;
}
return (Memory.FillRAM[address]);
}
void S9xSetSA1 (uint8 byte, uint32 address)
{
switch (address)
{
case 0x2200: // SA-1 control
#ifdef DEBUGGER
if (byte & 0x60)
printf("SA-1 sleep\n");
#endif
// SA-1 reset
if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20))
{
#ifdef DEBUGGER
printf("SA-1 reset\n");
#endif
SA1Registers.PBPC = 0;
SA1Registers.PB = 0;
SA1Registers.PCw = Memory.FillRAM[0x2203] | (Memory.FillRAM[0x2204] << 8);
S9xSA1SetPCBase(SA1Registers.PBPC);
}
// SA-1 IRQ control
if (byte & 0x80)
{
Memory.FillRAM[0x2301] |= 0x80;
if (Memory.FillRAM[0x220a] & 0x80)
Memory.FillRAM[0x220b] &= ~0x80;
}
// SA-1 NMI control
if (byte & 0x10)
{
Memory.FillRAM[0x2301] |= 0x10;
if (Memory.FillRAM[0x220a] & 0x10)
Memory.FillRAM[0x220b] &= ~0x10;
}
break;
case 0x2201: // S-CPU interrupt enable
// S-CPU IRQ enable
if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80))
{
Memory.FillRAM[0x2202] &= ~0x80;
CPU.IRQExternal = TRUE;
}
// S-CPU CHDMA IRQ enable
if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20))
{
Memory.FillRAM[0x2202] &= ~0x20;
CPU.IRQExternal = TRUE;
}
break;
case 0x2202: // S-CPU interrupt clear
// S-CPU IRQ clear
if (byte & 0x80)
Memory.FillRAM[0x2300] &= ~0x80;
// S-CPU CHDMA IRQ clear
if (byte & 0x20)
Memory.FillRAM[0x2300] &= ~0x20;
if (!(Memory.FillRAM[0x2300] & 0xa0))
CPU.IRQExternal = FALSE;
break;
case 0x2203: // SA-1 reset vector (L)
case 0x2204: // SA-1 reset vector (H)
case 0x2205: // SA-1 NMI vector (L)
case 0x2206: // SA-1 NMI vector (H)
case 0x2207: // SA-1 IRQ vector (L)
case 0x2208: // SA-1 IRQ vector (H)
break;
case 0x2209: // S-CPU control
// 0x40: S-CPU IRQ overwrite
// 0x20: S-CPU NMI overwrite
// S-CPU IRQ control
if (byte & 0x80)
{
Memory.FillRAM[0x2300] |= 0x80;
if (Memory.FillRAM[0x2201] & 0x80)
{
Memory.FillRAM[0x2202] &= ~0x80;
CPU.IRQExternal = TRUE;
}
}
break;
case 0x220a: // SA-1 interrupt enable
// SA-1 IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80))
Memory.FillRAM[0x220b] &= ~0x80;
// SA-1 timer IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40))
Memory.FillRAM[0x220b] &= ~0x40;
// SA-1 DMA IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20))
Memory.FillRAM[0x220b] &= ~0x20;
// SA-1 NMI enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10))
Memory.FillRAM[0x220b] &= ~0x10;
break;
case 0x220b: // SA-1 interrupt clear
// SA-1 IRQ clear
if (byte & 0x80)
Memory.FillRAM[0x2301] &= ~0x80;
// SA-1 timer IRQ clear
if (byte & 0x40)
Memory.FillRAM[0x2301] &= ~0x40;
// SA-1 DMA IRQ clear
if (byte & 0x20)
Memory.FillRAM[0x2301] &= ~0x20;
// SA-1 NMI clear
if (byte & 0x10)
Memory.FillRAM[0x2301] &= ~0x10;
break;
case 0x220c: // S-CPU NMI vector (L)
case 0x220d: // S-CPU NMI vector (H)
case 0x220e: // S-CPU IRQ vector (L)
case 0x220f: // S-CPU IRQ vector (H)
break;
case 0x2210: // SA-1 timer control
// 0x80: mode (linear / HV)
// 0x02: V timer enable
// 0x01: H timer enable
#ifdef DEBUGGER
printf("SA-1 timer control write:%02x\n", byte);
#endif
break;
case 0x2211: // SA-1 timer reset
SA1.HCounter = 0;
SA1.VCounter = 0;
break;
case 0x2212: // SA-1 H-timer (L)
SA1.HTimerIRQPos = byte | (Memory.FillRAM[0x2213] << 8);
break;
case 0x2213: // SA-1 H-timer (H)
SA1.HTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2212];
break;
case 0x2214: // SA-1 V-timer (L)
SA1.VTimerIRQPos = byte | (Memory.FillRAM[0x2215] << 8);
break;
case 0x2215: // SA-1 V-timer (H)
SA1.VTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2214];
break;
case 0x2220: // MMC bank C
case 0x2221: // MMC bank D
case 0x2222: // MMC bank E
case 0x2223: // MMC bank F
S9xSetSA1MemMap(address - 0x2220, byte);
break;
case 0x2224: // S-CPU BW-RAM mapping
Memory.BWRAM = Memory.SRAM + (byte & 7) * 0x2000;
break;
case 0x2225: // SA-1 BW-RAM mapping
if (byte != Memory.FillRAM[0x2225])
S9xSA1SetBWRAMMemMap(byte);
break;
case 0x2226: // S-CPU BW-RAM write enable
case 0x2227: // SA-1 BW-RAM write enable
case 0x2228: // BW-RAM write-protected area
case 0x2229: // S-CPU I-RAM write protection
case 0x222a: // SA-1 I-RAM write protection
break;
case 0x2230: // DMA control
// 0x80: enable
// 0x40: priority (DMA / SA-1)
// 0x20: character conversion / normal
// 0x10: BW-RAM -> I-RAM / SA-1 -> I-RAM
// 0x04: destinatin (BW-RAM / I-RAM)
// 0x03: source
break;
case 0x2231: // character conversion DMA parameters
// 0x80: CHDEND (complete / incomplete)
// 0x03: color mode
// (byte >> 2) & 7: virtual VRAM width
if (byte & 0x80)
SA1.in_char_dma = FALSE;
break;
case 0x2232: // DMA source start address (LL)
case 0x2233: // DMA source start address (LH)
case 0x2234: // DMA source start address (HL)
break;
case 0x2235: // DMA destination start address (LL)
break;
case 0x2236: // DMA destination start address (LH)
Memory.FillRAM[0x2236] = byte;
if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) // Normal DMA to I-RAM
S9xSA1DMA();
else
if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) // CC1
{
SA1.in_char_dma = TRUE;
Memory.FillRAM[0x2300] |= 0x20;
if (Memory.FillRAM[0x2201] & 0x20)
{
Memory.FillRAM[0x2202] &= ~0x20;
CPU.IRQExternal = TRUE;
}
}
break;
case 0x2237: // DMA destination start address (HL)
Memory.FillRAM[0x2237] = byte;
if ((Memory.FillRAM[0x2230] & 0xa4) == 0x84) // Normal DMA to BW-RAM
S9xSA1DMA();
break;
case 0x2238: // DMA terminal counter (L)
case 0x2239: // DMA terminal counter (H)
break;
case 0x223f: // BW-RAM bitmap format
SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4;
break;
case 0x2240: // bitmap register 0
case 0x2241: // bitmap register 1
case 0x2242: // bitmap register 2
case 0x2243: // bitmap register 3
case 0x2244: // bitmap register 4
case 0x2245: // bitmap register 5
case 0x2246: // bitmap register 6
case 0x2247: // bitmap register 7
case 0x2248: // bitmap register 8
case 0x2249: // bitmap register 9
case 0x224a: // bitmap register A
case 0x224b: // bitmap register B
case 0x224c: // bitmap register C
case 0x224d: // bitmap register D
case 0x224e: // bitmap register E
break;
case 0x224f: // bitmap register F
Memory.FillRAM[0x224f] = byte;
if ((Memory.FillRAM[0x2230] & 0xb0) == 0xa0) // CC2
{
memmove(&Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + SA1.in_char_dma * 16, &Memory.FillRAM[0x2240], 16);
SA1.in_char_dma = (SA1.in_char_dma + 1) & 7;
if ((SA1.in_char_dma & 3) == 0)
S9xSA1CharConv2();
}
break;
case 0x2250: // arithmetic control
if (byte & 2)
SA1.sum = 0;
SA1.arithmetic_op = byte & 3;
break;
case 0x2251: // multiplicand / dividend (L)
SA1.op1 = (SA1.op1 & 0xff00) | byte;
break;
case 0x2252: // multiplicand / dividend (H)
SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8);
break;
case 0x2253: // multiplier / divisor (L)
SA1.op2 = (SA1.op2 & 0xff00) | byte;
break;
case 0x2254: // multiplier / divisor (H)
SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8);
switch (SA1.arithmetic_op)
{
case 0: // signed multiplication
SA1.sum = (int16) SA1.op1 * (int16) SA1.op2;
SA1.op2 = 0;
break;
case 1: // unsigned division
if (SA1.op2 == 0)
SA1.sum = 0;
else
{
int16 dividend = (int16) SA1.op1;
uint16 divisor = (uint16) SA1.op2;
uint16 remainder = (dividend >= 0) ? dividend % divisor : (dividend % divisor) + divisor;
uint16 quotient = (dividend - remainder) / divisor;
SA1.sum = (remainder << 16) | quotient;
}
SA1.op1 = 0;
SA1.op2 = 0;
break;
case 2: // cumulative sum
default:
SA1.sum += (int16) SA1.op1 * (int16) SA1.op2;
SA1.overflow = (SA1.sum >= (1ULL << 40));
SA1.sum &= (1ULL << 40) - 1;
SA1.op2 = 0;
break;
}
break;
case 0x2258: // variable bit-field length / auto inc / start
Memory.FillRAM[0x2258] = byte;
S9xSA1ReadVariableLengthData(TRUE, FALSE);
return;
case 0x2259: // variable bit-field start address (LL)
case 0x225a: // variable bit-field start address (LH)
case 0x225b: // variable bit-field start address (HL)
Memory.FillRAM[address] = byte;
// XXX: ???
SA1.variable_bit_pos = 0;
S9xSA1ReadVariableLengthData(FALSE, TRUE);
return;
default:
break;
}
if (address >= 0x2200 && address <= 0x22ff)
Memory.FillRAM[address] = byte;
}
static void S9xSA1CharConv2 (void)
{
uint32 dest = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8);
uint32 offset = (SA1.in_char_dma & 7) ? 0 : 1;
int depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2;
int bytes_per_char = 8 * depth;
uint8 *p = &Memory.FillRAM[0x3000] + (dest & 0x7ff) + offset * bytes_per_char;
uint8 *q = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + offset * 64;
switch (depth)
{
case 2:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
}
p += 2;
}
break;
case 4:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
}
p += 2;
}
break;
case 8:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1);
*(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1);
*(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1);
*(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1);
}
p += 2;
}
break;
}
}
static void S9xSA1DMA (void)
{
uint32 src = Memory.FillRAM[0x2232] | (Memory.FillRAM[0x2233] << 8) | (Memory.FillRAM[0x2234] << 16);
uint32 dst = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8) | (Memory.FillRAM[0x2237] << 16);
uint32 len = Memory.FillRAM[0x2238] | (Memory.FillRAM[0x2239] << 8);
uint8 *s, *d;
switch (Memory.FillRAM[0x2230] & 3)
{
case 0: // ROM
s = SA1.Map[((src & 0xffffff) >> MEMMAP_SHIFT)];
if (s >= (uint8 *) CMemory::MAP_LAST)
s += (src & 0xffff);
else
s = Memory.ROM + (src & 0xffff);
break;
case 1: // BW-RAM
src &= Memory.SRAMMask;
len &= Memory.SRAMMask;
s = Memory.SRAM + src;
break;
default:
case 2:
src &= 0x3ff;
len &= 0x3ff;
s = &Memory.FillRAM[0x3000] + src;
break;
}
if (Memory.FillRAM[0x2230] & 4)
{
dst &= Memory.SRAMMask;
len &= Memory.SRAMMask;
d = Memory.SRAM + dst;
}
else
{
dst &= 0x3ff;
len &= 0x3ff;
d = &Memory.FillRAM[0x3000] + dst;
}
memmove(d, s, len);
// SA-1 DMA IRQ control
Memory.FillRAM[0x2301] |= 0x20;
if (Memory.FillRAM[0x220a] & 0x20)
Memory.FillRAM[0x220b] &= ~0x20;
}
static void S9xSA1ReadVariableLengthData (bool8 inc, bool8 no_shift)
{
uint32 addr = Memory.FillRAM[0x2259] | (Memory.FillRAM[0x225a] << 8) | (Memory.FillRAM[0x225b] << 16);
uint8 shift = Memory.FillRAM[0x2258] & 15;
if (no_shift)
shift = 0;
else
if (shift == 0)
shift = 16;
uint8 s = shift + SA1.variable_bit_pos;
if (s >= 16)
{
addr += (s >> 4) << 1;
s &= 15;
}
uint32 data = S9xSA1GetWord(addr) | (S9xSA1GetWord(addr + 2) << 16);
data >>= s;
Memory.FillRAM[0x230c] = (uint8) data;
Memory.FillRAM[0x230d] = (uint8) (data >> 8);
if (inc)
{
SA1.variable_bit_pos = (SA1.variable_bit_pos + shift) & 15;
Memory.FillRAM[0x2259] = (uint8) addr;
Memory.FillRAM[0x225a] = (uint8) (addr >> 8);
Memory.FillRAM[0x225b] = (uint8) (addr >> 16);
}
}
uint8 S9xSA1GetByte (uint32 address)
{
uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
return (*(GetAddress + (address & 0xffff)));
switch ((pint) GetAddress)
{
case CMemory::MAP_PPU:
return (S9xGetSA1(address & 0xffff));
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_SA1RAM:
return (*(Memory.SRAM + (address & 0xffff)));
case CMemory::MAP_BWRAM:
return (*(SA1.BWRAM + ((address & 0x7fff) - 0x6000)));
case CMemory::MAP_BWRAM_BITMAP:
address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
return ((Memory.SRAM[(address >> 2) & 0xffff] >> ((address & 3) << 1)) & 3);
else
return ((Memory.SRAM[(address >> 1) & 0xffff] >> ((address & 1) << 2)) & 15);
case CMemory::MAP_BWRAM_BITMAP2:
address = (address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
return ((SA1.BWRAM[(address >> 2) & 0xffff] >> ((address & 3) << 1)) & 3);
else
return ((SA1.BWRAM[(address >> 1) & 0xffff] >> ((address & 1) << 2)) & 15);
default:
return (SA1OpenBus);
}
}
uint16 S9xSA1GetWord (uint32 address, s9xwrap_t w)
{
PC_t a;
SA1OpenBus = S9xSA1GetByte(address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = address;
a.B.xPCl++;
return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8));
case WRAP_BANK:
a.xPBPC = address;
a.W.xPC++;
return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8));
case WRAP_NONE:
default:
return (SA1OpenBus | (S9xSA1GetByte(address + 1) << 8));
}
}
void S9xSA1SetByte (uint8 byte, uint32 address)
{
uint8 *SetAddress = SA1.WriteMap[(address & 0xffffff) >> MEMMAP_SHIFT];
if (SetAddress >= (uint8 *) CMemory::MAP_LAST)
{
*(SetAddress + (address & 0xffff)) = byte;
return;
}
switch ((pint) SetAddress)
{
case CMemory::MAP_PPU:
S9xSetSA1(byte, address & 0xffff);
return;
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_SA1RAM:
*(Memory.SRAM + (address & 0xffff)) = byte;
return;
case CMemory::MAP_BWRAM:
*(SA1.BWRAM + ((address & 0x7fff) - 0x6000)) = byte;
return;
case CMemory::MAP_BWRAM_BITMAP:
address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
{
uint8 *ptr = &Memory.SRAM[(address >> 2) & 0xffff];
*ptr &= ~(3 << ((address & 3) << 1));
*ptr |= (byte & 3) << ((address & 3) << 1);
}
else
{
uint8 *ptr = &Memory.SRAM[(address >> 1) & 0xffff];
*ptr &= ~(15 << ((address & 1) << 2));
*ptr |= (byte & 15) << ((address & 1) << 2);
}
return;
case CMemory::MAP_BWRAM_BITMAP2:
address = (address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
{
uint8 *ptr = &SA1.BWRAM[(address >> 2) & 0xffff];
*ptr &= ~(3 << ((address & 3) << 1));
*ptr |= (byte & 3) << ((address & 3) << 1);
}
else
{
uint8 *ptr = &SA1.BWRAM[(address >> 1) & 0xffff];
*ptr &= ~(15 << ((address & 1) << 2));
*ptr |= (byte & 15) << ((address & 1) << 2);
}
return;
default:
return;
}
}
void S9xSA1SetWord (uint16 Word, uint32 address, enum s9xwrap_t w, enum s9xwriteorder_t o)
{
PC_t a;
if (!o)
S9xSA1SetByte((uint8) Word, address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = address;
a.B.xPCl++;
S9xSA1SetByte(Word >> 8, a.xPBPC);
break;
case WRAP_BANK:
a.xPBPC = address;
a.W.xPC++;
S9xSA1SetByte(Word >> 8, a.xPBPC);
break;
case WRAP_NONE:
default:
S9xSA1SetByte(Word >> 8, address + 1);
break;
}
if (o)
S9xSA1SetByte((uint8) Word, address);
}
void S9xSA1SetPCBase (uint32 address)
{
SA1Registers.PBPC = address & 0xffffff;
SA1.ShiftedPB = address & 0xff0000;
// FIXME
SA1.MemSpeed = memory_speed(address);
SA1.MemSpeedx2 = SA1.MemSpeed << 1;
uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
SA1.PCBase = GetAddress;
return;
}
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
SA1.PCBase = NULL;
else
SA1.PCBase = (Memory.SRAM + ((((address & 0xff0000) >> 1) | (address & 0x7fff)) & Memory.SRAMMask)) - (address & 0xffff);
return;
case CMemory::MAP_HIROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
SA1.PCBase = NULL;
else
SA1.PCBase = (Memory.SRAM + (((address & 0x7fff) - 0x6000 + ((address & 0xf0000) >> 3)) & Memory.SRAMMask)) - (address & 0xffff);
return;
case CMemory::MAP_BWRAM:
SA1.PCBase = SA1.BWRAM - 0x6000 - (address & 0x8000);
return;
case CMemory::MAP_SA1RAM:
SA1.PCBase = Memory.SRAM;
return;
default:
SA1.PCBase = NULL;
return;
}
}