snes9xgx/source/snes9x/ppu.cpp

3014 lines
74 KiB
C++

/**********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com),
Nach (n-a-c-h@users.sourceforge.net), and
zones (kasumitokoduck@yahoo.com)
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com)
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley,
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001-2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight,
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound DSP emulator code is derived from SNEeSe and OpenSPC:
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x filter
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
**********************************************************************************/
#include "snes9x.h"
#include "memmap.h"
#include "ppu.h"
#include "cpuexec.h"
#include "missing.h"
#include "apu.h"
#include "dma.h"
#include "gfx.h"
#include "display.h"
#include "sa1.h"
#ifndef NGC
#include "netplay.h"
#endif
#include "sdd1.h"
#include "srtc.h"
#include "spc7110.h"
#include "bsx.h"
#include "movie.h"
#include "controls.h"
#ifndef ZSNES_FX
#include "fxemu.h"
#include "fxinst.h"
extern struct FxInit_s SuperFX;
#else
EXTERN_C void S9xSuperFXWriteReg (uint8, uint32);
EXTERN_C uint8 S9xSuperFXReadReg (uint32);
#endif
uint32 justifiers=0xFFFF00AA;
uint8 in_bit=0;
extern uint8 *HDMAMemPointers [8];
static inline void S9xLatchCounters (bool force)
{
if (force || (Memory.FillRAM[0x4213] & 0x80))
{
// Latch h and v counters, like the gun
#ifdef DEBUGGER
missing.h_v_latch = 1;
#endif
#if 0
# ifdef CPU_SHUTDOWN
CPU.WaitAddress = CPU.PCAtOpcodeStart;
# endif
#endif
PPU.HVBeamCounterLatched = 1;
PPU.VBeamPosLatched = (uint16) CPU.V_Counter;
// From byuu:
// All dots are 4 cycles long, except dots 322 and 326. dots 322 and 326 are 6 cycles long.
// This holds true for all scanlines except scanline 240 on non-interlace odd frames.
// The reason for this is because this scanline is only 1360 cycles long,
// instead of 1364 like all other scanlines.
// This makes the effective range of hscan_pos 0-339 at all times.
int32 hc = CPU.Cycles;
if (Timings.H_Max == Timings.H_Max_Master) // 1364
{
if (hc >= 1292)
hc -= (ONE_DOT_CYCLE / 2);
if (hc >= 1308)
hc -= (ONE_DOT_CYCLE / 2);
}
PPU.HBeamPosLatched = (uint16) (hc / ONE_DOT_CYCLE);
// Causes screen flicker for Yoshi's Island if uncommented
//CLEAR_IRQ_SOURCE (PPU_V_BEAM_IRQ_SOURCE | PPU_H_BEAM_IRQ_SOURCE);
Memory.FillRAM [0x213F] |= 0x40;
}
if (CPU.V_Counter > PPU.GunVLatch ||
(CPU.V_Counter == PPU.GunVLatch && CPU.Cycles >= PPU.GunHLatch * ONE_DOT_CYCLE))
{
PPU.GunVLatch = 1000;
}
}
static inline void S9xTryGunLatch (bool force)
{
if (CPU.V_Counter > PPU.GunVLatch ||
(CPU.V_Counter == PPU.GunVLatch && CPU.Cycles >= PPU.GunHLatch * ONE_DOT_CYCLE))
{
if (force || (Memory.FillRAM[0x4213] & 0x80))
{
#ifdef DEBUGGER
missing.h_v_latch = 1;
#endif
#if 0
# ifdef CPU_SHUTDOWN
CPU.WaitAddress = CPU.PCAtOpcodeStart;
# endif
#endif
PPU.HVBeamCounterLatched = 1;
PPU.VBeamPosLatched = (uint16) PPU.GunVLatch;
PPU.HBeamPosLatched = (uint16) PPU.GunHLatch;
// Causes screen flicker for Yoshi's Island if uncommented
//CLEAR_IRQ_SOURCE (PPU_V_BEAM_IRQ_SOURCE | PPU_H_BEAM_IRQ_SOURCE);
Memory.FillRAM [0x213F] |= 0x40;
}
PPU.GunVLatch = 1000;
}
}
void S9xCheckMissingHTimerPosition (int32 hc)
{
if (PPU.HTimerPosition == hc)
{
if (PPU.HTimerEnabled && (!PPU.VTimerEnabled || (CPU.V_Counter == PPU.VTimerPosition)))
S9xSetIRQ(PPU_H_BEAM_IRQ_SOURCE);
else
if (PPU.VTimerEnabled && (CPU.V_Counter == PPU.VTimerPosition))
S9xSetIRQ(PPU_V_BEAM_IRQ_SOURCE);
}
}
void S9xCheckMissingHTimerPositionRange (int32 hc_from, int32 range)
{
if ((PPU.HTimerPosition >= hc_from) && (PPU.HTimerPosition < (hc_from + range)))
{
if (PPU.HTimerEnabled && (!PPU.VTimerEnabled || (CPU.V_Counter == PPU.VTimerPosition)))
S9xSetIRQ(PPU_H_BEAM_IRQ_SOURCE);
else
if (PPU.VTimerEnabled && (CPU.V_Counter == PPU.VTimerPosition))
S9xSetIRQ(PPU_V_BEAM_IRQ_SOURCE);
}
}
void S9xCheckMissingVTimerPosition (void)
{
if (PPU.VTimerEnabled && !PPU.HTimerEnabled && (CPU.V_Counter == PPU.VTimerPosition) && (CPU.Cycles >= PPU.HTimerPosition))
S9xSetIRQ(PPU_V_BEAM_IRQ_SOURCE);
}
void S9xUpdateHVTimerPosition (void)
{
if (PPU.HTimerEnabled)
{
#ifdef DEBUGGER
missing.hirq_pos = PPU.IRQHBeamPos;
#endif
if (PPU.IRQHBeamPos != 0)
{
// IRQ_read
PPU.HTimerPosition = PPU.IRQHBeamPos * ONE_DOT_CYCLE;
if (Timings.H_Max == Timings.H_Max_Master) // 1364
{
if (PPU.IRQHBeamPos > 322)
PPU.HTimerPosition += (ONE_DOT_CYCLE / 2);
if (PPU.IRQHBeamPos > 326)
PPU.HTimerPosition += (ONE_DOT_CYCLE / 2);
}
PPU.HTimerPosition += 14;
// /IRQ
PPU.HTimerPosition += 4;
// after CPU executing
PPU.HTimerPosition += 6;
}
else
PPU.HTimerPosition = 10 + 4 + 6;
}
else
PPU.HTimerPosition = 10 + 4 + 6;
PPU.VTimerPosition = PPU.IRQVBeamPos;
if ((PPU.HTimerPosition >= Timings.H_Max) && (PPU.IRQHBeamPos < 340))
{
PPU.HTimerPosition -= Timings.H_Max;
PPU.VTimerPosition++;
// FIXME
if (PPU.VTimerPosition >= Timings.V_Max)
PPU.VTimerPosition = 0;
}
if (PPU.HTimerPosition < CPU.Cycles)
{
switch (CPU.WhichEvent)
{
case HC_IRQ_1_3_EVENT:
CPU.WhichEvent = HC_HDMA_START_EVENT;
CPU.NextEvent = Timings.HDMAStart;
break;
case HC_IRQ_3_5_EVENT:
CPU.WhichEvent = HC_HCOUNTER_MAX_EVENT;
CPU.NextEvent = Timings.H_Max;
break;
case HC_IRQ_5_7_EVENT:
CPU.WhichEvent = HC_HDMA_INIT_EVENT;
CPU.NextEvent = Timings.HDMAInit;
break;
case HC_IRQ_7_9_EVENT:
CPU.WhichEvent = HC_RENDER_EVENT;
CPU.NextEvent = Timings.RenderPos;
break;
case HC_IRQ_9_A_EVENT:
CPU.WhichEvent = HC_WRAM_REFRESH_EVENT;
CPU.NextEvent = Timings.WRAMRefreshPos;
break;
case HC_IRQ_A_1_EVENT:
CPU.WhichEvent = HC_HBLANK_START_EVENT;
CPU.NextEvent = Timings.HBlankStart;
break;
}
}
else
if (PPU.HTimerPosition < CPU.NextEvent)
{
CPU.NextEvent = PPU.HTimerPosition;
switch (CPU.WhichEvent)
{
case HC_HDMA_START_EVENT:
CPU.WhichEvent = HC_IRQ_1_3_EVENT;
break;
case HC_HCOUNTER_MAX_EVENT:
CPU.WhichEvent = HC_IRQ_3_5_EVENT;
break;
case HC_HDMA_INIT_EVENT:
CPU.WhichEvent = HC_IRQ_5_7_EVENT;
break;
case HC_RENDER_EVENT:
CPU.WhichEvent = HC_IRQ_7_9_EVENT;
break;
case HC_WRAM_REFRESH_EVENT:
CPU.WhichEvent = HC_IRQ_9_A_EVENT;
break;
case HC_HBLANK_START_EVENT:
CPU.WhichEvent = HC_IRQ_A_1_EVENT;
break;
}
}
else
{
switch (CPU.WhichEvent)
{
case HC_IRQ_1_3_EVENT:
CPU.WhichEvent = HC_HDMA_START_EVENT;
CPU.NextEvent = Timings.HDMAStart;
break;
case HC_IRQ_3_5_EVENT:
CPU.WhichEvent = HC_HCOUNTER_MAX_EVENT;
CPU.NextEvent = Timings.H_Max;
break;
case HC_IRQ_5_7_EVENT:
CPU.WhichEvent = HC_HDMA_INIT_EVENT;
CPU.NextEvent = Timings.HDMAInit;
break;
case HC_IRQ_7_9_EVENT:
CPU.WhichEvent = HC_RENDER_EVENT;
CPU.NextEvent = Timings.RenderPos;
break;
case HC_IRQ_9_A_EVENT:
CPU.WhichEvent = HC_WRAM_REFRESH_EVENT;
CPU.NextEvent = Timings.WRAMRefreshPos;
break;
case HC_IRQ_A_1_EVENT:
CPU.WhichEvent = HC_HBLANK_START_EVENT;
CPU.NextEvent = Timings.HBlankStart;
break;
}
}
}
void S9xFixColourBrightness ()
{
IPPU.XB = mul_brightness [PPU.Brightness];
for (int i = 0; i < 256; i++)
{
IPPU.Red [i] = IPPU.XB [PPU.CGDATA [i] & 0x1f];
IPPU.Green [i] = IPPU.XB [(PPU.CGDATA [i] >> 5) & 0x1f];
IPPU.Blue [i] = IPPU.XB [(PPU.CGDATA [i] >> 10) & 0x1f];
IPPU.ScreenColors [i] = BUILD_PIXEL (IPPU.Red [i], IPPU.Green [i],
IPPU.Blue [i]);
}
}
/******************************************************************************/
/* S9xSetPPU() */
/* This function sets a PPU Register to a specific byte */
/******************************************************************************/
void S9xSetPPU (uint8 Byte, uint16 Address)
{
// fprintf(stderr, "%03d: %02x to %04x\n", CPU.V_Counter, Byte, Address);
// Take care of DMA wrapping
if(CPU.InDMA && Address>0x21ff) Address=0x2100+(Address&0xff);
if (Address <= 0x219F)
{
switch (Address)
{
case 0x2100:
// Brightness and screen blank bit
if (Byte != Memory.FillRAM [0x2100])
{
FLUSH_REDRAW ();
if (PPU.Brightness != (Byte & 0xF))
{
IPPU.ColorsChanged = TRUE;
IPPU.DirectColourMapsNeedRebuild = TRUE;
PPU.Brightness = Byte & 0xF;
S9xFixColourBrightness ();
if (PPU.Brightness > IPPU.MaxBrightness)
IPPU.MaxBrightness = PPU.Brightness;
}
if ((Memory.FillRAM[0x2100] & 0x80) != (Byte & 0x80))
{
IPPU.ColorsChanged = TRUE;
PPU.ForcedBlanking = (Byte >> 7) & 1;
}
}
break;
case 0x2101:
// Sprite (OBJ) tile address
if (Byte != Memory.FillRAM [0x2101])
{
FLUSH_REDRAW ();
PPU.OBJNameBase = (Byte & 3) << 14;
PPU.OBJNameSelect = ((Byte >> 3) & 3) << 13;
PPU.OBJSizeSelect = (Byte >> 5) & 7;
IPPU.OBJChanged = TRUE;
}
break;
case 0x2102:
// Sprite write address (low)
PPU.OAMAddr = ((Memory.FillRAM[0x2103]&1)<<8) | Byte;
PPU.OAMFlip = 2;
PPU.OAMReadFlip = 0;
PPU.SavedOAMAddr = PPU.OAMAddr;
if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1))
{
PPU.FirstSprite = (PPU.OAMAddr&0xFE) >> 1;
IPPU.OBJChanged = TRUE;
#ifdef DEBUGGER
missing.sprite_priority_rotation = 1;
#endif
}
break;
case 0x2103:
// Sprite register write address (high), sprite priority rotation
// bit.
PPU.OAMAddr = ((Byte&1)<<8) | Memory.FillRAM[0x2102];
PPU.OAMPriorityRotation=(Byte & 0x80)? 1 : 0;
if (PPU.OAMPriorityRotation)
{
if (PPU.FirstSprite != (PPU.OAMAddr >> 1))
{
PPU.FirstSprite = (PPU.OAMAddr&0xFE) >> 1;
IPPU.OBJChanged = TRUE;
#ifdef DEBUGGER
missing.sprite_priority_rotation = 1;
#endif
}
} else {
if (PPU.FirstSprite != 0)
{
PPU.FirstSprite = 0;
IPPU.OBJChanged = TRUE;
#ifdef DEBUGGER
missing.sprite_priority_rotation = 1;
#endif
}
}
PPU.OAMFlip = 0;
PPU.OAMReadFlip = 0;
PPU.SavedOAMAddr = PPU.OAMAddr;
break;
case 0x2104:
// Sprite register write
REGISTER_2104(Byte);
break;
case 0x2105:
// Screen mode (0 - 7), background tile sizes and background 3
// priority
if (Byte != Memory.FillRAM [0x2105])
{
FLUSH_REDRAW ();
PPU.BG[0].BGSize = (Byte >> 4) & 1;
PPU.BG[1].BGSize = (Byte >> 5) & 1;
PPU.BG[2].BGSize = (Byte >> 6) & 1;
PPU.BG[3].BGSize = (Byte >> 7) & 1;
PPU.BGMode = Byte & 7;
// BJ: BG3Priority only takes effect if BGMode==1 and the bit is set
PPU.BG3Priority = ((Byte & 0x0f) == 0x09);
#ifdef DEBUGGER
missing.modes[PPU.BGMode] = 1;
#endif
if(PPU.BGMode==5||PPU.BGMode==6)
IPPU.Interlace = Memory.FillRAM[0x2133]&1;
else
IPPU.Interlace = 0;
}
break;
case 0x2106:
if (Byte != Memory.FillRAM [0x2106])
{
// Mosaic pixel size and enable
FLUSH_REDRAW();
PPU.MosaicStart=CPU.V_Counter;
if(PPU.MosaicStart>PPU.ScreenHeight) PPU.MosaicStart=0;
#ifdef DEBUGGER
if ((Byte & 0xf0) && (Byte & 0x0f))
missing.mosaic = 1;
#endif
PPU.Mosaic = (Byte >> 4) + 1;
PPU.BGMosaic [0] = (Byte & 1);
PPU.BGMosaic [1] = (Byte & 2);
PPU.BGMosaic [2] = (Byte & 4);
PPU.BGMosaic [3] = (Byte & 8);
}
break;
case 0x2107: // [BG0SC]
if (Byte != Memory.FillRAM [0x2107])
{
FLUSH_REDRAW ();
PPU.BG[0].SCSize = Byte & 3;
PPU.BG[0].SCBase = (Byte & 0x7c) << 8;
}
break;
case 0x2108: // [BG1SC]
if (Byte != Memory.FillRAM [0x2108])
{
FLUSH_REDRAW ();
PPU.BG[1].SCSize = Byte & 3;
PPU.BG[1].SCBase = (Byte & 0x7c) << 8;
}
break;
case 0x2109: // [BG2SC]
if (Byte != Memory.FillRAM [0x2109])
{
FLUSH_REDRAW ();
PPU.BG[2].SCSize = Byte & 3;
PPU.BG[2].SCBase = (Byte & 0x7c) << 8;
}
break;
case 0x210A: // [BG3SC]
if (Byte != Memory.FillRAM [0x210a])
{
FLUSH_REDRAW ();
PPU.BG[3].SCSize = Byte & 3;
PPU.BG[3].SCBase = (Byte & 0x7c) << 8;
}
break;
case 0x210B: // [BG01NBA]
if (Byte != Memory.FillRAM [0x210b])
{
FLUSH_REDRAW ();
PPU.BG[0].NameBase = (Byte & 7) << 12;
PPU.BG[1].NameBase = ((Byte >> 4) & 7) << 12;
}
break;
case 0x210C: // [BG23NBA]
if (Byte != Memory.FillRAM [0x210c])
{
FLUSH_REDRAW ();
PPU.BG[2].NameBase = (Byte & 7) << 12;
PPU.BG[3].NameBase = ((Byte >> 4) & 7) << 12;
}
break;
case 0x210D:
// Yes, the two formulas are supposed to be different.
PPU.BG[0].HOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[0].HOffset>>8)&7);
PPU.M7HOFS = (Byte<<8) | PPU.M7byte;
PPU.BGnxOFSbyte = Byte;
PPU.M7byte = Byte;
break;
case 0x210E:
// Yes, the two formulas are supposed to be different.
PPU.BG[0].VOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[0].VOffset>>8)&7);
PPU.M7VOFS = (Byte<<8) | PPU.M7byte;
PPU.BGnxOFSbyte = Byte;
PPU.M7byte = Byte;
break;
case 0x210F:
PPU.BG[1].HOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[1].HOffset>>8)&7);
PPU.BGnxOFSbyte = Byte;
break;
case 0x2110:
PPU.BG[1].VOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[1].VOffset>>8)&7);
PPU.BGnxOFSbyte = Byte;
break;
case 0x2111:
PPU.BG[2].HOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[2].HOffset>>8)&7);
PPU.BGnxOFSbyte = Byte;
break;
case 0x2112:
PPU.BG[2].VOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[2].VOffset>>8)&7);
PPU.BGnxOFSbyte = Byte;
break;
case 0x2113:
PPU.BG[3].HOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[3].HOffset>>8)&7);
PPU.BGnxOFSbyte = Byte;
break;
case 0x2114:
PPU.BG[3].VOffset = (Byte<<8) | (PPU.BGnxOFSbyte&~7) | ((PPU.BG[3].VOffset>>8)&7);
PPU.BGnxOFSbyte = Byte;
break;
case 0x2115:
// VRAM byte/word access flag and increment
PPU.VMA.High = (Byte & 0x80) == 0 ? FALSE : TRUE;
switch (Byte & 3)
{
case 0:
PPU.VMA.Increment = 1;
break;
case 1:
PPU.VMA.Increment = 32;
break;
case 2:
PPU.VMA.Increment = 128;
break;
case 3:
PPU.VMA.Increment = 128;
break;
}
#ifdef DEBUGGER
if ((Byte & 3) != 0)
missing.vram_inc = Byte & 3;
#endif
if (Byte & 0x0c)
{
static uint16 IncCount [4] = { 0, 32, 64, 128 };
static uint16 Shift [4] = { 0, 5, 6, 7 };
#ifdef DEBUGGER
missing.vram_full_graphic_inc = (Byte & 0x0c) >> 2;
#endif
// PPU.VMA.Increment = 1;
uint8 i = (Byte & 0x0c) >> 2;
PPU.VMA.FullGraphicCount = IncCount [i];
PPU.VMA.Mask1 = IncCount [i] * 8 - 1;
PPU.VMA.Shift = Shift [i];
}
else
PPU.VMA.FullGraphicCount = 0;
break;
case 0x2116:
// VRAM read/write address (low)
PPU.VMA.Address &= 0xFF00;
PPU.VMA.Address |= Byte;
#ifdef CORRECT_VRAM_READS
if (PPU.VMA.FullGraphicCount)
{
uint32 addr = PPU.VMA.Address;
uint32 rem = addr & PPU.VMA.Mask1;
uint32 address = (addr & ~PPU.VMA.Mask1) +
(rem >> PPU.VMA.Shift) +
((rem & (PPU.VMA.FullGraphicCount - 1)) << 3);
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((address << 1) & 0xFFFF));
} else
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((PPU.VMA.Address << 1) & 0xffff));
#else
IPPU.FirstVRAMRead = TRUE;
#endif
break;
case 0x2117:
// VRAM read/write address (high)
PPU.VMA.Address &= 0x00FF;
PPU.VMA.Address |= Byte << 8;
#ifdef CORRECT_VRAM_READS
if (PPU.VMA.FullGraphicCount)
{
uint32 addr = PPU.VMA.Address;
uint32 rem = addr & PPU.VMA.Mask1;
uint32 address = (addr & ~PPU.VMA.Mask1) +
(rem >> PPU.VMA.Shift) +
((rem & (PPU.VMA.FullGraphicCount - 1)) << 3);
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((address << 1) & 0xFFFF));
} else
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((PPU.VMA.Address << 1) & 0xffff));
#else
IPPU.FirstVRAMRead = TRUE;
#endif
break;
case 0x2118:
// VRAM write data (low)
#ifndef CORRECT_VRAM_READS
IPPU.FirstVRAMRead = TRUE;
#endif
REGISTER_2118(Byte);
break;
case 0x2119:
// VRAM write data (high)
#ifndef CORRECT_VRAM_READS
IPPU.FirstVRAMRead = TRUE;
#endif
REGISTER_2119(Byte);
break;
case 0x211a:
// Mode 7 outside rotation area display mode and flipping
if (Byte != Memory.FillRAM [0x211a])
{
FLUSH_REDRAW ();
PPU.Mode7Repeat = Byte >> 6;
if (PPU.Mode7Repeat == 1)
PPU.Mode7Repeat = 0;
PPU.Mode7VFlip = (Byte & 2) >> 1;
PPU.Mode7HFlip = Byte & 1;
}
break;
case 0x211b:
// Mode 7 matrix A (low & high)
PPU.MatrixA = PPU.M7byte | (Byte << 8);
PPU.Need16x8Mulitply = TRUE;
PPU.M7byte = Byte;
break;
case 0x211c:
// Mode 7 matrix B (low & high)
PPU.MatrixB = PPU.M7byte | (Byte << 8);
PPU.Need16x8Mulitply = TRUE;
PPU.M7byte = Byte;
break;
case 0x211d:
// Mode 7 matrix C (low & high)
PPU.MatrixC = PPU.M7byte | (Byte << 8);
PPU.M7byte = Byte;
break;
case 0x211e:
// Mode 7 matrix D (low & high)
PPU.MatrixD = PPU.M7byte | (Byte << 8);
PPU.M7byte = Byte;
break;
case 0x211f:
// Mode 7 centre of rotation X (low & high)
PPU.CentreX = PPU.M7byte | (Byte << 8);
PPU.M7byte = Byte;
break;
case 0x2120:
// Mode 7 centre of rotation Y (low & high)
PPU.CentreY = PPU.M7byte | (Byte << 8);
PPU.M7byte = Byte;
break;
case 0x2121:
// CG-RAM address
PPU.CGFLIP = 0;
PPU.CGFLIPRead = 0;
PPU.CGADD = Byte;
break;
case 0x2122:
REGISTER_2122(Byte);
break;
case 0x2123:
// Window 1 and 2 enable for backgrounds 1 and 2
if (Byte != Memory.FillRAM [0x2123])
{
FLUSH_REDRAW ();
PPU.ClipWindow1Enable [0] = !!(Byte & 0x02);
PPU.ClipWindow1Enable [1] = !!(Byte & 0x20);
PPU.ClipWindow2Enable [0] = !!(Byte & 0x08);
PPU.ClipWindow2Enable [1] = !!(Byte & 0x80);
PPU.ClipWindow1Inside [0] = !(Byte & 0x01);
PPU.ClipWindow1Inside [1] = !(Byte & 0x10);
PPU.ClipWindow2Inside [0] = !(Byte & 0x04);
PPU.ClipWindow2Inside [1] = !(Byte & 0x40);
PPU.RecomputeClipWindows = TRUE;
#ifdef DEBUGGER
if (Byte & 0x80)
missing.window2[1] = 1;
if (Byte & 0x20)
missing.window1[1] = 1;
if (Byte & 0x08)
missing.window2[0] = 1;
if (Byte & 0x02)
missing.window1[0] = 1;
#endif
}
break;
case 0x2124:
// Window 1 and 2 enable for backgrounds 3 and 4
if (Byte != Memory.FillRAM [0x2124])
{
FLUSH_REDRAW ();
PPU.ClipWindow1Enable [2] = !!(Byte & 0x02);
PPU.ClipWindow1Enable [3] = !!(Byte & 0x20);
PPU.ClipWindow2Enable [2] = !!(Byte & 0x08);
PPU.ClipWindow2Enable [3] = !!(Byte & 0x80);
PPU.ClipWindow1Inside [2] = !(Byte & 0x01);
PPU.ClipWindow1Inside [3] = !(Byte & 0x10);
PPU.ClipWindow2Inside [2] = !(Byte & 0x04);
PPU.ClipWindow2Inside [3] = !(Byte & 0x40);
PPU.RecomputeClipWindows = TRUE;
#ifdef DEBUGGER
if (Byte & 0x80)
missing.window2[3] = 1;
if (Byte & 0x20)
missing.window1[3] = 1;
if (Byte & 0x08)
missing.window2[2] = 1;
if (Byte & 0x02)
missing.window1[2] = 1;
#endif
}
break;
case 0x2125:
// Window 1 and 2 enable for objects and colour window
if (Byte != Memory.FillRAM [0x2125])
{
FLUSH_REDRAW ();
PPU.ClipWindow1Enable [4] = !!(Byte & 0x02);
PPU.ClipWindow1Enable [5] = !!(Byte & 0x20);
PPU.ClipWindow2Enable [4] = !!(Byte & 0x08);
PPU.ClipWindow2Enable [5] = !!(Byte & 0x80);
PPU.ClipWindow1Inside [4] = !(Byte & 0x01);
PPU.ClipWindow1Inside [5] = !(Byte & 0x10);
PPU.ClipWindow2Inside [4] = !(Byte & 0x04);
PPU.ClipWindow2Inside [5] = !(Byte & 0x40);
PPU.RecomputeClipWindows = TRUE;
#ifdef DEBUGGER
if (Byte & 0x80)
missing.window2[5] = 1;
if (Byte & 0x20)
missing.window1[5] = 1;
if (Byte & 0x08)
missing.window2[4] = 1;
if (Byte & 0x02)
missing.window1[4] = 1;
#endif
}
break;
case 0x2126:
// Window 1 left position
if (Byte != Memory.FillRAM [0x2126])
{
FLUSH_REDRAW ();
PPU.Window1Left = Byte;
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x2127:
// Window 1 right position
if (Byte != Memory.FillRAM [0x2127])
{
FLUSH_REDRAW ();
PPU.Window1Right = Byte;
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x2128:
// Window 2 left position
if (Byte != Memory.FillRAM [0x2128])
{
FLUSH_REDRAW ();
PPU.Window2Left = Byte;
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x2129:
// Window 2 right position
if (Byte != Memory.FillRAM [0x2129])
{
FLUSH_REDRAW ();
PPU.Window2Right = Byte;
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x212a:
// Windows 1 & 2 overlap logic for backgrounds 1 - 4
if (Byte != Memory.FillRAM [0x212a])
{
FLUSH_REDRAW ();
PPU.ClipWindowOverlapLogic [0] = (Byte & 0x03);
PPU.ClipWindowOverlapLogic [1] = (Byte & 0x0c) >> 2;
PPU.ClipWindowOverlapLogic [2] = (Byte & 0x30) >> 4;
PPU.ClipWindowOverlapLogic [3] = (Byte & 0xc0) >> 6;
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x212b:
// Windows 1 & 2 overlap logic for objects and colour window
if (Byte != Memory.FillRAM [0x212b])
{
FLUSH_REDRAW ();
PPU.ClipWindowOverlapLogic [4] = Byte & 0x03;
PPU.ClipWindowOverlapLogic [5] = (Byte & 0x0c) >> 2;
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x212c:
// Main screen designation (backgrounds 1 - 4 and objects)
if (Byte != Memory.FillRAM [0x212c])
{
FLUSH_REDRAW ();
PPU.RecomputeClipWindows = TRUE;
Memory.FillRAM [Address] = Byte;
return;
}
break;
case 0x212d:
// Sub-screen designation (backgrounds 1 - 4 and objects)
if (Byte != Memory.FillRAM [0x212d])
{
FLUSH_REDRAW ();
#ifdef DEBUGGER
if (Byte & 0x1f)
missing.subscreen = 1;
#endif
PPU.RecomputeClipWindows = TRUE;
Memory.FillRAM [Address] = Byte;
return;
}
break;
case 0x212e:
// Window mask designation for main screen ?
if (Byte != Memory.FillRAM [0x212e])
{
FLUSH_REDRAW ();
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x212f:
// Window mask designation for sub-screen ?
if (Byte != Memory.FillRAM [0x212f])
{
FLUSH_REDRAW ();
PPU.RecomputeClipWindows = TRUE;
}
break;
case 0x2130:
// Fixed colour addition or screen addition
if (Byte != Memory.FillRAM [0x2130])
{
FLUSH_REDRAW ();
PPU.RecomputeClipWindows = TRUE;
#ifdef DEBUGGER
if ((Byte & 1) && (PPU.BGMode == 3 || PPU.BGMode == 4 || PPU.BGMode == 7))
missing.direct = 1;
#endif
}
break;
case 0x2131:
// Colour addition or subtraction select
if (Byte != Memory.FillRAM[0x2131])
{
FLUSH_REDRAW ();
// Backgrounds 1 - 4, objects and backdrop colour add/sub enable
#ifdef DEBUGGER
if (Byte & 0x80)
{
// Subtract
if (Memory.FillRAM[0x2130] & 0x02)
missing.subscreen_sub = 1;
else
missing.fixed_colour_sub = 1;
}
else
{
// Addition
if (Memory.FillRAM[0x2130] & 0x02)
missing.subscreen_add = 1;
else
missing.fixed_colour_add = 1;
}
#endif
Memory.FillRAM[0x2131] = Byte;
}
break;
case 0x2132:
if (Byte != Memory.FillRAM [0x2132])
{
FLUSH_REDRAW ();
// Colour data for fixed colour addition/subtraction
if (Byte & 0x80)
PPU.FixedColourBlue = Byte & 0x1f;
if (Byte & 0x40)
PPU.FixedColourGreen = Byte & 0x1f;
if (Byte & 0x20)
PPU.FixedColourRed = Byte & 0x1f;
}
break;
case 0x2133:
// Screen settings
if (Byte != Memory.FillRAM [0x2133])
{
#ifdef DEBUGGER
if (Byte & 0x40)
missing.mode7_bgmode = 1;
if (Byte & 0x08)
missing.pseudo_512 = 1;
#endif
if((Memory.FillRAM [0x2133] ^ Byte)&8)
{
FLUSH_REDRAW ();
IPPU.PseudoHires = Byte&8;
}
if (Byte & 0x04)
{
PPU.ScreenHeight = SNES_HEIGHT_EXTENDED;
if(IPPU.DoubleHeightPixels)
IPPU.RenderedScreenHeight = PPU.ScreenHeight << 1;
else
IPPU.RenderedScreenHeight = PPU.ScreenHeight;
#ifdef DEBUGGER
missing.lines_239 = 1;
#endif
}
else PPU.ScreenHeight = SNES_HEIGHT;
#ifdef DEBUGGER
if (Byte & 0x02)
missing.sprite_double_height = 1;
if (Byte & 1)
missing.interlace = 1;
#endif
if((Memory.FillRAM [0x2133] ^ Byte)&3)
{
FLUSH_REDRAW ();
if((Memory.FillRAM [0x2133] ^ Byte)&2)
IPPU.OBJChanged = TRUE;
if(PPU.BGMode==5 || PPU.BGMode==6)
IPPU.Interlace = Byte&1;
IPPU.InterlaceOBJ = Byte&2;
}
}
break;
case 0x2134:
case 0x2135:
case 0x2136:
// Matrix 16bit x 8bit multiply result (read-only)
return;
case 0x2137:
// Software latch for horizontal and vertical timers (read-only)
return;
case 0x2138:
// OAM read data (read-only)
return;
case 0x2139:
case 0x213a:
// VRAM read data (read-only)
return;
case 0x213b:
// CG-RAM read data (read-only)
return;
case 0x213c:
case 0x213d:
// Horizontal and vertical (low/high) read counter (read-only)
return;
case 0x213e:
// PPU status (time over and range over)
return;
case 0x213f:
// NTSC/PAL select and field (read-only)
return;
case 0x2140: case 0x2141: case 0x2142: case 0x2143:
case 0x2144: case 0x2145: case 0x2146: case 0x2147:
case 0x2148: case 0x2149: case 0x214a: case 0x214b:
case 0x214c: case 0x214d: case 0x214e: case 0x214f:
case 0x2150: case 0x2151: case 0x2152: case 0x2153:
case 0x2154: case 0x2155: case 0x2156: case 0x2157:
case 0x2158: case 0x2159: case 0x215a: case 0x215b:
case 0x215c: case 0x215d: case 0x215e: case 0x215f:
case 0x2160: case 0x2161: case 0x2162: case 0x2163:
case 0x2164: case 0x2165: case 0x2166: case 0x2167:
case 0x2168: case 0x2169: case 0x216a: case 0x216b:
case 0x216c: case 0x216d: case 0x216e: case 0x216f:
case 0x2170: case 0x2171: case 0x2172: case 0x2173:
case 0x2174: case 0x2175: case 0x2176: case 0x2177:
case 0x2178: case 0x2179: case 0x217a: case 0x217b:
case 0x217c: case 0x217d: case 0x217e: case 0x217f:
#ifdef SPCTOOL
_SPCInPB (Address & 3, Byte);
#else
// CPU.Flags |= DEBUG_MODE_FLAG;
Memory.FillRAM [Address] = Byte;
IAPU.RAM [(Address & 3) + 0xf4] = Byte;
#ifdef SPC700_SHUTDOWN
IAPU.APUExecuting = Settings.APUEnabled;
IAPU.WaitCounter++;
#endif
#endif // SPCTOOL
break;
case 0x2180:
if(!CPU.InWRAM_DMA){
REGISTER_2180(Byte);
}
break;
case 0x2181:
if(!CPU.InWRAM_DMA){
PPU.WRAM &= 0x1FF00;
PPU.WRAM |= Byte;
}
break;
case 0x2182:
if(!CPU.InWRAM_DMA){
PPU.WRAM &= 0x100FF;
PPU.WRAM |= Byte << 8;
}
break;
case 0x2183:
if(!CPU.InWRAM_DMA){
PPU.WRAM &= 0x0FFFF;
PPU.WRAM |= Byte << 16;
PPU.WRAM &= 0x1FFFF;
}
break;
case 0x2188:
case 0x2189:
case 0x218a:
case 0x218b:
case 0x218c:
case 0x218d:
case 0x218e:
case 0x218f:
case 0x2190:
case 0x2191:
case 0x2192:
case 0x2193:
case 0x2194:
case 0x2195:
case 0x2196:
case 0x2197:
case 0x2198:
case 0x2199:
case 0x219a:
case 0x219b:
case 0x219c:
case 0x219d:
case 0x219e:
case 0x219f:
if (Settings.BS)
S9xSetBSXPPU(Byte, Address);
break;
}
}
else
{
if (Settings.SA1)
{
if (Address >= 0x2200 && Address <0x23ff)
S9xSetSA1 (Byte, Address);
else
Memory.FillRAM [Address] = Byte;
return;
}
else
// Dai Kaijyu Monogatari II
if (Address == 0x2801 && Settings.SRTC)
S9xSetSRTC (Byte, Address);
else
if (Address < 0x3000 || Address >= 0x3000 + 768)
{
#ifdef DEBUGGER
missing.unknownppu_write = Address;
if (Settings.TraceUnknownRegisters)
{
sprintf (String, "Unknown register write: $%02X->$%04X\n",
Byte, Address);
S9xMessage (S9X_TRACE, S9X_PPU_TRACE, String);
}
#endif
}
else
{
if (!Settings.SuperFX)
{
return;
}
#ifdef ZSNES_FX
Memory.FillRAM [Address] = Byte;
if (Address < 0x3040)
S9xSuperFXWriteReg (Byte, Address);
#else
switch (Address)
{
case 0x3030:
if ((Memory.FillRAM [0x3030] ^ Byte) & FLG_G)
{
Memory.FillRAM [Address] = Byte;
// Go flag has been changed
if (Byte & FLG_G)
{
if (!SuperFX.oneLineDone)
{
S9xSuperFXExec ();
SuperFX.oneLineDone = TRUE;
}
}
else
FxFlushCache ();
}
else
Memory.FillRAM [Address] = Byte;
break;
case 0x3031:
Memory.FillRAM [Address] = Byte;
break;
case 0x3033:
Memory.FillRAM [Address] = Byte;
break;
case 0x3034:
Memory.FillRAM [Address] = Byte & 0x7f;
break;
case 0x3036:
Memory.FillRAM [Address] = Byte & 0x7f;
break;
case 0x3037:
Memory.FillRAM [Address] = Byte;
break;
case 0x3038:
Memory.FillRAM [Address] = Byte;
fx_dirtySCBR();
break;
case 0x3039:
Memory.FillRAM [Address] = Byte;
break;
case 0x303a:
Memory.FillRAM [Address] = Byte;
break;
case 0x303b:
break;
case 0x303c:
Memory.FillRAM [Address] = Byte;
fx_updateRamBank(Byte);
break;
case 0x303f:
Memory.FillRAM [Address] = Byte;
break;
case 0x301f:
Memory.FillRAM [Address] = Byte;
Memory.FillRAM [0x3000 + GSU_SFR] |= FLG_G;
if (!SuperFX.oneLineDone)
{
S9xSuperFXExec ();
SuperFX.oneLineDone = TRUE;
}
return;
default:
Memory.FillRAM[Address] = Byte;
if (Address >= 0x3100)
{
FxCacheWriteAccess (Address);
}
break;
}
#endif
return;
}
}
Memory.FillRAM[Address] = Byte;
}
/******************************************************************************/
/* S9xGetPPU() */
/* This function retrieves a PPU Register */
/******************************************************************************/
uint8 S9xGetPPU (uint16 Address)
{
uint8 byte = OpenBus;
if(Address<0x2100)//not a real PPU reg
return OpenBus; //treat as unmapped memory returning last byte on the bus
// Take care of DMA wrapping
if(CPU.InDMA && Address>0x21ff) Address=0x2100+(Address&0xff);
if (Address <= 0x219F)
{
switch (Address)
{
case 0x2100:
case 0x2101:
case 0x2102:
case 0x2103:
#ifdef DEBUGGER
missing.oam_address_read = 1;
#endif
return OpenBus;
case 0x2104:
case 0x2105:
case 0x2106:
return PPU.OpenBus1;
case 0x2107:
return OpenBus;
case 0x2108:
case 0x2109:
case 0x210a:
return PPU.OpenBus1;
case 0x210b:
case 0x210c:
case 0x210d:
case 0x210e:
case 0x210f:
case 0x2110:
case 0x2111:
case 0x2112:
case 0x2113:
missing.bg_offset_read = 1;
return OpenBus;
case 0x2114:
#ifdef DEBUGGER
missing.bg_offset_read = 1;
#endif
case 0x2115:
case 0x2116:
return PPU.OpenBus1;
case 0x2117:
return OpenBus;
case 0x2118:
case 0x2119:
case 0x211a:
return PPU.OpenBus1;
case 0x211b:
case 0x211c:
case 0x211d:
case 0x211e:
case 0x211f:
case 0x2120:
#ifdef DEBUGGER
missing.matrix_read = 1;
#endif
return OpenBus;
case 0x2121:
case 0x2122:
case 0x2123:
return OpenBus;
case 0x2124:
case 0x2125:
case 0x2126:
return PPU.OpenBus1;
case 0x2127:
return OpenBus;
case 0x2128:
case 0x2129:
case 0x212a:
return PPU.OpenBus1;
case 0x212b:
case 0x212c:
case 0x212d:
case 0x212e:
case 0x212f:
case 0x2130:
case 0x2131:
case 0x2132:
case 0x2133:
return OpenBus;
case 0x2134:
case 0x2135:
case 0x2136:
// 16bit x 8bit multiply read result.
if (PPU.Need16x8Mulitply)
{
int32 r = (int32) PPU.MatrixA * (int32) (PPU.MatrixB >> 8);
Memory.FillRAM[0x2134] = (uint8) r;
Memory.FillRAM[0x2135] = (uint8)(r >> 8);
Memory.FillRAM[0x2136] = (uint8)(r >> 16);
PPU.Need16x8Mulitply = FALSE;
}
#ifdef DEBUGGER
missing.matrix_multiply = 1;
#endif
return (PPU.OpenBus1 = Memory.FillRAM[Address]);
case 0x2137:
S9xLatchCounters(0);
return OpenBus;
case 0x2138:
// Read OAM (sprite) control data
if(PPU.OAMAddr&0x100){
if (!(PPU.OAMFlip&1))
{
byte = PPU.OAMData [(PPU.OAMAddr&0x10f) << 1];
}
else
{
byte = PPU.OAMData [((PPU.OAMAddr&0x10f) << 1) + 1];
PPU.OAMAddr=(PPU.OAMAddr+1)&0x1ff;
if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1))
{
PPU.FirstSprite = (PPU.OAMAddr&0xFE) >> 1;
IPPU.OBJChanged = TRUE;
#ifdef DEBUGGER
missing.sprite_priority_rotation = 1;
#endif
}
}
} else {
if (!(PPU.OAMFlip&1))
{
byte = PPU.OAMData [PPU.OAMAddr << 1];
}
else
{
byte = PPU.OAMData [(PPU.OAMAddr << 1) + 1];
++PPU.OAMAddr;
if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1))
{
PPU.FirstSprite = (PPU.OAMAddr&0xFE) >> 1;
IPPU.OBJChanged = TRUE;
#ifdef DEBUGGER
missing.sprite_priority_rotation = 1;
#endif
}
}
}
PPU.OAMFlip ^= 1;
#ifdef DEBUGGER
missing.oam_read = 1;
#endif
return (PPU.OpenBus1 = byte);
case 0x2139:
// Read vram low byte
#ifdef DEBUGGER
missing.vram_read = 1;
#endif
#ifdef CORRECT_VRAM_READS
byte = IPPU.VRAMReadBuffer & 0xff;
if (!PPU.VMA.High)
{
if (PPU.VMA.FullGraphicCount)
{
uint32 addr = PPU.VMA.Address;
uint32 rem = addr & PPU.VMA.Mask1;
uint32 address = (addr & ~PPU.VMA.Mask1) +
(rem >> PPU.VMA.Shift) +
((rem & (PPU.VMA.FullGraphicCount - 1)) << 3);
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((address << 1) & 0xFFFF));
} else
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((PPU.VMA.Address << 1) & 0xffff));
PPU.VMA.Address += PPU.VMA.Increment;
}
#else
if (IPPU.FirstVRAMRead)
byte = Memory.VRAM[(PPU.VMA.Address << 1)&0xFFFF];
else
if (PPU.VMA.FullGraphicCount)
{
uint32 addr = PPU.VMA.Address - 1;
uint32 rem = addr & PPU.VMA.Mask1;
uint32 address = (addr & ~PPU.VMA.Mask1) +
(rem >> PPU.VMA.Shift) +
((rem & (PPU.VMA.FullGraphicCount - 1)) << 3);
byte = Memory.VRAM [((address << 1) - 2) & 0xFFFF];
}
else
byte = Memory.VRAM[((PPU.VMA.Address << 1) - 2) & 0xffff];
if (!PPU.VMA.High)
{
PPU.VMA.Address += PPU.VMA.Increment;
IPPU.FirstVRAMRead = FALSE;
}
#endif
PPU.OpenBus1 = byte;
break;
case 0x213A:
// Read vram high byte
#ifdef DEBUGGER
missing.vram_read = 1;
#endif
#ifdef CORRECT_VRAM_READS
byte = (IPPU.VRAMReadBuffer>>8) & 0xff;
if (PPU.VMA.High)
{
if (PPU.VMA.FullGraphicCount)
{
uint32 addr = PPU.VMA.Address;
uint32 rem = addr & PPU.VMA.Mask1;
uint32 address = (addr & ~PPU.VMA.Mask1) +
(rem >> PPU.VMA.Shift) +
((rem & (PPU.VMA.FullGraphicCount - 1)) << 3);
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((address << 1) & 0xFFFF));
} else
IPPU.VRAMReadBuffer = READ_WORD(Memory.VRAM+((PPU.VMA.Address << 1) & 0xffff));
PPU.VMA.Address += PPU.VMA.Increment;
}
#else
if (IPPU.FirstVRAMRead)
byte = Memory.VRAM[((PPU.VMA.Address << 1) + 1) & 0xffff];
else
if (PPU.VMA.FullGraphicCount)
{
uint32 addr = PPU.VMA.Address - 1;
uint32 rem = addr & PPU.VMA.Mask1;
uint32 address = (addr & ~PPU.VMA.Mask1) +
(rem >> PPU.VMA.Shift) +
((rem & (PPU.VMA.FullGraphicCount - 1)) << 3);
byte = Memory.VRAM [((address << 1) - 1) & 0xFFFF];
}
else
byte = Memory.VRAM[((PPU.VMA.Address << 1) - 1) & 0xFFFF];
if (PPU.VMA.High)
{
PPU.VMA.Address += PPU.VMA.Increment;
IPPU.FirstVRAMRead = FALSE;
}
#endif
PPU.OpenBus1 = byte;
break;
case 0x213B:
// Read palette data
#ifdef DEBUGGER
missing.cgram_read = 1;
#endif
if (PPU.CGFLIPRead)
byte = PPU.CGDATA [PPU.CGADD++] >> 8;
else
byte = PPU.CGDATA [PPU.CGADD] & 0xff;
PPU.CGFLIPRead ^= 1;
return (PPU.OpenBus2 = byte);
case 0x213C:
// Horizontal counter value 0-339
#ifdef DEBUGGER
missing.h_counter_read = 1;
#endif
S9xTryGunLatch(false);
if (PPU.HBeamFlip)
byte = (PPU.OpenBus2 & 0xfe) | ((PPU.HBeamPosLatched >> 8) & 0x01);
else
byte = (uint8)PPU.HBeamPosLatched;
PPU.OpenBus2 = byte;
PPU.HBeamFlip ^= 1;
break;
case 0x213D:
// Vertical counter value 0-262
#ifdef DEBUGGER
missing.v_counter_read = 1;
#endif
S9xTryGunLatch(false);
if (PPU.VBeamFlip)
byte = (PPU.OpenBus2 & 0xfe) | ((PPU.VBeamPosLatched >> 8) & 0x01);
else
byte = (uint8)PPU.VBeamPosLatched;
PPU.OpenBus2 = byte;
PPU.VBeamFlip ^= 1;
break;
case 0x213E:
// PPU time and range over flags
FLUSH_REDRAW ();
//so far, 5c77 version is always 1.
return (PPU.OpenBus1 = (Model->_5C77 | PPU.RangeTimeOver));
case 0x213F:
// NTSC/PAL and which field flags
S9xTryGunLatch(false);
PPU.VBeamFlip = PPU.HBeamFlip = 0;
//neviksti found a 2 and a 3 here. SNEeSe uses a 3.
byte=((Settings.PAL ? 0x10 : 0) | (Memory.FillRAM[0x213f] & 0xc0) | Model->_5C78) | (PPU.OpenBus2 & 0x20);
Memory.FillRAM[0x213f] &= ~0x40;
return byte;
case 0x2140: case 0x2141: case 0x2142: case 0x2143:
case 0x2144: case 0x2145: case 0x2146: case 0x2147:
case 0x2148: case 0x2149: case 0x214a: case 0x214b:
case 0x214c: case 0x214d: case 0x214e: case 0x214f:
case 0x2150: case 0x2151: case 0x2152: case 0x2153:
case 0x2154: case 0x2155: case 0x2156: case 0x2157:
case 0x2158: case 0x2159: case 0x215a: case 0x215b:
case 0x215c: case 0x215d: case 0x215e: case 0x215f:
case 0x2160: case 0x2161: case 0x2162: case 0x2163:
case 0x2164: case 0x2165: case 0x2166: case 0x2167:
case 0x2168: case 0x2169: case 0x216a: case 0x216b:
case 0x216c: case 0x216d: case 0x216e: case 0x216f:
case 0x2170: case 0x2171: case 0x2172: case 0x2173:
case 0x2174: case 0x2175: case 0x2176: case 0x2177:
case 0x2178: case 0x2179: case 0x217a: case 0x217b:
case 0x217c: case 0x217d: case 0x217e: case 0x217f:
#ifdef SPCTOOL
return ((uint8) _SPCOutP [Address & 3]);
#else
// CPU.Flags |= DEBUG_MODE_FLAG;
#ifdef SPC700_SHUTDOWN
IAPU.APUExecuting = Settings.APUEnabled;
IAPU.WaitCounter++;
#endif
if (Settings.APUEnabled)
{
#ifdef CPU_SHUTDOWN
// CPU.WaitAddress = CPU.PCAtOpcodeStart;
#endif
if (SNESGameFixes.APU_OutPorts_ReturnValueFix &&
Address >= 0x2140 && Address <= 0x2143 && !CPU.V_Counter)
{
return (uint8)((Address & 1) ? ((rand() & 0xff00) >> 8) :
(rand() & 0xff));
}
return (APU.OutPorts [Address & 3]);
}
switch (Settings.SoundSkipMethod)
{
case 0:
case 1:
CPU.BranchSkip = TRUE;
break;
case 2:
break;
case 3:
CPU.BranchSkip = TRUE;
break;
}
if ((Address & 3) < 2)
{
int r = rand ();
if (r & 2)
{
if (r & 4)
return ((Address & 3) == 1 ? 0xaa : 0xbb);
else
return ((r >> 3) & 0xff);
}
}
else
{
int r = rand ();
if (r & 2)
return ((r >> 3) & 0xff);
}
return (Memory.FillRAM[Address]);
#endif // SPCTOOL
case 0x2180:
// Read WRAM
#ifdef DEBUGGER
missing.wram_read = 1;
#endif
if(!CPU.InWRAM_DMA){
byte = Memory.RAM [PPU.WRAM++];
PPU.WRAM &= 0x1FFFF;
} else {
byte=OpenBus;
}
break;
case 0x2181:
case 0x2182:
case 0x2183:
case 0x2184:
case 0x2185:
case 0x2186:
case 0x2187:
return OpenBus;
case 0x2188:
case 0x2189:
case 0x218a:
case 0x218b:
case 0x218c:
case 0x218d:
case 0x218e:
case 0x218f:
case 0x2190:
case 0x2191:
case 0x2192:
case 0x2193:
case 0x2194:
case 0x2195:
case 0x2196:
case 0x2197:
case 0x2198:
case 0x2199:
case 0x219a:
case 0x219b:
case 0x219c:
case 0x219d:
case 0x219e:
case 0x219f:
if (Settings.BS)
return S9xGetBSXPPU(Address);
else
return OpenBus;
default:
return OpenBus;
}
}
else
{
if (Settings.SA1)
return (S9xGetSA1 (Address));
if (Address <= 0x2fff || Address >= 0x3000 + 768)
{
switch (Address)
{
case 0x21c2:
if(Model->_5C77 ==2)
return (0x20);
// fprintf(stderr, "Read from $21c2!\n");
return OpenBus;
case 0x21c3:
if(Model->_5C77 ==2)
return (0);
// fprintf(stderr, "Read from $21c3!\n");
return OpenBus;
case 0x2800:
// For Dai Kaijyu Monogatari II
if (Settings.SRTC)
return (S9xGetSRTC (Address));
/*FALL*/
default:
#ifdef DEBUGGER
missing.unknownppu_read = Address;
if (Settings.TraceUnknownRegisters)
{
sprintf (String, "Unknown register read: $%04X\n", Address);
S9xMessage (S9X_TRACE, S9X_PPU_TRACE, String);
}
#endif
return OpenBus;
}
}
if (!Settings.SuperFX)
return OpenBus;
#ifdef ZSNES_FX
if (Address < 0x3040)
byte = S9xSuperFXReadReg (Address);
else
byte = Memory.FillRAM [Address];
#ifdef CPU_SHUTDOWN
if (Address == 0x3030)
CPU.WaitAddress = CPU.PBPCAtOpcodeStart;
#endif
if (Address == 0x3031)
CLEAR_IRQ_SOURCE (GSU_IRQ_SOURCE);
#else
byte = Memory.FillRAM [Address];
//if (Address != 0x3030 && Address != 0x3031)
//printf ("%04x\n", Address);
#ifdef CPU_SHUTDOWN
if (Address == 0x3030)
{
CPU.WaitAddress = CPU.PBPCAtOpcodeStart;
}
else
#endif
if (Address == 0x3031)
{
CLEAR_IRQ_SOURCE (GSU_IRQ_SOURCE);
Memory.FillRAM [0x3031] = byte & 0x7f;
}
return (byte);
#endif
}
// fprintf(stderr, "%03d: %02x from %04x\n", CPU.V_Counter, byte, Address);
return (byte);
}
/******************************************************************************/
/* S9xSetCPU() */
/* This function sets a CPU/DMA Register to a specific byte */
/******************************************************************************/
void S9xSetCPU (uint8 byte, uint16 Address)
{
int d;
bool8 pV;
// fprintf(stderr, "%03d: %02x to %04x\n", CPU.V_Counter, byte, Address);
if (Address < 0x4200)
{
CPU.Cycles += ONE_CYCLE;
switch (Address)
{
case 0x4016:
S9xSetJoypadLatch(byte&1);
break;
case 0x4017:
break;
default:
#ifdef DEBUGGER
missing.unknowncpu_write = Address;
if (Settings.TraceUnknownRegisters)
{
sprintf (String, "Unknown register register write: $%02X->$%04X\n",
byte, Address);
S9xMessage (S9X_TRACE, S9X_PPU_TRACE, String);
}
#endif
break;
}
}
else
switch (Address)
{
case 0x4200:
// NMI, V & H IRQ and joypad reading enable flags
pV = PPU.VTimerEnabled;
if (byte & 0x20)
{
PPU.VTimerEnabled = TRUE;
#ifdef DEBUGGER
missing.virq = 1;
missing.virq_pos = PPU.IRQVBeamPos;
#endif
}
else
PPU.VTimerEnabled = FALSE;
if (byte & 0x10)
{
PPU.HTimerEnabled = TRUE;
#ifdef DEBUGGER
missing.hirq = 1;
missing.hirq_pos = PPU.IRQHBeamPos;
#endif
}
else
PPU.HTimerEnabled = FALSE;
S9xUpdateHVTimerPosition();
// FIXME
if (pV != PPU.VTimerEnabled)
S9xCheckMissingVTimerPosition();
if (!(byte & 0x30))
CLEAR_IRQ_SOURCE (PPU_V_BEAM_IRQ_SOURCE | PPU_H_BEAM_IRQ_SOURCE);
if ((byte & 0x80) &&
!(Memory.FillRAM [0x4200] & 0x80) &&
// NMI can trigger during VBlank as long as NMI_read ($4210) wasn't cleard.
// Panic Bomberman clears the NMI pending flag @ scanline 230 before enabling
// NMIs again. The NMI routine crashes the CPU if it is called without the NMI
// pending flag being set...*/
CPU.V_Counter >= PPU.ScreenHeight + FIRST_VISIBLE_LINE && (Memory.FillRAM [0x4210] & 0x80))
{
// FIXME: triggered at HC=6, checked just before the final CPU cycle,
// then, when to call S9xOpcode_NMI()?
CPU.Flags |= NMI_FLAG;
Timings.NMITriggerPos = CPU.Cycles + 6 + 6;
}
break;
case 0x4201:
if((byte&0x80)==0 && (Memory.FillRAM[0x4213]&0x80)==0x80)
S9xLatchCounters(1);
else
S9xTryGunLatch((byte&0x80)?true:false);
Memory.FillRAM[0x4201] = Memory.FillRAM[0x4213] = byte;
break;
case 0x4202:
// Multiplier (for multply)
break;
case 0x4203:
{
// Multiplicand
uint32 res = Memory.FillRAM[0x4202] * byte;
Memory.FillRAM[0x4216] = (uint8) res;
Memory.FillRAM[0x4217] = (uint8) (res >> 8);
break;
}
case 0x4204:
case 0x4205:
// Low and high muliplier (for divide)
break;
case 0x4206:
{
// Divisor
uint16 a = Memory.FillRAM[0x4204] + (Memory.FillRAM[0x4205] << 8);
uint16 div = byte ? a / byte : 0xffff;
uint16 rem = byte ? a % byte : a;
Memory.FillRAM[0x4214] = (uint8)div;
Memory.FillRAM[0x4215] = div >> 8;
Memory.FillRAM[0x4216] = (uint8)rem;
Memory.FillRAM[0x4217] = rem >> 8;
break;
}
case 0x4207:
d = PPU.IRQHBeamPos;
PPU.IRQHBeamPos = (PPU.IRQHBeamPos & 0xFF00) | byte;
if (PPU.IRQHBeamPos != d)
S9xUpdateHVTimerPosition();
break;
case 0x4208:
d = PPU.IRQHBeamPos;
PPU.IRQHBeamPos = (PPU.IRQHBeamPos & 0xFF) | ((byte & 1) << 8);
if (PPU.IRQHBeamPos != d)
S9xUpdateHVTimerPosition();
break;
case 0x4209:
d = PPU.IRQVBeamPos;
PPU.IRQVBeamPos = (PPU.IRQVBeamPos & 0xFF00) | byte;
#ifdef DEBUGGER
missing.virq_pos = PPU.IRQVBeamPos;
#endif
if (PPU.IRQVBeamPos != d)
{
S9xUpdateHVTimerPosition();
// FIXME
S9xCheckMissingVTimerPosition();
}
break;
case 0x420A:
d = PPU.IRQVBeamPos;
PPU.IRQVBeamPos = (PPU.IRQVBeamPos & 0xFF) | ((byte & 1) << 8);
#ifdef DEBUGGER
missing.virq_pos = PPU.IRQVBeamPos;
#endif
if (PPU.IRQVBeamPos != d)
{
S9xUpdateHVTimerPosition();
// FIXME
S9xCheckMissingVTimerPosition();
}
break;
case 0x420B:
if(CPU.InDMA) return;
#ifdef DEBUGGER
missing.dma_this_frame = byte;
missing.dma_channels = byte;
#endif
// XXX: Not quite right...
if(byte) CPU.Cycles += 18;
if ((byte & 0x01) != 0)
S9xDoDMA (0);
if ((byte & 0x02) != 0)
S9xDoDMA (1);
if ((byte & 0x04) != 0)
S9xDoDMA (2);
if ((byte & 0x08) != 0)
S9xDoDMA (3);
if ((byte & 0x10) != 0)
S9xDoDMA (4);
if ((byte & 0x20) != 0)
S9xDoDMA (5);
if ((byte & 0x40) != 0)
S9xDoDMA (6);
if ((byte & 0x80) != 0)
S9xDoDMA (7);
break;
case 0x420C:
if(CPU.InDMA) return;
#ifdef DEBUGGER
missing.hdma_this_frame |= byte;
missing.hdma_channels |= byte;
#endif
if (Settings.DisableHDMA)
byte = 0;
Memory.FillRAM[0x420c] = byte;
//printf("$%02x is written to $420c at HC:%d, V:%d, IPPU.HDMA:$%02x, IPPU.HDMAEnded:$%02x\n", byte, CPU.Cycles, CPU.V_Counter, IPPU.HDMA, IPPU.HDMAEnded);
// FIXME
// Yoshi's Island / Genjyu Ryodan, Mortal Kombat, Tales of Phantasia
IPPU.HDMA = byte&~IPPU.HDMAEnded;
break;
case 0x420d:
// Cycle speed 0 - 2.68Mhz, 1 - 3.58Mhz (banks 0x80 +)
if ((byte & 1) != (Memory.FillRAM [0x420d] & 1))
{
if (byte & 1)
{
CPU.FastROMSpeed = ONE_CYCLE;
#ifdef DEBUGGER
missing.fast_rom = 1;
#endif
}
else CPU.FastROMSpeed = SLOW_ONE_CYCLE;
Memory.FixROMSpeed ();
}
break;
case 0x420e:
case 0x420f:
// --->>> Unknown
break;
case 0x4210:
// NMI ocurred flag (reset on read or write)
Memory.FillRAM[0x4210] = Model->_5A22;
return;
case 0x4211:
// IRQ ocurred flag (reset on read or write)
CLEAR_IRQ_SOURCE (PPU_V_BEAM_IRQ_SOURCE | PPU_H_BEAM_IRQ_SOURCE);
break;
case 0x4212:
// v-blank, h-blank and joypad being scanned flags (read-only)
case 0x4213:
// I/O Port (read-only)
case 0x4214:
case 0x4215:
// Quotent of divide (read-only)
case 0x4216:
case 0x4217:
// Multiply product (read-only)
return;
case 0x4218:
case 0x4219:
case 0x421a:
case 0x421b:
case 0x421c:
case 0x421d:
case 0x421e:
case 0x421f:
// Joypad values (read-only)
return;
case 0x4300:
case 0x4310:
case 0x4320:
case 0x4330:
case 0x4340:
case 0x4350:
case 0x4360:
case 0x4370:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
DMA[d].TransferDirection = (byte&0x80)?1:0;
DMA[d].HDMAIndirectAddressing = (byte&0x40)?1:0;
DMA[d].UnusedBit43x0 = (byte&0x20)?1:0;
DMA[d].AAddressDecrement = (byte&0x10)?1:0;
DMA[d].AAddressFixed = (byte&0x08)?1:0;
DMA[d].TransferMode = (byte & 7);
return;
case 0x4301:
case 0x4311:
case 0x4321:
case 0x4331:
case 0x4341:
case 0x4351:
case 0x4361:
case 0x4371:
if(CPU.InDMA) return;
DMA[((Address >> 4) & 0x7)].BAddress = byte;
return;
case 0x4302:
case 0x4312:
case 0x4322:
case 0x4332:
case 0x4342:
case 0x4352:
case 0x4362:
case 0x4372:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
DMA[d].AAddress &= 0xFF00;
DMA[d].AAddress |= byte;
return;
case 0x4303:
case 0x4313:
case 0x4323:
case 0x4333:
case 0x4343:
case 0x4353:
case 0x4363:
case 0x4373:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
DMA[d].AAddress &= 0xFF;
DMA[d].AAddress |= byte << 8;
return;
case 0x4304:
case 0x4314:
case 0x4324:
case 0x4334:
case 0x4344:
case 0x4354:
case 0x4364:
case 0x4374:
if(CPU.InDMA) return;
DMA[d=((Address >> 4) & 0x7)].ABank = byte;
HDMAMemPointers[d]=NULL;
return;
case 0x4305:
case 0x4315:
case 0x4325:
case 0x4335:
case 0x4345:
case 0x4355:
case 0x4365:
case 0x4375:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
DMA[d].DMACount_Or_HDMAIndirectAddress &= 0xff00;
DMA[d].DMACount_Or_HDMAIndirectAddress |= byte;
HDMAMemPointers[d]=NULL;
return;
case 0x4306:
case 0x4316:
case 0x4326:
case 0x4336:
case 0x4346:
case 0x4356:
case 0x4366:
case 0x4376:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
DMA[d].DMACount_Or_HDMAIndirectAddress &= 0xff;
DMA[d].DMACount_Or_HDMAIndirectAddress |= byte << 8;
HDMAMemPointers[d]=NULL;
return;
case 0x4307:
case 0x4317:
case 0x4327:
case 0x4337:
case 0x4347:
case 0x4357:
case 0x4367:
case 0x4377:
if(CPU.InDMA) return;
DMA[d = ((Address >> 4) & 0x7)].IndirectBank = byte;
HDMAMemPointers[d]=NULL;
return;
case 0x4308:
case 0x4318:
case 0x4328:
case 0x4338:
case 0x4348:
case 0x4358:
case 0x4368:
case 0x4378:
if(CPU.InDMA) return;
d = (Address >> 4) & 7;
DMA[d].Address &= 0xff00;
DMA[d].Address |= byte;
HDMAMemPointers[d] = NULL;
return;
case 0x4309:
case 0x4319:
case 0x4329:
case 0x4339:
case 0x4349:
case 0x4359:
case 0x4369:
case 0x4379:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
DMA[d].Address &= 0xff;
DMA[d].Address |= byte << 8;
HDMAMemPointers[d] = NULL;
return;
case 0x430A:
case 0x431A:
case 0x432A:
case 0x433A:
case 0x434A:
case 0x435A:
case 0x436A:
case 0x437A:
if(CPU.InDMA) return;
d = (Address >> 4) & 0x7;
if(byte&0x7f){
DMA[d].LineCount = byte & 0x7f;
DMA[d].Repeat = !(byte & 0x80);
} else {
DMA[d].LineCount = 128;
DMA[d].Repeat = !!(byte & 0x80);
}
//printf("$%02x is written to $43%da at HC:%d, V:%d, IPPU.HDMA:$%02x, IPPU.HDMAEnded:$%02x\n", byte, d, CPU.Cycles, CPU.V_Counter, IPPU.HDMA, IPPU.HDMAEnded);
return;
case 0x430B:
case 0x431B:
case 0x432B:
case 0x433B:
case 0x434B:
case 0x435B:
case 0x436B:
case 0x437B:
case 0x430F:
case 0x431F:
case 0x432F:
case 0x433F:
case 0x434F:
case 0x435F:
case 0x436F:
case 0x437F:
if(CPU.InDMA) return;
DMA[((Address >> 4) & 0x7)].UnknownByte = byte;
return;
//These registers are used by both the S-DD1 and the SPC7110
case 0x4800:
case 0x4801:
case 0x4802:
case 0x4803:
if(Settings.SPC7110)
S9xSetSPC7110(byte, Address);
//printf ("%02x->%04x\n", byte, Address);
break;
case 0x4804:
case 0x4805:
case 0x4806:
case 0x4807:
//printf ("%02x->%04x\n", byte, Address);
if(Settings.SPC7110)
S9xSetSPC7110(byte, Address);
else S9xSetSDD1MemoryMap (Address - 0x4804, byte & 7);
break;
//these are used by the SPC7110
case 0x4808:
case 0x4809:
case 0x480A:
case 0x480B:
case 0x480C:
case 0x4810:
case 0x4811:
case 0x4812:
case 0x4813:
case 0x4814:
case 0x4815:
case 0x4816:
case 0x4817:
case 0x4818:
case 0x481A:
case 0x4820:
case 0x4821:
case 0x4822:
case 0x4823:
case 0x4824:
case 0x4825:
case 0x4826:
case 0x4827:
case 0x4828:
case 0x4829:
case 0x482A:
case 0x482B:
case 0x482C:
case 0x482D:
case 0x482E:
case 0x482F:
case 0x4830:
case 0x4831:
case 0x4832:
case 0x4833:
case 0x4834:
case 0x4840:
case 0x4841:
case 0x4842:
if(Settings.SPC7110)
{
S9xSetSPC7110(byte, Address);
break;
}
default:
#ifdef DEBUGGER
missing.unknowncpu_write = Address;
if (Settings.TraceUnknownRegisters)
{
sprintf (String, "Unknown register write: $%02X->$%04X\n",
byte, Address);
S9xMessage (S9X_TRACE, S9X_PPU_TRACE, String);
}
#endif
break;
}
Memory.FillRAM [Address] = byte;
}
/******************************************************************************/
/* S9xGetCPU() */
/* This function retrieves a CPU/DMA Register */
/******************************************************************************/
uint8 S9xGetCPU (uint16 Address)
{
int d;
uint8 byte;
// fprintf(stderr, "read from %04x\n", Address);
if (Address < 0x4200)
{
CPU.Cycles += ONE_CYCLE;
switch (Address)
{
case 0x4016:
case 0x4017:
return S9xReadJOYSERn(Address);
default:
#ifdef DEBUGGER
missing.unknowncpu_read = Address;
if (Settings.TraceUnknownRegisters)
{
sprintf (String, "Unknown register read: $%04X\n", Address);
S9xMessage (S9X_TRACE, S9X_PPU_TRACE, String);
}
#endif
return OpenBus;
}
// return (Memory.FillRAM [Address]);
}
else
switch (Address)
{
case 0x4200:
case 0x4201:
case 0x4202:
case 0x4203:
case 0x4204:
case 0x4205:
case 0x4206:
case 0x4207:
case 0x4208:
case 0x4209:
case 0x420a:
case 0x420b:
case 0x420c:
case 0x420d:
case 0x420e:
case 0x420f:
return OpenBus;
case 0x4210:
#ifdef CPU_SHUTDOWN
CPU.WaitAddress = CPU.PBPCAtOpcodeStart;
#endif
byte = Memory.FillRAM[0x4210];
Memory.FillRAM[0x4210] = Model->_5A22;
//SNEeSe returns 2 for 5A22 version.
return ((byte&0x80)|(OpenBus&0x70)|Model->_5A22);
case 0x4211:
byte = (CPU.IRQActive & (PPU_V_BEAM_IRQ_SOURCE | PPU_H_BEAM_IRQ_SOURCE)) ? 0x80 : 0;
// // Super Robot Wars Ex ROM bug requires this.
// Let's try without, now that we have Open Bus emulation?
// byte |= CPU.Cycles >= Timings.HBlankStart ? 0x40 : 0;
CLEAR_IRQ_SOURCE (PPU_V_BEAM_IRQ_SOURCE | PPU_H_BEAM_IRQ_SOURCE);
byte |= OpenBus&0x7f;
return (byte);
case 0x4212:
// V-blank, h-blank and joypads being read flags (read-only)
#ifdef CPU_SHUTDOWN
CPU.WaitAddress = CPU.PBPCAtOpcodeStart;
#endif
return (REGISTER_4212()|(OpenBus&0x3E));
case 0x4213:
// I/O port input - returns 0 wherever $4201 is 0, and 1 elsewhere
// unless something else pulls it down (i.e. a gun)
return Memory.FillRAM[0x4213];
case 0x4214:
case 0x4215:
// Quotient of divide result
case 0x4216:
case 0x4217:
// Multiplcation result (for multiply) or remainder of
// divison.
return (Memory.FillRAM[Address]);
case 0x4218:
case 0x4219:
case 0x421a:
case 0x421b:
case 0x421c:
case 0x421d:
case 0x421e:
case 0x421f:
// Joypads 1-4 button and direction state.
return (Memory.FillRAM [Address]);
case 0x4300:
case 0x4310:
case 0x4320:
case 0x4330:
case 0x4340:
case 0x4350:
case 0x4360:
case 0x4370:
if(CPU.InDMA) return OpenBus;
d = (Address >> 4) & 0x7;
return ((DMA[d].TransferDirection?0x80:0x00) |
(DMA[d].HDMAIndirectAddressing?0x40:0x00) |
(DMA[d].UnusedBit43x0?0x20:0x00) |
(DMA[d].AAddressDecrement?0x10:0x00) |
(DMA[d].AAddressFixed?0x08:0x00) |
(DMA[d].TransferMode & 7));
case 0x4301:
case 0x4311:
case 0x4321:
case 0x4331:
case 0x4341:
case 0x4351:
case 0x4361:
case 0x4371:
if(CPU.InDMA) return OpenBus;
return DMA[((Address >> 4) & 0x7)].BAddress;
case 0x4302:
case 0x4312:
case 0x4322:
case 0x4332:
case 0x4342:
case 0x4352:
case 0x4362:
case 0x4372:
if(CPU.InDMA) return OpenBus;
return (DMA[((Address >> 4) & 0x7)].AAddress & 0xFF);
case 0x4303:
case 0x4313:
case 0x4323:
case 0x4333:
case 0x4343:
case 0x4353:
case 0x4363:
case 0x4373:
if(CPU.InDMA) return OpenBus;
return (DMA[((Address >> 4) & 0x7)].AAddress >> 8);
case 0x4304:
case 0x4314:
case 0x4324:
case 0x4334:
case 0x4344:
case 0x4354:
case 0x4364:
case 0x4374:
if(CPU.InDMA) return OpenBus;
return DMA[((Address >> 4) & 0x7)].ABank;
case 0x4305:
case 0x4315:
case 0x4325:
case 0x4335:
case 0x4345:
case 0x4355:
case 0x4365:
case 0x4375:
if(CPU.InDMA) return OpenBus;
return (DMA[((Address >> 4) & 0x7)].DMACount_Or_HDMAIndirectAddress & 0xff);
case 0x4306:
case 0x4316:
case 0x4326:
case 0x4336:
case 0x4346:
case 0x4356:
case 0x4366:
case 0x4376:
if(CPU.InDMA) return OpenBus;
return (DMA[((Address >> 4) & 0x7)].DMACount_Or_HDMAIndirectAddress >> 8);
case 0x4307:
case 0x4317:
case 0x4327:
case 0x4337:
case 0x4347:
case 0x4357:
case 0x4367:
case 0x4377:
if(CPU.InDMA) return OpenBus;
return DMA[((Address >> 4) & 0x7)].IndirectBank;
case 0x4308:
case 0x4318:
case 0x4328:
case 0x4338:
case 0x4348:
case 0x4358:
case 0x4368:
case 0x4378:
if(CPU.InDMA) return OpenBus;
return (DMA[((Address >> 4) & 0x7)].Address & 0xFF);
case 0x4309:
case 0x4319:
case 0x4329:
case 0x4339:
case 0x4349:
case 0x4359:
case 0x4369:
case 0x4379:
if(CPU.InDMA) return OpenBus;
return (DMA[((Address >> 4) & 0x7)].Address >> 8);
case 0x430A:
case 0x431A:
case 0x432A:
case 0x433A:
case 0x434A:
case 0x435A:
case 0x436A:
case 0x437A:
if(CPU.InDMA) return OpenBus;
d = (Address >> 4) & 0x7;
return (DMA[d].LineCount ^ (DMA[d].Repeat?0x00:0x80));
case 0x430B:
case 0x431B:
case 0x432B:
case 0x433B:
case 0x434B:
case 0x435B:
case 0x436B:
case 0x437B:
case 0x430F:
case 0x431F:
case 0x432F:
case 0x433F:
case 0x434F:
case 0x435F:
case 0x436F:
case 0x437F:
if(CPU.InDMA) return OpenBus;
return DMA[((Address >> 4) & 0x7)].UnknownByte;
default:
#ifdef DEBUGGER
missing.unknowncpu_read = Address;
if (Settings.TraceUnknownRegisters)
{
sprintf (String, "Unknown register read: $%04X\n", Address);
S9xMessage (S9X_TRACE, S9X_PPU_TRACE, String);
}
#endif
if(Address>= 0x4800&&Settings.SPC7110)
return S9xGetSPC7110(Address);
if(Address>=0x4800&&Address<=0x4807&&Settings.SDD1)
{
return Memory.FillRAM[Address];
}
return OpenBus;
}
}
void S9xResetPPU ()
{
S9xSoftResetPPU();
S9xControlsReset();
IPPU.PreviousLine = IPPU.CurrentLine = 0;
}
void S9xSoftResetPPU ()
{
S9xControlsSoftReset();
PPU.BGMode = 0;
PPU.BG3Priority = 0;
PPU.Brightness = 0;
PPU.VMA.High = 0;
PPU.VMA.Increment = 1;
PPU.VMA.Address = 0;
PPU.VMA.FullGraphicCount = 0;
PPU.VMA.Shift = 0;
for (uint8 B = 0; B != 4; B++)
{
PPU.BG[B].SCBase = 0;
PPU.BG[B].VOffset = 0;
PPU.BG[B].HOffset = 0;
PPU.BG[B].BGSize = 0;
PPU.BG[B].NameBase = 0;
PPU.BG[B].SCSize = 0;
PPU.ClipCounts[B] = 0;
PPU.ClipWindowOverlapLogic [B] = CLIP_OR;
PPU.ClipWindow1Enable[B] = FALSE;
PPU.ClipWindow2Enable[B] = FALSE;
PPU.ClipWindow1Inside[B] = TRUE;
PPU.ClipWindow2Inside[B] = TRUE;
}
PPU.ClipCounts[4] = 0;
PPU.ClipCounts[5] = 0;
PPU.ClipWindowOverlapLogic[4] = PPU.ClipWindowOverlapLogic[5] = CLIP_OR;
PPU.ClipWindow1Enable[4] = PPU.ClipWindow1Enable[5] = FALSE;
PPU.ClipWindow2Enable[4] = PPU.ClipWindow2Enable[5] = FALSE;
PPU.ClipWindow1Inside[4] = PPU.ClipWindow1Inside[5] = TRUE;
PPU.ClipWindow2Inside[4] = PPU.ClipWindow2Inside[5] = TRUE;
PPU.CGFLIP = 0;
int c;
for (c = 0; c < 256; c++)
{
IPPU.Red [c] = (c & 7) << 2;
IPPU.Green [c] = ((c >> 3) & 7) << 2;
IPPU.Blue [c] = ((c >> 6) & 2) << 3;
PPU.CGDATA [c] = IPPU.Red [c] | (IPPU.Green [c] << 5) |
(IPPU.Blue [c] << 10);
}
PPU.FirstSprite = 0;
PPU.LastSprite = 127;
for (int Sprite = 0; Sprite < 128; Sprite++)
{
PPU.OBJ[Sprite].HPos = 0;
PPU.OBJ[Sprite].VPos = 0;
PPU.OBJ[Sprite].VFlip = 0;
PPU.OBJ[Sprite].HFlip = 0;
PPU.OBJ[Sprite].Priority = 0;
PPU.OBJ[Sprite].Palette = 0;
PPU.OBJ[Sprite].Name = 0;
PPU.OBJ[Sprite].Size = 0;
}
PPU.OAMPriorityRotation = 0;
PPU.OAMWriteRegister = 0;
PPU.RangeTimeOver = 0;
PPU.OpenBus1 = 0;
PPU.OpenBus2 = 0;
PPU.OAMFlip = 0;
PPU.OAMTileAddress = 0;
PPU.OAMAddr = 0;
PPU.IRQVBeamPos = 0;
PPU.IRQHBeamPos = 0;
PPU.VBeamPosLatched = 0;
PPU.HBeamPosLatched = 0;
PPU.HBeamFlip = 0;
PPU.VBeamFlip = 0;
PPU.HVBeamCounterLatched = 0;
PPU.GunVLatch=1000;
PPU.GunHLatch=0;
PPU.MatrixA = PPU.MatrixB = PPU.MatrixC = PPU.MatrixD = 0;
PPU.CentreX = PPU.CentreY = 0;
PPU.CGADD = 0;
PPU.FixedColourRed = PPU.FixedColourGreen = PPU.FixedColourBlue = 0;
PPU.SavedOAMAddr = 0;
PPU.ScreenHeight = SNES_HEIGHT;
PPU.WRAM = 0;
PPU.BG_Forced = 0;
PPU.ForcedBlanking = TRUE;
PPU.OBJThroughMain = FALSE;
PPU.OBJThroughSub = FALSE;
PPU.OBJSizeSelect = 0;
PPU.OBJNameSelect = 0;
PPU.OBJNameBase = 0;
PPU.OBJAddition = FALSE;
PPU.OAMReadFlip = 0;
PPU.BGnxOFSbyte = 0;
ZeroMemory (PPU.OAMData, 512 + 32);
PPU.VTimerEnabled = FALSE;
PPU.HTimerEnabled = FALSE;
PPU.HTimerPosition = Timings.H_Max + 1;
PPU.VTimerPosition = Timings.V_Max + 1;
PPU.Mosaic = 0;
PPU.BGMosaic [0] = PPU.BGMosaic [1] = FALSE;
PPU.BGMosaic [2] = PPU.BGMosaic [3] = FALSE;
PPU.Mode7HFlip = FALSE;
PPU.Mode7VFlip = FALSE;
PPU.Mode7Repeat = 0;
PPU.Window1Left = 1;
PPU.Window1Right = 0;
PPU.Window2Left = 1;
PPU.Window2Right = 0;
PPU.RecomputeClipWindows = TRUE;
PPU.CGFLIPRead = 0;
PPU.Need16x8Mulitply = FALSE;
IPPU.ColorsChanged = TRUE;
IPPU.HDMA = 0;
IPPU.HDMAEnded = 0;
IPPU.MaxBrightness = 0;
IPPU.LatchedBlanking = 0;
IPPU.OBJChanged = TRUE;
IPPU.RenderThisFrame = TRUE;
IPPU.DirectColourMapsNeedRebuild = TRUE;
IPPU.FrameCount = 0;
IPPU.RenderedFramesCount = 0;
IPPU.DisplayedRenderedFrameCount = 0;
IPPU.SkippedFrames = 0;
IPPU.FrameSkip = 0;
ZeroMemory (IPPU.TileCached [TILE_2BIT], MAX_2BIT_TILES);
ZeroMemory (IPPU.TileCached [TILE_4BIT], MAX_4BIT_TILES);
ZeroMemory (IPPU.TileCached [TILE_8BIT], MAX_8BIT_TILES);
ZeroMemory (IPPU.TileCached [TILE_2BIT_EVEN], MAX_2BIT_TILES);
ZeroMemory (IPPU.TileCached [TILE_2BIT_ODD], MAX_2BIT_TILES);
ZeroMemory (IPPU.TileCached [TILE_4BIT_EVEN], MAX_4BIT_TILES);
ZeroMemory (IPPU.TileCached [TILE_4BIT_ODD], MAX_4BIT_TILES);
#ifdef CORRECT_VRAM_READS
IPPU.VRAMReadBuffer = 0; // XXX: FIXME: anything better?
#else
IPPU.FirstVRAMRead = FALSE;
#endif
IPPU.Interlace = FALSE;
IPPU.InterlaceOBJ = FALSE;
IPPU.DoubleWidthPixels = FALSE;
IPPU.DoubleHeightPixels = FALSE;
IPPU.RenderedScreenWidth = SNES_WIDTH;
IPPU.RenderedScreenHeight = SNES_HEIGHT;
IPPU.XB = NULL;
for (c = 0; c < 256; c++)
IPPU.ScreenColors [c] = c;
S9xFixColourBrightness ();
IPPU.PreviousLine = IPPU.CurrentLine = 0;
for (c = 0; c < 2; c++)
memset (&IPPU.Clip [c], 0, sizeof (struct ClipData));
for (c = 0; c < 0x8000; c += 0x100)
memset (&Memory.FillRAM [c], c >> 8, 0x100);
ZeroMemory (&Memory.FillRAM [0x2100], 0x100);
ZeroMemory (&Memory.FillRAM [0x4200], 0x100);
ZeroMemory (&Memory.FillRAM [0x4000], 0x100);
// For BS Suttehakkun 2...
ZeroMemory (&Memory.FillRAM [0x1000], 0x1000);
Memory.FillRAM[0x4201]=Memory.FillRAM[0x4213]=0xFF;
}
#ifndef ZSNES_FX
void S9xSuperFXExec ()
{
#if 1
if (Settings.SuperFX)
{
if ((Memory.FillRAM [0x3000 + GSU_SFR] & FLG_G) &&
(Memory.FillRAM [0x3000 + GSU_SCMR] & 0x18) == 0x18)
{
FxEmulate ((Memory.FillRAM [0x3000 + GSU_CLSR] & 1) ? SuperFX.speedPerLine * 2 : SuperFX.speedPerLine);
int GSUStatus = Memory.FillRAM [0x3000 + GSU_SFR] |
(Memory.FillRAM [0x3000 + GSU_SFR + 1] << 8);
if ((GSUStatus & (FLG_G | FLG_IRQ)) == FLG_IRQ)
{
// Trigger a GSU IRQ.
S9xSetIRQ (GSU_IRQ_SOURCE);
}
}
}
#else
uint32 tmp = (Memory.FillRAM[0x3034] << 16) + *(uint16 *) &Memory.FillRAM [0x301e];
#if 0
if (tmp == 0x018428)
{
*(uint16 *) &SRAM [0x0064] = 0xbc00;
*(uint16 *) &SRAM [0x002c] = 0x8000;
}
#endif
if (tmp == -1)//0x018428) //0x01bfc3) //0x09edaf) //-1) //0x57edaf)
{
while (Memory.FillRAM [0x3030] & 0x20)
{
int i;
int32 vError;
uint8 avReg[0x40];
char tmp[128];
uint8 vPipe;
uint8 vColr;
uint8 vPor;
FxPipeString (tmp);
/* Make the string 32 chars long */
if(strlen(tmp) < 32) { memset(&tmp[strlen(tmp)],' ',32-strlen(tmp)); tmp[32] = 0; }
/* Copy registers (so we can see if any changed) */
vColr = FxGetColorRegister();
vPor = FxGetPlotOptionRegister();
memcpy(avReg,SuperFX.pvRegisters,0x40);
/* Print the pipe string */
printf(tmp);
/* Execute the instruction in the pipe */
vPipe = FxPipe();
vError = FxEmulate(1);
/* Check if any registers changed (and print them if they did) */
for(i=0; i<16; i++)
{
uint32 a = 0;
uint32 r1 = ((uint32)avReg[i*2]) | (((uint32)avReg[(i*2)+1])<<8);
uint32 r2 = (uint32)(SuperFX.pvRegisters[i*2]) | (((uint32)SuperFX.pvRegisters[(i*2)+1])<<8);
if(i==15)
a = OPCODE_BYTES(vPipe);
if(((r1+a)&0xffff) != r2)
printf(" r%d=$%04x",i,r2);
}
{
/* Check SFR */
uint32 r1 = ((uint32)avReg[0x30]) | (((uint32)avReg[0x31])<<8);
uint32 r2 = (uint32)(SuperFX.pvRegisters[0x30]) | (((uint32)SuperFX.pvRegisters[0x31])<<8);
if((r1&(1<<1)) != (r2&(1<<1)))
printf(" Z=%d",(uint32)(!!(r2&(1<<1))));
if((r1&(1<<2)) != (r2&(1<<2)))
printf(" CY=%d",(uint32)(!!(r2&(1<<2))));
if((r1&(1<<3)) != (r2&(1<<3)))
printf(" S=%d",(uint32)(!!(r2&(1<<3))));
if((r1&(1<<4)) != (r2&(1<<4)))
printf(" OV=%d",(uint32)(!!(r2&(1<<4))));
if((r1&(1<<5)) != (r2&(1<<5)))
printf(" G=%d",(uint32)(!!(r2&(1<<5))));
if((r1&(1<<6)) != (r2&(1<<6)))
printf(" R=%d",(uint32)(!!(r2&(1<<6))));
if((r1&(1<<8)) != (r2&(1<<8)))
printf(" ALT1=%d",(uint32)(!!(r2&(1<<8))));
if((r1&(1<<9)) != (r2&(1<<9)))
printf(" ALT2=%d",(uint32)(!!(r2&(1<<9))));
if((r1&(1<<10)) != (r2&(1<<10)))
printf(" IL=%d",(uint32)(!!(r2&(1<<10))));
if((r1&(1<<11)) != (r2&(1<<11)))
printf(" IH=%d",(uint32)(!!(r2&(1<<11))));
if((r1&(1<<12)) != (r2&(1<<12)))
printf(" B=%d",(uint32)(!!(r2&(1<<12))));
if((r1&(1<<15)) != (r2&(1<<15)))
printf(" IRQ=%d",(uint32)(!!(r2&(1<<15))));
}
{
/* Check PBR */
uint32 r1 = ((uint32)avReg[0x34]);
uint32 r2 = (uint32)(SuperFX.pvRegisters[0x34]);
if(r1 != r2)
printf(" PBR=$%02x",r2);
}
{
/* Check ROMBR */
uint32 r1 = ((uint32)avReg[0x36]);
uint32 r2 = (uint32)(SuperFX.pvRegisters[0x36]);
if(r1 != r2)
printf(" ROMBR=$%02x",r2);
}
{
/* Check RAMBR */
uint32 r1 = ((uint32)avReg[0x3c]);
uint32 r2 = (uint32)(SuperFX.pvRegisters[0x3c]);
if(r1 != r2)
printf(" RAMBR=$%02x",r2);
}
{
/* Check CBR */
uint32 r1 = ((uint32)avReg[0x3e]) | (((uint32)avReg[0x3f])<<8);
uint32 r2 = (uint32)(SuperFX.pvRegisters[0x3e]) | (((uint32)SuperFX.pvRegisters[0x3f])<<8);
if(r1 != r2)
printf(" CBR=$%04x",r2);
}
{
/* Check COLR */
if(vColr != FxGetColorRegister())
printf(" COLR=$%02x",FxGetColorRegister());
}
{
/* Check POR */
if(vPor != FxGetPlotOptionRegister())
printf(" POR=$%02x",FxGetPlotOptionRegister());
}
printf ("\n");
}
S9xExit ();
}
else
{
uint32 t = (Memory.FillRAM [0x3034] << 16) +
(Memory.FillRAM [0x301f] << 8) +
(Memory.FillRAM [0x301e] << 0);
printf ("%06x: %d\n", t, FxEmulate (2000000));
// FxEmulate (2000000);
}
#if 0
if (!(CPU.Flags & TRACE_FLAG))
{
static int z = 1;
if (z == 0)
{
extern FILE *trace;
CPU.Flags |= TRACE_FLAG;
trace = fopen ("trace.log", "wb");
}
else
z--;
}
#endif
Memory.FillRAM [0x3030] &= ~0x20;
if (Memory.FillRAM [0x3031] & 0x80)
{
S9xSetIRQ (GSU_IRQ_SOURCE);
}
#endif
}
#endif