2008-09-10 05:57:37 +00:00

1322 lines
42 KiB
C++

/**********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2007 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
zones (kasumitokoduck@yahoo.com)
(c) Copyright 2006 - 2007 nitsuja
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com)
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley,
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001-2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight,
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound DSP emulator code is derived from SNEeSe and OpenSPC:
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
(c) Copyright 2001 - 2007 zones
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
**********************************************************************************/
// This file includes itself multiple times. The other option would be to have
// 4 files, where A includes B, and B includes C 3 times, and C includes D 5
// times. Look for the following marker to find where the divisions are.
/*===========================================================================*/
#ifndef _NEWTILE_CPP // Top-level compilation
#define _NEWTILE_CPP
#include "snes9x.h"
#include "gfx.h"
#include "ppu.h"
static uint32 pixbit[8][16];
static uint8 hrbit_odd[256];
static uint8 hrbit_even[256];
void S9xInitTileRenderer(void){
register int i;
for(i=0; i<16; i++) {
register uint32 b = 0;
#if defined(LSB_FIRST)
if (i & 8)
b |= 1;
if (i & 4)
b |= 1<<8;
if (i & 2)
b |= 1<<16;
if (i & 1)
b |= 1<<24;
#else
if (i & 8)
b |= 1<<24;
if (i & 4)
b |= 1<<16;
if (i & 2)
b |= 1<<8;
if (i & 1)
b |= 1;
#endif
for(uint8 bitshift=0; bitshift<8; bitshift++) {
pixbit[bitshift][i]=b<<bitshift;
}
}
for(i=0; i<256; i++) {
register uint8 m=0;
register uint8 s=0;
if(i & 0x80) s |= 8;
if(i & 0x40) m |= 8;
if(i & 0x20) s |= 4;
if(i & 0x10) m |= 4;
if(i & 0x08) s |= 2;
if(i & 0x04) m |= 2;
if(i & 0x02) s |= 1;
if(i & 0x01) m |= 1;
hrbit_odd[i]=m;
hrbit_even[i]=s;
}
}
/*****************************************************************************/
// Here are the tile converters, selected by S9xSelectTileConverter()
// Really, except for the definition of DOBIT and the number of times it is
// called, they're all the same.
#define DOBIT(n, i) \
if ((pix = *(tp + (n)))) { \
p1 |= pixbit[(i)][pix >> 4]; \
p2 |= pixbit[(i)][pix & 0xf]; \
}
static uint8 ConvertTile2 (uint8 *pCache, uint32 TileAddr, uint32)
{
register uint8 *tp = &Memory.VRAM[TileAddr];
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
for (line = 8; line != 0; line--, tp += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT(0, 0);
DOBIT(1, 1);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
static uint8 ConvertTile4 (uint8 *pCache, uint32 TileAddr, uint32)
{
register uint8 *tp = &Memory.VRAM[TileAddr];
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
for (line = 8; line != 0; line--, tp += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT( 0, 0);
DOBIT( 1, 1);
DOBIT(16, 2);
DOBIT(17, 3);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
static uint8 ConvertTile8 (uint8 *pCache, uint32 TileAddr, uint32)
{
register uint8 *tp = &Memory.VRAM[TileAddr];
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
for (line = 8; line != 0; line--, tp += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT( 0, 0);
DOBIT( 1, 1);
DOBIT(16, 2);
DOBIT(17, 3);
DOBIT(32, 4);
DOBIT(33, 5);
DOBIT(48, 6);
DOBIT(49, 7);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
#undef DOBIT
#define DOBIT(n, i) \
if ((pix = hrbit_odd[*(tp1 + (n))])) \
p1 |= pixbit[(i)][pix]; \
if ((pix = hrbit_odd[*(tp2 + (n))])) \
p2 |= pixbit[(i)][pix];
static uint8 ConvertTile2h_odd (uint8 *pCache, uint32 TileAddr, uint32 Tile)
{
register uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2;
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
if(Tile==0x3ff){
tp2=tp1-(0x3ff<<4);
} else {
tp2=tp1+(1<<4);
}
for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT(0, 0);
DOBIT(1, 1);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
static uint8 ConvertTile4h_odd (uint8 *pCache, uint32 TileAddr, uint32 Tile)
{
register uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2;
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
if(Tile==0x3ff){
tp2=tp1-(0x3ff<<5);
} else {
tp2=tp1+(1<<5);
}
for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT( 0, 0);
DOBIT( 1, 1);
DOBIT(16, 2);
DOBIT(17, 3);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
#undef DOBIT
#define DOBIT(n, i) \
if ((pix = hrbit_even[*(tp1 + (n))])) \
p1 |= pixbit[(i)][pix]; \
if ((pix = hrbit_even[*(tp2 + (n))])) \
p2 |= pixbit[(i)][pix];
static uint8 ConvertTile2h_even (uint8 *pCache, uint32 TileAddr, uint32 Tile)
{
register uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2;
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
if(Tile==0x3ff){
tp2=tp1-(0x3ff<<4);
} else {
tp2=tp1+(1<<4);
}
for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT(0, 0);
DOBIT(1, 1);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
static uint8 ConvertTile4h_even (uint8 *pCache, uint32 TileAddr, uint32 Tile)
{
register uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2;
uint32 *p = (uint32 *) pCache;
uint32 non_zero = 0;
uint8 line;
if(Tile==0x3ff){
tp2=tp1-(0x3ff<<5);
} else {
tp2=tp1+(1<<5);
}
for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2)
{
uint32 p1 = 0;
uint32 p2 = 0;
register uint8 pix;
DOBIT( 0, 0);
DOBIT( 1, 1);
DOBIT(16, 2);
DOBIT(17, 3);
*p++ = p1;
*p++ = p2;
non_zero |= p1 | p2;
}
return (non_zero ? TRUE : BLANK_TILE);
}
#undef DOBIT
/*****************************************************************************/
// First-level include: get all the renderers
#include "tile.cpp"
/*****************************************************************************/
// Functions to select which converter and renderer to use.
void S9xSelectTileRenderers(int BGMode, bool8 sub, bool8 obj){
void (**DT)(uint32,uint32,uint32,uint32);
void (**DCT)(uint32,uint32,uint32,uint32,uint32,uint32);
void (**DMP)(uint32,uint32,uint32,uint32,uint32,uint32);
void (**DB)(uint32,uint32,uint32);
void (**DM7BG1)(uint32,uint32,int);
void (**DM7BG2)(uint32,uint32,int);
bool8 M7M1, M7M2;
M7M1=PPU.BGMosaic[0] && PPU.Mosaic>1;
M7M2=PPU.BGMosaic[1] && PPU.Mosaic>1;
if(!IPPU.DoubleWidthPixels){
DT=Renderers_DrawTile16Normal1x1;
DCT=Renderers_DrawClippedTile16Normal1x1;
DMP=Renderers_DrawMosaicPixel16Normal1x1;
DB=Renderers_DrawBackdrop16Normal1x1;
DM7BG1=M7M1?Renderers_DrawMode7MosaicBG1Normal1x1:Renderers_DrawMode7BG1Normal1x1;
DM7BG2=M7M2?Renderers_DrawMode7MosaicBG2Normal1x1:Renderers_DrawMode7BG2Normal1x1;
GFX.LinesPerTile = 8;
} else {
bool8 hires, interlace;
if(obj){ // OBJ
hires=(BGMode==5 || BGMode==6 || IPPU.PseudoHires);
interlace=IPPU.InterlaceOBJ;
} else if(BGMode==5 || BGMode==6){
hires=TRUE;
interlace=IPPU.Interlace;
} else {
hires=IPPU.PseudoHires;
interlace=FALSE;
}
if(sub) hires=FALSE;
if(hires && interlace){
DT=Renderers_DrawTile16HiresInterlace;
DCT=Renderers_DrawClippedTile16HiresInterlace;
DMP=Renderers_DrawMosaicPixel16HiresInterlace;
DB=Renderers_DrawBackdrop16Hires;
DM7BG1=M7M1?Renderers_DrawMode7MosaicBG1Hires:Renderers_DrawMode7BG1Hires;
DM7BG2=M7M2?Renderers_DrawMode7MosaicBG2Hires:Renderers_DrawMode7BG2Hires;
GFX.LinesPerTile = 4;
} else if(hires){
DT=Renderers_DrawTile16Hires;
DCT=Renderers_DrawClippedTile16Hires;
DMP=Renderers_DrawMosaicPixel16Hires;
DB=Renderers_DrawBackdrop16Hires;
DM7BG1=M7M1?Renderers_DrawMode7MosaicBG1Hires:Renderers_DrawMode7BG1Hires;
DM7BG2=M7M2?Renderers_DrawMode7MosaicBG2Hires:Renderers_DrawMode7BG2Hires;
GFX.LinesPerTile = 8;
} else if(interlace){
DT=Renderers_DrawTile16Interlace;
DCT=Renderers_DrawClippedTile16Interlace;
DMP=Renderers_DrawMosaicPixel16Interlace;
DB=Renderers_DrawBackdrop16Normal2x1;
DM7BG1=M7M1?Renderers_DrawMode7MosaicBG1Normal2x1:Renderers_DrawMode7BG1Normal2x1;
DM7BG2=M7M2?Renderers_DrawMode7MosaicBG2Normal2x1:Renderers_DrawMode7BG2Normal2x1;
GFX.LinesPerTile = 4;
} else {
DT=Renderers_DrawTile16Normal2x1;
DCT=Renderers_DrawClippedTile16Normal2x1;
DMP=Renderers_DrawMosaicPixel16Normal2x1;
DB=Renderers_DrawBackdrop16Normal2x1;
DM7BG1=M7M1?Renderers_DrawMode7MosaicBG1Normal2x1:Renderers_DrawMode7BG1Normal2x1;
DM7BG2=M7M2?Renderers_DrawMode7MosaicBG2Normal2x1:Renderers_DrawMode7BG2Normal2x1;
GFX.LinesPerTile = 8;
}
}
GFX.DrawTileNomath=DT[0];
GFX.DrawClippedTileNomath=DCT[0];
GFX.DrawMosaicPixelNomath=DMP[0];
GFX.DrawBackdropNomath=DB[0];
GFX.DrawMode7BG1Nomath=DM7BG1[0];
GFX.DrawMode7BG2Nomath=DM7BG2[0];
int i;
if(!Settings.Transparency){
i=0;
} else {
i=((Memory.FillRAM[0x2131]&0x80)?4:1);
if(Memory.FillRAM[0x2131]&0x40){
i++;
if(Memory.FillRAM[0x2130]&2) i++;
}
}
GFX.DrawTileMath=DT[i];
GFX.DrawClippedTileMath=DCT[i];
GFX.DrawMosaicPixelMath=DMP[i];
GFX.DrawBackdropMath=DB[i];
GFX.DrawMode7BG1Math=DM7BG1[i];
GFX.DrawMode7BG2Math=DM7BG2[i];
}
void S9xSelectTileConverter(int depth, bool8 hires, bool8 sub, bool8 mosaic){
switch(depth){
case 8:
BG.ConvertTile = BG.ConvertTileFlip = ConvertTile8;
BG.Buffer = BG.BufferFlip = IPPU.TileCache[TILE_8BIT];
BG.Buffered = BG.BufferedFlip = IPPU.TileCached[TILE_8BIT];
BG.TileShift = 6;
BG.PaletteShift = 0;
BG.PaletteMask = 0;
BG.DirectColourMode = (Memory.FillRAM[0x2130]&1);
break;
case 4:
if(hires){
if(sub || mosaic){
BG.ConvertTile = ConvertTile4h_even;
BG.Buffer = IPPU.TileCache[TILE_4BIT_EVEN];
BG.Buffered = IPPU.TileCached[TILE_4BIT_EVEN];
BG.ConvertTileFlip = ConvertTile4h_odd;
BG.BufferFlip = IPPU.TileCache[TILE_4BIT_ODD];
BG.BufferedFlip = IPPU.TileCached[TILE_4BIT_ODD];
} else {
BG.ConvertTile = ConvertTile4h_odd;
BG.Buffer = IPPU.TileCache[TILE_4BIT_ODD];
BG.Buffered = IPPU.TileCached[TILE_4BIT_ODD];
BG.ConvertTileFlip = ConvertTile4h_even;
BG.BufferFlip = IPPU.TileCache[TILE_4BIT_EVEN];
BG.BufferedFlip = IPPU.TileCached[TILE_4BIT_EVEN];
}
} else {
BG.ConvertTile = BG.ConvertTileFlip = ConvertTile4;
BG.Buffer = BG.BufferFlip = IPPU.TileCache[TILE_4BIT];
BG.Buffered = BG.BufferedFlip = IPPU.TileCached[TILE_4BIT];
}
BG.TileShift = 5;
BG.PaletteShift = 10-4;
BG.PaletteMask = 7<<4;
BG.DirectColourMode = FALSE;
break;
case 2:
if(hires){
if(sub || mosaic){
BG.ConvertTile = ConvertTile2h_even;
BG.Buffer = IPPU.TileCache[TILE_2BIT_EVEN];
BG.Buffered = IPPU.TileCached[TILE_2BIT_EVEN];
BG.ConvertTileFlip = ConvertTile2h_odd;
BG.BufferFlip = IPPU.TileCache[TILE_2BIT_ODD];
BG.BufferedFlip = IPPU.TileCached[TILE_2BIT_ODD];
} else {
BG.ConvertTile = ConvertTile2h_odd;
BG.Buffer = IPPU.TileCache[TILE_2BIT_ODD];
BG.Buffered = IPPU.TileCached[TILE_2BIT_ODD];
BG.ConvertTileFlip = ConvertTile2h_even;
BG.BufferFlip = IPPU.TileCache[TILE_2BIT_EVEN];
BG.BufferedFlip = IPPU.TileCached[TILE_2BIT_EVEN];
}
} else {
BG.ConvertTile = BG.ConvertTileFlip = ConvertTile2;
BG.Buffer = BG.BufferFlip = IPPU.TileCache[TILE_2BIT];
BG.Buffered = BG.BufferedFlip = IPPU.TileCached[TILE_2BIT];
}
BG.TileShift = 4;
BG.PaletteShift = 10-2;
BG.PaletteMask = 7<<2;
BG.DirectColourMode = FALSE;
break;
}
}
/*===========================================================================*/
#else
#ifndef NAME1 // First-level: Get all renderers
/*===========================================================================*/
#define GET_CACHED_TILE() \
uint32 TileNumber; \
uint32 TileAddr = BG.TileAddress + ((Tile & 0x3ff) << BG.TileShift); \
if ((Tile & 0x100)) \
TileAddr += BG.NameSelect; \
TileAddr &= 0xffff; \
TileNumber = (TileAddr >> BG.TileShift); \
if((Tile & H_FLIP)) { \
pCache = &BG.BufferFlip[TileNumber << 6]; \
if(!BG.BufferedFlip[TileNumber]) \
BG.BufferedFlip[TileNumber] = BG.ConvertTileFlip (pCache, TileAddr, Tile&0x3ff); \
} else { \
pCache = &BG.Buffer[TileNumber << 6]; \
if(!BG.Buffered[TileNumber]) \
BG.Buffered[TileNumber] = BG.ConvertTile (pCache, TileAddr, Tile&0x3ff); \
}
#define IS_BLANK_TILE() \
(BG.Buffered[TileNumber] == BLANK_TILE)
#define SELECT_PALETTE() \
if(BG.DirectColourMode) { \
if(IPPU.DirectColourMapsNeedRebuild) S9xBuildDirectColourMaps(); \
GFX.RealScreenColors = DirectColourMaps[(Tile>>10) & 7]; \
} else { \
GFX.RealScreenColors = &IPPU.ScreenColors[((Tile >> BG.PaletteShift) & BG.PaletteMask) + BG.StartPalette]; \
} \
GFX.ScreenColors = GFX.ClipColors?BlackColourMap:GFX.RealScreenColors;
#define NOMATH(Op, Main, Sub, SD) (Main)
#define REGMATH(Op, Main, Sub, SD) (COLOR_##Op((Main),((SD)&0x20)?(Sub):GFX.FixedColour))
#define MATHF1_2(Op, Main, Sub, SD) (GFX.ClipColors?(COLOR_##Op((Main),GFX.FixedColour)):(COLOR_##Op##1_2((Main),GFX.FixedColour)))
#define MATHS1_2(Op, Main, Sub, SD) (GFX.ClipColors?REGMATH(Op,Main,Sub,SD):(((SD)&0x20)?COLOR_##Op##1_2((Main),(Sub)):COLOR_##Op((Main),GFX.FixedColour)))
/*****************************************************************************/
// Basic routine to render an unclipped tile. Input parameters:
// BPSTART = either StartLine or (StartLine*2 + BG.InterlaceLine), so
// interlace modes can render every other line from the tile.
// PITCH = 1 or 2, again so interlace can count lines properly.
// DRAW_PIXEL(N,M) is a routine to actually draw the pixel. N is the pixel in
// the row to draw, and M is a test which if false means the pixel should
// be skipped.
// Z1 is the "draw if Z1>cur_depth".
// Z2 is the "cur_depth = new_depth". OBJ need the two separate.
// Pix is the pixel to draw.
#define Z1 GFX.Z1
#define Z2 GFX.Z2
#define DRAW_TILE() \
uint8 *pCache; \
register int32 l; \
register uint8 *bp, Pix; \
\
GET_CACHED_TILE(); \
if(IS_BLANK_TILE()) return; \
SELECT_PALETTE(); \
\
if (!(Tile & (V_FLIP | H_FLIP))) { \
bp = pCache + BPSTART; \
for(l = LineCount; l > 0; l--, bp += 8*PITCH, Offset += GFX.PPL) { \
DRAW_PIXEL(0,Pix=bp[0]); \
DRAW_PIXEL(1,Pix=bp[1]); \
DRAW_PIXEL(2,Pix=bp[2]); \
DRAW_PIXEL(3,Pix=bp[3]); \
DRAW_PIXEL(4,Pix=bp[4]); \
DRAW_PIXEL(5,Pix=bp[5]); \
DRAW_PIXEL(6,Pix=bp[6]); \
DRAW_PIXEL(7,Pix=bp[7]); \
} \
} else if(!(Tile & V_FLIP)) { \
bp = pCache + BPSTART; \
for(l = LineCount; l > 0; l--, bp += 8*PITCH, Offset += GFX.PPL) { \
DRAW_PIXEL(0,Pix=bp[7]); \
DRAW_PIXEL(1,Pix=bp[6]); \
DRAW_PIXEL(2,Pix=bp[5]); \
DRAW_PIXEL(3,Pix=bp[4]); \
DRAW_PIXEL(4,Pix=bp[3]); \
DRAW_PIXEL(5,Pix=bp[2]); \
DRAW_PIXEL(6,Pix=bp[1]); \
DRAW_PIXEL(7,Pix=bp[0]); \
} \
} else if(!(Tile & H_FLIP)) { \
bp = pCache + 56 - BPSTART; \
for(l = LineCount; l > 0; l--, bp -= 8*PITCH, Offset += GFX.PPL) { \
DRAW_PIXEL(0,Pix=bp[0]); \
DRAW_PIXEL(1,Pix=bp[1]); \
DRAW_PIXEL(2,Pix=bp[2]); \
DRAW_PIXEL(3,Pix=bp[3]); \
DRAW_PIXEL(4,Pix=bp[4]); \
DRAW_PIXEL(5,Pix=bp[5]); \
DRAW_PIXEL(6,Pix=bp[6]); \
DRAW_PIXEL(7,Pix=bp[7]); \
} \
} else { \
bp = pCache + 56 - BPSTART; \
for(l = LineCount; l > 0; l--, bp -= 8*PITCH, Offset += GFX.PPL) { \
DRAW_PIXEL(0,Pix=bp[7]); \
DRAW_PIXEL(1,Pix=bp[6]); \
DRAW_PIXEL(2,Pix=bp[5]); \
DRAW_PIXEL(3,Pix=bp[4]); \
DRAW_PIXEL(4,Pix=bp[3]); \
DRAW_PIXEL(5,Pix=bp[2]); \
DRAW_PIXEL(6,Pix=bp[1]); \
DRAW_PIXEL(7,Pix=bp[0]); \
} \
}
#define NAME1 DrawTile16
#define ARGS uint32 Tile, uint32 Offset, uint32 StartLine, uint32 LineCount
// Second-level include: Get the DrawTile16 renderers
#include "tile.cpp"
#undef NAME1
#undef ARGS
#undef DRAW_TILE
#undef Z1
#undef Z2
/*****************************************************************************/
// Basic routine to render a clipped tile. Inputs same as above.
#define Z1 GFX.Z1
#define Z2 GFX.Z2
#define DRAW_TILE() \
uint8 *pCache; \
register int32 l; \
register uint8 *bp, Pix, w; \
\
GET_CACHED_TILE(); \
if(IS_BLANK_TILE()) return; \
SELECT_PALETTE(); \
\
if (!(Tile & (V_FLIP | H_FLIP))) { \
bp = pCache + BPSTART; \
for(l = LineCount; l > 0; l--, bp += 8*PITCH, Offset += GFX.PPL) { \
w=Width; \
switch(StartPixel){ \
case 0: DRAW_PIXEL(0,Pix=bp[0]); if(!--w) break; \
case 1: DRAW_PIXEL(1,Pix=bp[1]); if(!--w) break; \
case 2: DRAW_PIXEL(2,Pix=bp[2]); if(!--w) break; \
case 3: DRAW_PIXEL(3,Pix=bp[3]); if(!--w) break; \
case 4: DRAW_PIXEL(4,Pix=bp[4]); if(!--w) break; \
case 5: DRAW_PIXEL(5,Pix=bp[5]); if(!--w) break; \
case 6: DRAW_PIXEL(6,Pix=bp[6]); if(!--w) break; \
case 7: DRAW_PIXEL(7,Pix=bp[7]); break; \
} \
} \
} else if(!(Tile & V_FLIP)) { \
bp = pCache + BPSTART; \
for(l = LineCount; l > 0; l--, bp += 8*PITCH, Offset += GFX.PPL) { \
w=Width; \
switch(StartPixel){ \
case 0: DRAW_PIXEL(0,Pix=bp[7]); if(!--w) break; \
case 1: DRAW_PIXEL(1,Pix=bp[6]); if(!--w) break; \
case 2: DRAW_PIXEL(2,Pix=bp[5]); if(!--w) break; \
case 3: DRAW_PIXEL(3,Pix=bp[4]); if(!--w) break; \
case 4: DRAW_PIXEL(4,Pix=bp[3]); if(!--w) break; \
case 5: DRAW_PIXEL(5,Pix=bp[2]); if(!--w) break; \
case 6: DRAW_PIXEL(6,Pix=bp[1]); if(!--w) break; \
case 7: DRAW_PIXEL(7,Pix=bp[0]); break; \
} \
} \
} else if(!(Tile & H_FLIP)) { \
bp = pCache + 56 - BPSTART; \
for(l = LineCount; l > 0; l--, bp -= 8*PITCH, Offset += GFX.PPL) { \
w=Width; \
switch(StartPixel){ \
case 0: DRAW_PIXEL(0,Pix=bp[0]); if(!--w) break; \
case 1: DRAW_PIXEL(1,Pix=bp[1]); if(!--w) break; \
case 2: DRAW_PIXEL(2,Pix=bp[2]); if(!--w) break; \
case 3: DRAW_PIXEL(3,Pix=bp[3]); if(!--w) break; \
case 4: DRAW_PIXEL(4,Pix=bp[4]); if(!--w) break; \
case 5: DRAW_PIXEL(5,Pix=bp[5]); if(!--w) break; \
case 6: DRAW_PIXEL(6,Pix=bp[6]); if(!--w) break; \
case 7: DRAW_PIXEL(7,Pix=bp[7]); break; \
} \
} \
} else { \
bp = pCache + 56 - BPSTART; \
for(l = LineCount; l > 0; l--, bp -= 8*PITCH, Offset += GFX.PPL) { \
w=Width; \
switch(StartPixel){ \
case 0: DRAW_PIXEL(0,Pix=bp[7]); if(!--w) break; \
case 1: DRAW_PIXEL(1,Pix=bp[6]); if(!--w) break; \
case 2: DRAW_PIXEL(2,Pix=bp[5]); if(!--w) break; \
case 3: DRAW_PIXEL(3,Pix=bp[4]); if(!--w) break; \
case 4: DRAW_PIXEL(4,Pix=bp[3]); if(!--w) break; \
case 5: DRAW_PIXEL(5,Pix=bp[2]); if(!--w) break; \
case 6: DRAW_PIXEL(6,Pix=bp[1]); if(!--w) break; \
case 7: DRAW_PIXEL(7,Pix=bp[0]); break; \
} \
} \
}
#define NAME1 DrawClippedTile16
#define ARGS uint32 Tile, uint32 Offset, uint32 StartPixel, uint32 Width, uint32 StartLine, uint32 LineCount
// Second-level include: Get the DrawClippedTile16 renderers
#include "tile.cpp"
#undef NAME1
#undef ARGS
#undef DRAW_TILE
#undef Z1
#undef Z2
/*****************************************************************************/
// Basic routine to render a single mosaic pixel. DRAW_PIXEL, BPSTART, Z1, Z2
// and Pix are the same as above, but PITCH is not used.
#define Z1 GFX.Z1
#define Z2 GFX.Z2
#define DRAW_TILE() \
uint8 *pCache; \
register int32 l, w; \
register uint8 Pix; \
\
GET_CACHED_TILE(); \
if(IS_BLANK_TILE()) return; \
SELECT_PALETTE(); \
\
if (Tile & H_FLIP) StartPixel = 7 - StartPixel; \
if (Tile & V_FLIP) { \
Pix = pCache[56 - BPSTART + StartPixel]; \
} else { \
Pix = pCache[BPSTART + StartPixel]; \
} \
if(Pix){ \
for(l = LineCount; l > 0; l--, Offset += GFX.PPL) { \
for(w = Width-1; w>=0; w--) { \
DRAW_PIXEL(w,1); \
} \
} \
}
#define NAME1 DrawMosaicPixel16
#define ARGS uint32 Tile, uint32 Offset, uint32 StartLine, uint32 StartPixel, uint32 Width, uint32 LineCount
// Second-level include: Get the DrawMosaicPixel16 renderers
#include "tile.cpp"
#undef NAME1
#undef ARGS
#undef DRAW_TILE
#undef Z1
#undef Z2
/*****************************************************************************/
// Basic routine to render the backdrop. DRAW_PIXEL is the same as above, but
// since we're just replicating a single pixel there's no need for PITCH or
// BPSTART (or interlace at all, really). The backdrop is always depth=1, so
// Z1=Z2=1. And backdrop is always color 0.
#define NO_INTERLACE 1
#define Z1 1
#define Z2 1
#define Pix 0
#define DRAW_TILE() \
register uint32 l, x; \
\
GFX.RealScreenColors = IPPU.ScreenColors; \
GFX.ScreenColors = GFX.ClipColors?BlackColourMap:GFX.RealScreenColors; \
\
for(l=GFX.StartY; l<=GFX.EndY; l++, Offset+=GFX.PPL) { \
for(x=Left; x<Right; x++) { \
DRAW_PIXEL(x,1); \
} \
}
#define NAME1 DrawBackdrop16
#define ARGS uint32 Offset, uint32 Left, uint32 Right
// Second-level include: Get the DrawBackdrop16 renderers
#include "tile.cpp"
#undef NAME1
#undef ARGS
#undef DRAW_TILE
#undef Pix
#undef Z1
#undef Z2
#undef NO_INTERLACE
/*****************************************************************************/
// Basic routine to render a chunk of a Mode 7 BG. Mode 7 has no interlace, so
// BPSTART and PITCH are unused. We get some new parameters, so we can use the
// same DRAW_TILE to do BG1 or BG2:
// DCMODE tests if Direct Color should apply
// BG is the BG, so we use the right clip window
// MASK is 0xff or 0x7f, the 'color' portion of the pixel.
// We define Z1/Z2 to either be constant 5 or to vary depending on the
// 'priority' portion of the pixel.
#define CLIP_10_BIT_SIGNED(a) (((a)&0x2000)?((a)|~0x3ff):((a)&0x3ff))
extern struct SLineMatrixData LineMatrixData [240];
#define NO_INTERLACE 1
#define Z1 D+7
#define Z2 D+7
#define MASK 0xff
#define DCMODE (Memory.FillRAM[0x2130]&1)
#define BG 0
#define DRAW_TILE_NORMAL() \
uint8 *VRAM1 = Memory.VRAM + 1; \
\
if(DCMODE) { \
if(IPPU.DirectColourMapsNeedRebuild) S9xBuildDirectColourMaps(); \
GFX.RealScreenColors = DirectColourMaps[0]; \
} else { \
GFX.RealScreenColors = IPPU.ScreenColors; \
} \
GFX.ScreenColors = GFX.ClipColors?BlackColourMap:GFX.RealScreenColors; \
\
int aa, cc; \
int startx; \
\
uint32 Offset = GFX.StartY * GFX.PPL; \
struct SLineMatrixData *l = &LineMatrixData[GFX.StartY]; \
\
for(uint32 Line = GFX.StartY; Line <= GFX.EndY; Line++, Offset += GFX.PPL, l++) { \
int yy, starty; \
\
int32 HOffset = ((int32) l->M7HOFS << 19) >> 19; \
int32 VOffset = ((int32) l->M7VOFS << 19) >> 19; \
\
int32 CentreX = ((int32) l->CentreX << 19) >> 19; \
int32 CentreY = ((int32) l->CentreY << 19) >> 19; \
\
if (PPU.Mode7VFlip) { \
starty = 255 - (int) (Line+1); \
} else { \
starty = Line+1; \
} \
\
yy = CLIP_10_BIT_SIGNED(VOffset - CentreY); \
\
int BB = ((l->MatrixB*starty)&~63) + ((l->MatrixB*yy)&~63) + (CentreX << 8); \
int DD = ((l->MatrixD*starty)&~63) + ((l->MatrixD*yy)&~63) + (CentreY << 8); \
\
if(PPU.Mode7HFlip) { \
startx = Right - 1; \
aa = -l->MatrixA; \
cc = -l->MatrixC; \
} else { \
startx = Left; \
aa = l->MatrixA; \
cc = l->MatrixC; \
} \
\
int xx = CLIP_10_BIT_SIGNED(HOffset - CentreX); \
int AA = l->MatrixA*startx + ((l->MatrixA*xx)&~63); \
int CC = l->MatrixC*startx + ((l->MatrixC*xx)&~63); \
uint8 Pix; \
\
if(!PPU.Mode7Repeat) { \
for(uint32 x = Left; x<Right; x++, AA+=aa, CC+=cc) { \
int X = ((AA + BB) >> 8) & 0x3ff; \
int Y = ((CC + DD) >> 8) & 0x3ff; \
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); \
uint8 b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); \
DRAW_PIXEL(x, Pix=(b&MASK)); \
} \
} else { \
for(uint32 x = Left; x<Right; x++, AA+=aa, CC+=cc) { \
int X = ((AA + BB) >> 8); \
int Y = ((CC + DD) >> 8); \
\
uint8 b; \
if (((X | Y) & ~0x3ff) == 0) { \
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); \
b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); \
} else if(PPU.Mode7Repeat == 3) { \
b = *(VRAM1 + ((Y & 7) << 4) + ((X & 7) << 1)); \
} else { \
continue; \
} \
DRAW_PIXEL(x, Pix=(b&MASK)); \
} \
} \
}
#define DRAW_TILE_MOSAIC() \
uint8 *VRAM1 = Memory.VRAM + 1; \
\
if(DCMODE) { \
if(IPPU.DirectColourMapsNeedRebuild) S9xBuildDirectColourMaps(); \
GFX.RealScreenColors = DirectColourMaps[0]; \
} else { \
GFX.RealScreenColors = IPPU.ScreenColors; \
} \
GFX.ScreenColors = GFX.ClipColors?BlackColourMap:GFX.RealScreenColors; \
\
int aa, cc; \
int startx, StartY=GFX.StartY; \
int HMosaic=1, VMosaic=1, MosaicStart=0; \
int32 MLeft=Left, MRight=Right; \
if(PPU.BGMosaic[0]){ \
VMosaic=PPU.Mosaic; \
MosaicStart=((uint32)GFX.StartY-PPU.MosaicStart)%VMosaic; \
StartY-=MosaicStart; \
} \
if(PPU.BGMosaic[BG]){ \
HMosaic=PPU.Mosaic; \
MLeft-=MLeft%HMosaic; \
MRight+=HMosaic-1; MRight-=MRight%HMosaic; \
} \
\
uint32 Offset = StartY * GFX.PPL; \
struct SLineMatrixData *l = &LineMatrixData[StartY]; \
\
for(uint32 Line = StartY; Line <= GFX.EndY; Line+=VMosaic, Offset+=VMosaic*GFX.PPL, l+=VMosaic) { \
if(Line+VMosaic>GFX.EndY) VMosaic=GFX.EndY-Line+1; \
int yy, starty; \
\
int32 HOffset = ((int32) l->M7HOFS << 19) >> 19; \
int32 VOffset = ((int32) l->M7VOFS << 19) >> 19; \
\
int32 CentreX = ((int32) l->CentreX << 19) >> 19; \
int32 CentreY = ((int32) l->CentreY << 19) >> 19; \
\
if (PPU.Mode7VFlip) { \
starty = 255 - (int) (Line+1); \
} else { \
starty = Line+1; \
} \
\
yy = CLIP_10_BIT_SIGNED(VOffset - CentreY); \
\
int BB = ((l->MatrixB*starty)&~63) + ((l->MatrixB*yy)&~63) + (CentreX << 8); \
int DD = ((l->MatrixD*starty)&~63) + ((l->MatrixD*yy)&~63) + (CentreY << 8); \
\
if(PPU.Mode7HFlip) { \
startx = MRight - 1; \
aa = -l->MatrixA; \
cc = -l->MatrixC; \
} else { \
startx = MLeft; \
aa = l->MatrixA; \
cc = l->MatrixC; \
} \
\
int xx = CLIP_10_BIT_SIGNED(HOffset - CentreX); \
int AA = l->MatrixA*startx + ((l->MatrixA*xx)&~63); \
int CC = l->MatrixC*startx + ((l->MatrixC*xx)&~63); \
uint8 Pix; \
uint8 ctr=1; \
\
if(!PPU.Mode7Repeat) { \
for(int32 x = MLeft; x<MRight; x++, AA+=aa, CC+=cc) { \
if(--ctr) continue; \
ctr = HMosaic; \
int X = ((AA + BB) >> 8) & 0x3ff; \
int Y = ((CC + DD) >> 8) & 0x3ff; \
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); \
uint8 b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); \
if((Pix=(b&MASK))){ \
for(int32 h=MosaicStart; h<VMosaic; h++){ \
for(int32 w=x+HMosaic-1; w>=x; w--){ \
DRAW_PIXEL(w+h*GFX.PPL, (w>=(int32)Left && w<(int32)Right)); \
} \
} \
} \
} \
} else { \
for(int32 x = MLeft; x<MRight; x++, AA+=aa, CC+=cc) { \
if(--ctr) continue; \
ctr = HMosaic; \
int X = ((AA + BB) >> 8); \
int Y = ((CC + DD) >> 8); \
\
uint8 b; \
if (((X | Y) & ~0x3ff) == 0) { \
uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); \
b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); \
} else if(PPU.Mode7Repeat == 3) { \
b = *(VRAM1 + ((Y & 7) << 4) + ((X & 7) << 1)); \
} else { \
continue; \
} \
if((Pix=(b&MASK))){ \
for(int32 h=MosaicStart; h<VMosaic; h++){ \
for(int32 w=x+HMosaic-1; w>=x; w--){ \
DRAW_PIXEL(w+h*GFX.PPL, (w>=(int32)Left && w<(int32)Right)); \
} \
} \
} \
} \
} \
MosaicStart=0; \
}
#define DRAW_TILE() DRAW_TILE_NORMAL()
#define NAME1 DrawMode7BG1
#define ARGS uint32 Left, uint32 Right, int D
// Second-level include: Get the DrawMode7BG1 renderers
#include "tile.cpp"
#undef NAME1
#undef DRAW_TILE
#define DRAW_TILE() DRAW_TILE_MOSAIC()
#define NAME1 DrawMode7MosaicBG1
// Second-level include: Get the DrawMode7MosaicBG1 renderers
#include "tile.cpp"
#undef DRAW_TILE
#undef NAME1
#undef Z1
#undef Z2
#undef MASK
#undef DCMODE
#undef BG
#define NAME1 DrawMode7BG2
#define DRAW_TILE() DRAW_TILE_NORMAL()
#define Z1 D+((b&0x80)?11:3)
#define Z2 D+((b&0x80)?11:3)
#define MASK 0x7f
#define DCMODE 0
#define BG 1
// Second-level include: Get the DrawMode7BG2 renderers
#include "tile.cpp"
#undef NAME1
#undef DRAW_TILE
#define DRAW_TILE() DRAW_TILE_MOSAIC()
#define NAME1 DrawMode7MosaicBG2
// Second-level include: Get the DrawMode7MosaicBG2 renderers
#include "tile.cpp"
#undef MASK
#undef DCMODE
#undef BG
#undef NAME1
#undef ARGS
#undef DRAW_TILE
#undef DRAW_TILE_NORMAL
#undef DRAW_TILE_MOSAIC
#undef Z1
#undef Z2
#undef NO_INTERLACE
/*===========================================================================*/
#else // Second-level: Get all NAME1 renderers
#ifndef NAME2
/*===========================================================================*/
#define BPSTART StartLine
#define PITCH 1
// The 1x1 pixel plotter, for speedhacking modes.
#define DRAW_PIXEL(N,M) \
if(Z1>GFX.DB[Offset+N] && (M)){ \
GFX.S[Offset+N] = MATH(GFX.ScreenColors[Pix], GFX.SubScreen[Offset+N], GFX.SubZBuffer[Offset+N]); \
GFX.DB[Offset+N] = Z2; \
}
#define NAME2 Normal1x1
// Third-level include: get the Normal1x1 renderers
#include "tile.cpp"
#undef NAME2
#undef DRAW_PIXEL
// The 2x1 pixel plotter, for normal rendering when we've used hires/interlace
// already this frame.
#define DRAW_PIXEL_N2x1(N,M) \
if(Z1>GFX.DB[Offset+2*N] && (M)){ \
GFX.S[Offset+2*N] = GFX.S[Offset+2*N+1] = MATH(GFX.ScreenColors[Pix], GFX.SubScreen[Offset+2*N], GFX.SubZBuffer[Offset+2*N]); \
GFX.DB[Offset+2*N] = GFX.DB[Offset+2*N+1] = Z2; \
}
#define DRAW_PIXEL(N,M) DRAW_PIXEL_N2x1(N,M)
#define NAME2 Normal2x1
// Third-level include: get the Normal2x1 renderers
#include "tile.cpp"
#undef NAME2
#undef DRAW_PIXEL
// Hires pixel plotter, this combines the main and subscreen pixels as
// appropriate to render hires or pseudo-hires images. Use it only on the main
// screen, subscreen should use Normal2x1 instead.
/* Hires math:
* Main pixel is mathed as normal: Main(x,y)*Sub(x,y)
* Sub pixel is mathed somewhat weird: Basically, for Sub(x+1,y) we apply the
* same operation we applied to Main(x,y) (e.g. no math, add fixed, add1/2
* subscreen) using Main(x,y) as the "corresponding subscreen pixel".
* Also, color window clipping clips Sub(x+1,y) iff Main(x,y) is clipped,
* not Main(x+1,y).
* We don't know how Sub(0,y) is handled.
*/
#define DRAW_PIXEL_H2x1(N,M) \
if(Z1>GFX.DB[Offset+2*N] && (M)){ \
GFX.S[Offset+2*N] = MATH(GFX.ScreenColors[Pix], GFX.SubScreen[Offset+2*N], GFX.SubZBuffer[Offset+2*N]); \
GFX.S[Offset+2*N+1] = MATH((GFX.ClipColors?0:GFX.SubScreen[Offset+2*N+2]), GFX.RealScreenColors[Pix], GFX.SubZBuffer[Offset+2*N]); \
GFX.DB[Offset+2*N] = GFX.DB[Offset+2*N+1] = Z2; \
}
#define DRAW_PIXEL(N,M) DRAW_PIXEL_H2x1(N,M)
#define NAME2 Hires
// Third-level include: get the Hires renderers
#include "tile.cpp"
#undef NAME2
#undef DRAW_PIXEL
/* Interlace: Only draw every other line, so we'll redefine BPSTART and PITCH
* to do so. Otherwise, it's the same as Normal2x1/Hires2x1.
*/
#undef BPSTART
#undef PITCH
#define BPSTART (StartLine*2+BG.InterlaceLine)
#define PITCH 2
#ifndef NO_INTERLACE
#define DRAW_PIXEL(N,M) DRAW_PIXEL_N2x1(N,M)
#define NAME2 Interlace
// Third-level include: get the Interlace renderers
#include "tile.cpp"
#undef NAME2
#undef DRAW_PIXEL
#define DRAW_PIXEL(N,M) DRAW_PIXEL_H2x1(N,M)
#define NAME2 HiresInterlace
// Third-level include: get the HiresInterlace renderers
#include "tile.cpp"
#undef NAME2
#undef DRAW_PIXEL
#endif /* NO_INTERLACE */
#undef BPSTART
#undef PITCH
/*===========================================================================*/
#else // Third-level: Renderers for each math mode for NAME1 + NAME2
/*===========================================================================*/
#define CONCAT3(A,B,C) A##B##C
#define MAKENAME(A,B,C) CONCAT3(A,B,C)
static void MAKENAME(NAME1,_,NAME2) (ARGS)
{
#define MATH(A,B,C) NOMATH(x,A,B,C)
DRAW_TILE();
#undef MATH
}
static void MAKENAME(NAME1,Add_,NAME2) (ARGS)
{
#define MATH(A,B,C) REGMATH(ADD,A,B,C)
DRAW_TILE();
#undef MATH
}
static void MAKENAME(NAME1,AddF1_2_,NAME2) (ARGS)
{
#define MATH(A,B,C) MATHF1_2(ADD,A,B,C)
DRAW_TILE();
#undef MATH
}
static void MAKENAME(NAME1,AddS1_2_,NAME2) (ARGS)
{
#define MATH(A,B,C) MATHS1_2(ADD,A,B,C)
DRAW_TILE();
#undef MATH
}
static void MAKENAME(NAME1,Sub_,NAME2) (ARGS)
{
#define MATH(A,B,C) REGMATH(SUB,A,B,C)
DRAW_TILE();
#undef MATH
}
static void MAKENAME(NAME1,SubF1_2_,NAME2) (ARGS)
{
#define MATH(A,B,C) MATHF1_2(SUB,A,B,C)
DRAW_TILE();
#undef MATH
}
static void MAKENAME(NAME1,SubS1_2_,NAME2) (ARGS)
{
#define MATH(A,B,C) MATHS1_2(SUB,A,B,C)
DRAW_TILE();
#undef MATH
}
static void (*MAKENAME(Renderers_,NAME1,NAME2)[7])(ARGS)={
MAKENAME(NAME1,_,NAME2),
MAKENAME(NAME1,Add_,NAME2),
MAKENAME(NAME1,AddF1_2_,NAME2),
MAKENAME(NAME1,AddS1_2_,NAME2),
MAKENAME(NAME1,Sub_,NAME2),
MAKENAME(NAME1,SubF1_2_,NAME2),
MAKENAME(NAME1,SubS1_2_,NAME2)
};
#undef MAKENAME
#undef CONCAT3
#endif
#endif
#endif