snes9xgx/source/snes9x/dsp2.cpp
2018-08-20 09:11:01 -06:00

533 lines
14 KiB
C++

/***********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
zones (kasumitokoduck@yahoo.com)
(c) Copyright 2006 - 2007 nitsuja
(c) Copyright 2009 - 2010 BearOso,
OV2
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com),
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code used in 1.39-1.51
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
SPC7110 and RTC C++ emulator code used in 1.52+
(c) Copyright 2009 byuu,
neviksti
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001 - 2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound emulator code used in 1.5-1.51
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
Sound emulator code used in 1.52+
(c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com)
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
NTSC filter
(c) Copyright 2006 - 2007 Shay Green
GTK+ GUI code
(c) Copyright 2004 - 2010 BearOso
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
(c) Copyright 2009 - 2010 OV2
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
(c) Copyright 2001 - 2010 zones
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com/
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
***********************************************************************************/
#include "snes9x.h"
#include "memmap.h"
static void DSP2_Op01 (void);
static void DSP2_Op03 (void);
static void DSP2_Op05 (void);
static void DSP2_Op06 (void);
static void DSP2_Op09 (void);
static void DSP2_Op0D (void);
// convert bitmap to bitplane tile
static void DSP2_Op01 (void)
{
// Op01 size is always 32 bytes input and output
// The hardware does strange things if you vary the size
uint8 c0, c1, c2, c3;
uint8 *p1 = DSP2.parameters;
uint8 *p2a = DSP2.output;
uint8 *p2b = DSP2.output + 16; // halfway
// Process 8 blocks of 4 bytes each
for (int j = 0; j < 8; j++)
{
c0 = *p1++;
c1 = *p1++;
c2 = *p1++;
c3 = *p1++;
*p2a++ = (c0 & 0x10) << 3 |
(c0 & 0x01) << 6 |
(c1 & 0x10) << 1 |
(c1 & 0x01) << 4 |
(c2 & 0x10) >> 1 |
(c2 & 0x01) << 2 |
(c3 & 0x10) >> 3 |
(c3 & 0x01);
*p2a++ = (c0 & 0x20) << 2 |
(c0 & 0x02) << 5 |
(c1 & 0x20) |
(c1 & 0x02) << 3 |
(c2 & 0x20) >> 2 |
(c2 & 0x02) << 1 |
(c3 & 0x20) >> 4 |
(c3 & 0x02) >> 1;
*p2b++ = (c0 & 0x40) << 1 |
(c0 & 0x04) << 4 |
(c1 & 0x40) >> 1 |
(c1 & 0x04) << 2 |
(c2 & 0x40) >> 3 |
(c2 & 0x04) |
(c3 & 0x40) >> 5 |
(c3 & 0x04) >> 2;
*p2b++ = (c0 & 0x80) |
(c0 & 0x08) << 3 |
(c1 & 0x80) >> 2 |
(c1 & 0x08) << 1 |
(c2 & 0x80) >> 4 |
(c2 & 0x08) >> 1 |
(c3 & 0x80) >> 6 |
(c3 & 0x08) >> 3;
}
}
// set transparent color
static void DSP2_Op03 (void)
{
DSP2.Op05Transparent = DSP2.parameters[0];
}
// replace bitmap using transparent color
static void DSP2_Op05 (void)
{
// Overlay bitmap with transparency.
// Input:
//
// Bitmap 1: i[0] <=> i[size-1]
// Bitmap 2: i[size] <=> i[2*size-1]
//
// Output:
//
// Bitmap 3: o[0] <=> o[size-1]
//
// Processing:
//
// Process all 4-bit pixels (nibbles) in the bitmap
//
// if ( BM2_pixel == transparent_color )
// pixelout = BM1_pixel
// else
// pixelout = BM2_pixel
// The max size bitmap is limited to 255 because the size parameter is a byte
// I think size=0 is an error. The behavior of the chip on size=0 is to
// return the last value written to DR if you read DR on Op05 with
// size = 0. I don't think it's worth implementing this quirk unless it's
// proven necessary.
uint8 color;
uint8 c1, c2;
uint8 *p1 = DSP2.parameters;
uint8 *p2 = DSP2.parameters + DSP2.Op05Len;
uint8 *p3 = DSP2.output;
color = DSP2.Op05Transparent & 0x0f;
for (int32 n = 0; n < DSP2.Op05Len; n++)
{
c1 = *p1++;
c2 = *p2++;
*p3++ = (((c2 >> 4) == color) ? c1 & 0xf0: c2 & 0xf0) | (((c2 & 0x0f) == color) ? c1 & 0x0f: c2 & 0x0f);
}
}
// reverse bitmap
static void DSP2_Op06 (void)
{
// Input:
// size
// bitmap
for (int32 i = 0, j = DSP2.Op06Len - 1; i < DSP2.Op06Len; i++, j--)
DSP2.output[j] = (DSP2.parameters[i] << 4) | (DSP2.parameters[i] >> 4);
}
// multiply
static void DSP2_Op09 (void)
{
DSP2.Op09Word1 = DSP2.parameters[0] | (DSP2.parameters[1] << 8);
DSP2.Op09Word2 = DSP2.parameters[2] | (DSP2.parameters[3] << 8);
uint32 temp = DSP2.Op09Word1 * DSP2.Op09Word2;
DSP2.output[0] = temp & 0xFF;
DSP2.output[1] = (temp >> 8) & 0xFF;
DSP2.output[2] = (temp >> 16) & 0xFF;
DSP2.output[3] = (temp >> 24) & 0xFF;
}
// scale bitmap
static void DSP2_Op0D (void)
{
// Bit accurate hardware algorithm - uses fixed point math
// This should match the DSP2 Op0D output exactly
// I wouldn't recommend using this unless you're doing hardware debug.
// In some situations it has small visual artifacts that
// are not readily apparent on a TV screen but show up clearly
// on a monitor. Use Overload's scaling instead.
// This is for hardware verification testing.
//
// One note: the HW can do odd byte scaling but since we divide
// by two to get the count of bytes this won't work well for
// odd byte scaling (in any of the current algorithm implementations).
// So far I haven't seen Dungeon Master use it.
// If it does we can adjust the parameters and code to work with it
uint32 multiplier; // Any size int >= 32-bits
uint32 pixloc; // match size of multiplier
uint8 pixelarray[512];
if (DSP2.Op0DInLen <= DSP2.Op0DOutLen)
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
else
multiplier = (DSP2.Op0DInLen << 17) / ((DSP2.Op0DOutLen << 1) + 1);
pixloc = 0;
for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++)
{
int32 j = pixloc >> 16;
if (j & 1)
pixelarray[i] = DSP2.parameters[j >> 1] & 0x0f;
else
pixelarray[i] = (DSP2.parameters[j >> 1] & 0xf0) >> 4;
pixloc += multiplier;
}
for (int32 i = 0; i < DSP2.Op0DOutLen; i++)
DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}
/*
static void DSP2_Op0D (void)
{
// Overload's algorithm - use this unless doing hardware testing
// One note: the HW can do odd byte scaling but since we divide
// by two to get the count of bytes this won't work well for
// odd byte scaling (in any of the current algorithm implementations).
// So far I haven't seen Dungeon Master use it.
// If it does we can adjust the parameters and code to work with it
int32 pixel_offset;
uint8 pixelarray[512];
for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++)
{
pixel_offset = (i * DSP2.Op0DInLen) / DSP2.Op0DOutLen;
if ((pixel_offset & 1) == 0)
pixelarray[i] = DSP2.parameters[pixel_offset >> 1] >> 4;
else
pixelarray[i] = DSP2.parameters[pixel_offset >> 1] & 0x0f;
}
for (int32 i = 0; i < DSP2.Op0DOutLen; i++)
DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}
*/
void DSP2SetByte (uint8 byte, uint16 address)
{
if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000))
{
if (DSP2.waiting4command)
{
DSP2.command = byte;
DSP2.in_index = 0;
DSP2.waiting4command = FALSE;
switch (byte)
{
case 0x01: DSP2.in_count = 32; break;
case 0x03: DSP2.in_count = 1; break;
case 0x05: DSP2.in_count = 1; break;
case 0x06: DSP2.in_count = 1; break;
case 0x09: DSP2.in_count = 4; break;
case 0x0D: DSP2.in_count = 2; break;
default:
#ifdef DEBUGGER
//printf("Op%02X\n", byte);
#endif
case 0x0f: DSP2.in_count = 0; break;
}
}
else
{
DSP2.parameters[DSP2.in_index] = byte;
DSP2.in_index++;
}
if (DSP2.in_count == DSP2.in_index)
{
DSP2.waiting4command = TRUE;
DSP2.out_index = 0;
switch (DSP2.command)
{
case 0x01:
DSP2.out_count = 32;
DSP2_Op01();
break;
case 0x03:
DSP2_Op03();
break;
case 0x05:
if (DSP2.Op05HasLen)
{
DSP2.Op05HasLen = FALSE;
DSP2.out_count = DSP2.Op05Len;
DSP2_Op05();
}
else
{
DSP2.Op05Len = DSP2.parameters[0];
DSP2.in_index = 0;
DSP2.in_count = 2 * DSP2.Op05Len;
DSP2.Op05HasLen = TRUE;
if (byte)
DSP2.waiting4command = FALSE;
}
break;
case 0x06:
if (DSP2.Op06HasLen)
{
DSP2.Op06HasLen = FALSE;
DSP2.out_count = DSP2.Op06Len;
DSP2_Op06();
}
else
{
DSP2.Op06Len = DSP2.parameters[0];
DSP2.in_index = 0;
DSP2.in_count = DSP2.Op06Len;
DSP2.Op06HasLen = TRUE;
if (byte)
DSP2.waiting4command = FALSE;
}
break;
case 0x09:
DSP2.out_count = 4;
DSP2_Op09();
break;
case 0x0D:
if (DSP2.Op0DHasLen)
{
DSP2.Op0DHasLen = FALSE;
DSP2.out_count = DSP2.Op0DOutLen;
DSP2_Op0D();
}
else
{
DSP2.Op0DInLen = DSP2.parameters[0];
DSP2.Op0DOutLen = DSP2.parameters[1];
DSP2.in_index = 0;
DSP2.in_count = (DSP2.Op0DInLen + 1) >> 1;
DSP2.Op0DHasLen = TRUE;
if (byte)
DSP2.waiting4command = FALSE;
}
break;
case 0x0f:
default:
break;
}
}
}
}
uint8 DSP2GetByte (uint16 address)
{
uint8 t;
if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000))
{
if (DSP2.out_count)
{
t = (uint8) DSP2.output[DSP2.out_index];
DSP2.out_index++;
if (DSP2.out_count == DSP2.out_index)
DSP2.out_count = 0;
}
else
t = 0xff;
}
else
t = 0x80;
return (t);
}